
Back-engineering of spiking neural
networks parameters.

Horacio Rostro-Gonzalez

NeuroMathComp & Cortex Research Teams

NIH-INRIA 09

Outline

1. Introduction.

2. Problem position.

3. Model - From the Leaky Integrate and Fire model (LIF) to
BMS model (Cessac 2008).

4. Master - Slave paradigm.

5. Solutions Master-Slave paradigm:

5.1 Retrieving weights from the observation of spikes and
membrane potential.

5.2 Retrieving weights from the observation of spikes.
5.3 Retrieving delayed weights from the observation of spikes.

6. Results

7. Conclusion and Perspectives.

Introduction

Neurons in the brain communicate by short electrical pulses, the
so-called action potentials or spikes.

I How can we understand the process of spike generation?

I How can we understand information transmission by neurons?

I What happens if thousands of neurons are coupled together in
a seemingly random network?

I How does the network connectivity determine the activity
patterns?

I And, vice versa, how does the spike activity influence the
connectivity pattern?

Problem position

Given a spiking neural network to which extends observing the
spike raster allows to infer the networks parameters ?

Model - From the Leaky Integrate and Fire model (LIF) to
BMS model (Cessac, 2008)

Ii (t) = IR + IC

Ii (t) =
Vi (t)

R
+ C

dVi (t)

dt

dVi (t)

dt
= −Vi (t)

τ
+

Ii (t)

C

Time discretization of the LIF model using the Euler method:

Vi (t + dt)− Vi (t)

dt
= −Vi (t)

τ
+

Ii (t)

C

Setting dt = 1 (sampling time scale) and γ = 1− 1
τ we have:

Vi (t + 1) = Vi (t)− Vi (t)

τ
+

Ii (t)

C

Vi (t + 1) = Vi (t)
(

1− 1

τ

)
+

Ii (t)

C

Vi (t + 1) = γVi (t) +
Ii (t)

C

The discretization imposes that τ ≥ 1, thus γ ∈ [0, 1[. Considering
that C = 1 we have:

Vi (t + 1) = γVi (t) + Ii (t)

Ii (t) = I S
i + I ext

i

I S
i (t) =

N∑
j=1

WijZ [Vj]

Vi (t + 1) = γVi (t) +
N∑

j=1

WijZ [Vj] + I ext
i

Vi (t + 1) = γVi (t)(1− Z [Vi]) +
N∑

j=1

WijZ [Vj] + I ext
i

Vi [k] = γVi [k − 1](1− Zi [k − 1]) +
N∑

j=1

WijZj [k − dij] + I ext
i

Zi [k] = (V < θ ? 0 : 1)

Master-Slave paradigm

For the master:

I Zi [k], k ∈ {1..D}
I Vi [k] = 0, k ≤ D

I Weights Wij ∈ R
I Delays dij ∈ {1..D}

Vi [k] = γVi [k − 1](1− Zi [k − 1]) +
N∑

j=1

WijZj [k − dij] + I ext
i

For the slave we have 3 possible solutions:

L Linear problem, if we observe raster and potential and known
delays.

LP Linear programming problem, if we observe raster and known
delays.

NP NP-complete problem, in any general case. Unknown delays
and weights.

(L) Retrieving weights from the observation of spikes and
membrane potential

We assume:

1. Vi [k] = 0, k ∈ {0,D{, or

2. the neuron i has fired at least one.

From the BMS model we have:

Vi [k] =
N∑

j=1

Wij

0∑
τ=τjk

γτZj [k − τ − dij] + I ext
i

with, τjk = k − arg minτ>D{Zi [k − 1− τ] = 1}

where: τjk is the delay from the last spiking time, i.e., the last
membrane potential reset.

