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Introduction

Neurons in the brain communicate by short electrical pulses, the
so-called action potentials or spikes.

I How can we understand the process of spike generation?

I How can we understand information transmission by neurons?

I What happens if thousands of neurons are coupled together in
a seemingly random network?

I How does the network connectivity determine the activity
patterns?

I And, vice versa, how does the spike activity influence the
connectivity pattern?



Problem position

Given a spiking neural network to which extends observing the
spike raster allows to infer the networks parameters ?



Model - From the Leaky Integrate and Fire model (LIF) to
BMS model (Cessac, 2008)

Ii (t) = IR + IC
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Time discretization of the LIF model using the Euler method:
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Setting dt = 1 (sampling time scale) and γ = 1− 1
τ we have:

Vi (t + 1) = Vi (t)− Vi (t)

τ
+

Ii (t)

C

Vi (t + 1) = Vi (t)
(

1− 1

τ

)
+

Ii (t)

C

Vi (t + 1) = γVi (t) +
Ii (t)

C

The discretization imposes that τ ≥ 1, thus γ ∈ [0, 1[. Considering
that C = 1 we have:

Vi (t + 1) = γVi (t) + Ii (t)

Ii (t) = I S
i + I ext

i



I S
i (t) =

N∑
j=1

WijZ [Vj ]

Vi (t + 1) = γVi (t) +
N∑

j=1

WijZ [Vj ] + I ext
i

Vi (t + 1) = γVi (t)(1− Z [Vi ]) +
N∑

j=1

WijZ [Vj ] + I ext
i

Vi [k] = γVi [k − 1](1− Zi [k − 1]) +
N∑

j=1

WijZj [k − dij ] + I ext
i

Zi [k] = (V < θ ? 0 : 1)



Master-Slave paradigm

For the master:

I Zi [k], k ∈ {1..D}
I Vi [k] = 0, k ≤ D

I Weights Wij ∈ R
I Delays dij ∈ {1..D}

Vi [k] = γVi [k − 1](1− Zi [k − 1]) +
N∑

j=1

WijZj [k − dij ] + I ext
i



For the slave we have 3 possible solutions:

L Linear problem, if we observe raster and potential and known
delays.

LP Linear programming problem, if we observe raster and known
delays.

NP NP-complete problem, in any general case. Unknown delays
and weights.



(L) Retrieving weights from the observation of spikes and
membrane potential

We assume:

1. Vi [k] = 0, k ∈ {0,D{, or

2. the neuron i has fired at least one.

From the BMS model we have:

Vi [k] =
N∑

j=1

Wij

0∑
τ=τjk

γτZj [k − τ − dij ] + I ext
i

with, τjk = k − arg minτ>D{Zi [k − 1− τ ] = 1}

where: τjk is the delay from the last spiking time, i.e., the last
membrane potential reset.



Last equation writes as a matrix:

Aiwi = bi

Ai =

 · · · · · · · · ·
· · ·

∑0
τ=τjt

γτ Zj(k − τ − dij) · · ·
· · · · · · · · ·

 ∈ RT−D×N

wi = (· · ·Wij · · · )T ∈ RN

bi = (· · ·Vi [k]− I ext
i · · · )T ∈ RT−D



Solving the (L) problem

The Singular Value Decomposition of A ∈ RM×N ,M ≥ N:

A = U


σ1 0 · · · 0
0 σ2 · · · 0
· · · · · · · · · 0
0 0 · · · σN


︸ ︷︷ ︸

S

VT

Given b = Aw, it appears that w = UT S†V is the:
- Solution to b = Aw, if unique
- The smallest solution to b = Aw, i.e. with |w|2 minimal, if many.
- The least-square solution, i.e. with |b− Aw|2 minimal, if none.
Here S† is the diagonal matrix with σ−1

i or 0 as diagonal term.



(LP) Retrieving weights from the observation of spikes

In this case, the value of Vi [k] is not known but only its sign with
respect to the firing threshold, i.e.:

Zi [k] = 0⇒ Vi [k] < 1 and Zi [k] = 1⇒ Vi [k] > 1,

which is equivalent to write:

(2Zi [k]− 1)(Vi [k]− 1) > 0,

Expanding the BMS model modified in the previous condition
allow us to write the follow:

(2Zi [k]− 1)

 N∑
j=1

Wij

0∑
τ=τjk

γτZj [k − τ − dij ] + I ext
i − 1

 > 0



in matrix form:

Aiwi + bi > 0

writing:

Ai =

 · · · · · · · · ·
· · · (2Zi [k]− 1)

∑0
τ=τjt

γτ Zj(k − τ − dij) · · ·
· · · · · · · · ·

 ∈ RT−D×N

wi = (· · ·Wij · · · )T ∈ RN

bi = (· · · (2Zi [k]− 1)(I ext
i − 1) · · · )T ∈ RT−D



Solving the (LP) problem

1. Replace the inequalities by equalities as follows:

Aiwi + bi − ei = 0

2. We have a maximization problem, with: −1 < Wijd < 1 and
0 < ei ≤ emax .

3. Solve it by the Simplex method.



(NP) Retrieving delayed weights from the observation of
spikes

From the reduced BMS model we can rewrite the following:

Vi [k] =
N∑

j=1

D∑
d=1

Wijd

0∑
τ=τjk

γτZj [k − τ − d ] + I ext
i

The way to solve it is the same that the LP problem



Results

Figure: N = 10, T = 50, D = 5, Iext = 0.6, γ = 0.95



Figure: N = 50, T = 200, D = 5, Iext = 0.6, γ = 0.95



Figure: N = 100, T = 400, D = 5, Iext = 0.6, γ = 0.95



Introducing hidden units to match any raster

In all these cases we have seen a solution always exists if the
observation period is small enough i.e., T < O(ND). Let now
consider the case where T >> O(ND). The key idea, borrowed
from the reservoir computing paradigm reviewed in the
introduction, is to add a reservoir of “hidden neurons”, i.e., to
consider not N but N + S neurons.



Results

Figure: N = 10, T = 200, D = 5, Iext = 0.6, γ = 0.95



Figure: N = 5, T = 100, D = 5, Iext = 0.6, γ = 0.95



Figure: N = 5, T = 200, D = 5, Iext = 0.6, γ = 0.95



Results from spiking activity in monkey cortex during
movement preparation(courtesy of Alexa Riehle et al.)





slideConclusions and Perspectives

* Considering a deterministic time-discretized spiking network of
neurons with connection weights having delays, we have been
able to investigate in details to which extend it is possible to
back-engineer the networks parameters, i.e., the connection
weights.

* The method proposes here can produce any rasters produced
by more realistic models such Hodgkin-Huxley.

* We have an useful tool for match raster using Linear Solver
and Linear Programming Software. ENAS.

I optimal number of hidden units.

I approximate raster matching.

I application to unsupervised or reinforcement learning.

http://enas.gforge.inria.fr