Last equation writes as a matrix:

Aiwi = bi

Ai =

 · · · · · · · · ·
· · ·

∑0
τ=τjt

γτ Zj(k − τ − dij) · · ·
· · · · · · · · ·

 ∈ RT−D×N

wi = (· · ·Wij · · ·)T ∈ RN

bi = (· · ·Vi [k]− I ext
i · · ·)T ∈ RT−D

Solving the (L) problem

The Singular Value Decomposition of A ∈ RM×N ,M ≥ N:

A = U


σ1 0 · · · 0
0 σ2 · · · 0
· · · · · · · · · 0
0 0 · · · σN


︸ ︷︷ ︸

S

VT

Given b = Aw, it appears that w = UT S†V is the:
- Solution to b = Aw, if unique
- The smallest solution to b = Aw, i.e. with |w|2 minimal, if many.
- The least-square solution, i.e. with |b− Aw|2 minimal, if none.
Here S† is the diagonal matrix with σ−1

i or 0 as diagonal term.

(LP) Retrieving weights from the observation of spikes

In this case, the value of Vi [k] is not known but only its sign with
respect to the firing threshold, i.e.:

Zi [k] = 0⇒ Vi [k] < 1 and Zi [k] = 1⇒ Vi [k] > 1,

which is equivalent to write:

(2Zi [k]− 1)(Vi [k]− 1) > 0,

Expanding the BMS model modified in the previous condition
allow us to write the follow:

(2Zi [k]− 1)

 N∑
j=1

Wij

0∑
τ=τjk

γτZj [k − τ − dij] + I ext
i − 1

 > 0

in matrix form:

Aiwi + bi > 0

writing:

Ai =

 · · · · · · · · ·
· · · (2Zi [k]− 1)

∑0
τ=τjt

γτ Zj(k − τ − dij) · · ·
· · · · · · · · ·

 ∈ RT−D×N

wi = (· · ·Wij · · ·)T ∈ RN

bi = (· · · (2Zi [k]− 1)(I ext
i − 1) · · ·)T ∈ RT−D

Solving the (LP) problem

1. Replace the inequalities by equalities as follows:

Aiwi + bi − ei = 0

2. We have a maximization problem, with: −1 < Wijd < 1 and
0 < ei ≤ emax .

3. Solve it by the Simplex method.

(NP) Retrieving delayed weights from the observation of
spikes

From the reduced BMS model we can rewrite the following:

Vi [k] =
N∑

j=1

D∑
d=1

Wijd

0∑
τ=τjk

γτZj [k − τ − d] + I ext
i

The way to solve it is the same that the LP problem

Results

Figure: N = 10, T = 50, D = 5, Iext = 0.6, γ = 0.95

Figure: N = 50, T = 200, D = 5, Iext = 0.6, γ = 0.95

Figure: N = 100, T = 400, D = 5, Iext = 0.6, γ = 0.95

Introducing hidden units to match any raster

In all these cases we have seen a solution always exists if the
observation period is small enough i.e., T < O(ND). Let now
consider the case where T >> O(ND). The key idea, borrowed
from the reservoir computing paradigm reviewed in the
introduction, is to add a reservoir of “hidden neurons”, i.e., to
consider not N but N + S neurons.

Results

Figure: N = 10, T = 200, D = 5, Iext = 0.6, γ = 0.95

Figure: N = 5, T = 100, D = 5, Iext = 0.6, γ = 0.95

Figure: N = 5, T = 200, D = 5, Iext = 0.6, γ = 0.95

Results from spiking activity in monkey cortex during
movement preparation(courtesy of Alexa Riehle et al.)

slideConclusions and Perspectives

* Considering a deterministic time-discretized spiking network of
neurons with connection weights having delays, we have been
able to investigate in details to which extend it is possible to
back-engineer the networks parameters, i.e., the connection
weights.

* The method proposes here can produce any rasters produced
by more realistic models such Hodgkin-Huxley.

* We have an useful tool for match raster using Linear Solver
and Linear Programming Software. ENAS.

I optimal number of hidden units.

I approximate raster matching.

I application to unsupervised or reinforcement learning.

http://enas.gforge.inria.fr

