Analyzing the neural Code using Gibbs Distributions

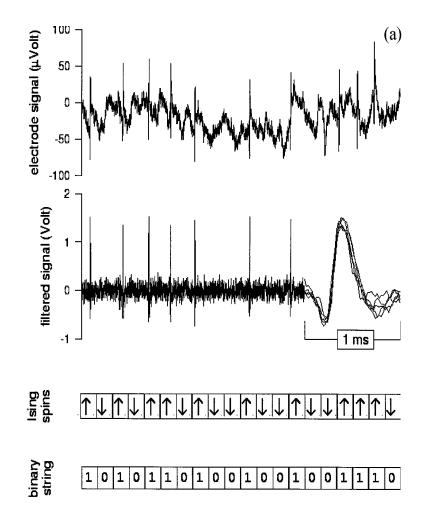
RINRIA

Juan Carlos Vasquez (PhD student) B. Cessac (advisor), T. Vieville, H. Rostro

NIH workshop , June 3, 2009

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE NeuroMathComp Project Team

Introduction to neural activity



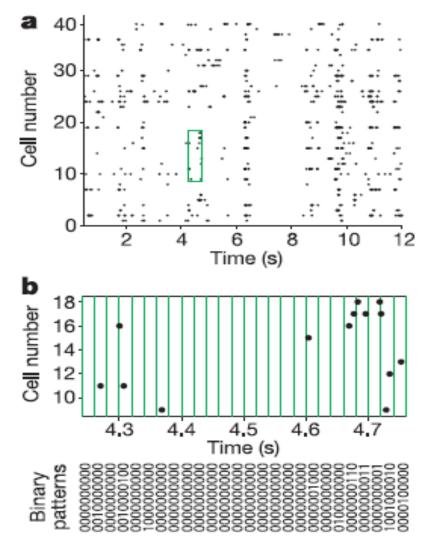
• Action Potentials or Spikes are the basic process at neuron scale.

 Most of processing or communication is spike-based.

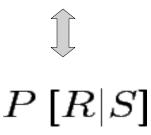
• But Neural activity/response are variable so

What is the underlying neural code? Not a single answer!!

Introduction to Neural code

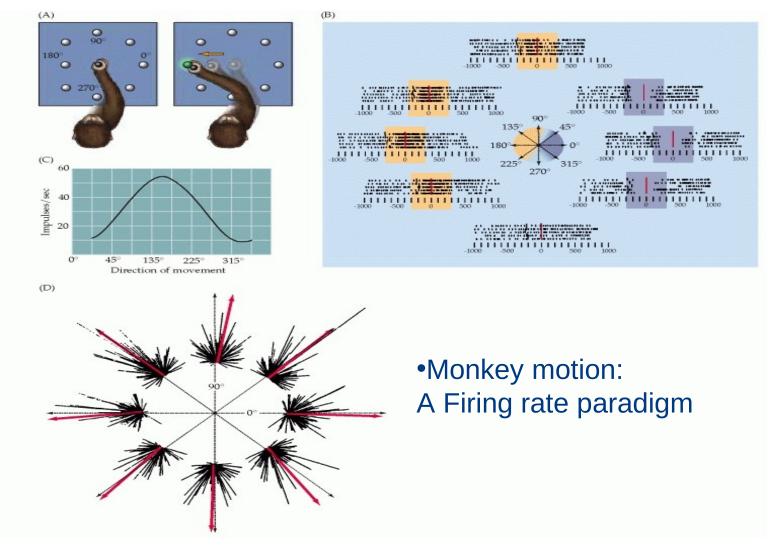


• Statistical characterization of spike trains

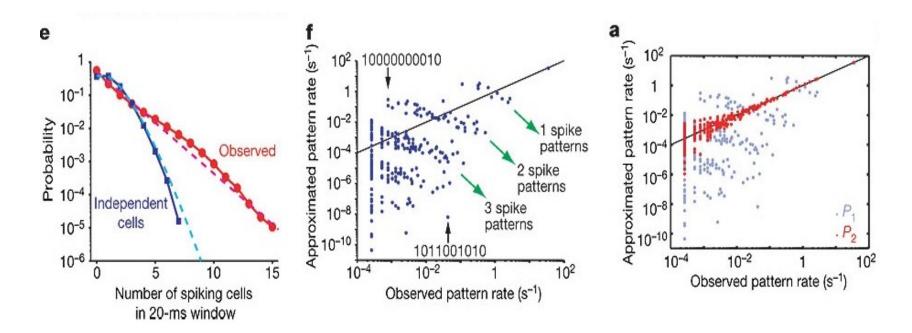


$P\left[R|S ight] \implies P\left[S|R ight]$

Examples of Neural code(I)



Examples of Neural code(II)



• Retinal and cortical "small" networks : A pairwise paradigm

•Strong system correlations as a result of weak pairwise correlations.

INSTITUT NATION DE RECHERC EN INFORMATIC ET EN AUTOMATIC

Setting the start point

Position of the problem

•To characterize the statistical properties of sequences of spike trains produced by a neural networks.

•What are the effects of synaptic plasticity at this sight?

Select an study case: (Neuron/Network/plasticity)

- ✓ Fully connected Network, Beslon-Mazet-Soula Model
- ✓ Spike-Time Dependent Plasticity (STDP)

Neuron Dynamics basic models

Generalized Integrate and Fire-Model

$$C \frac{dV_k}{dt} + g_k V_k = i_k +$$
 "Reset" phase

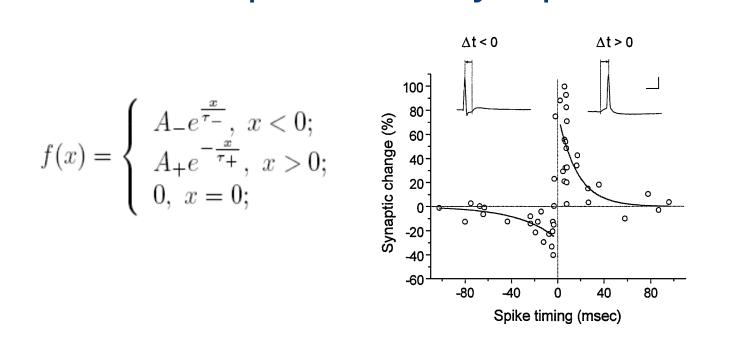
$$g_k(t, \tilde{\omega}) = g_L + \sum_{j=1}^N G_{kj} \sum_{n=1}^{M_j(t, \tilde{\omega})} \alpha(t - t_j^n)$$

Discrete time + assumptions= BMS Model

$$\mathbf{F}_{\gamma,i}(\mathbf{V}) = \rho V_i \left(1 - Z[V_i]\right) + \sum_{j=1}^N W_{ij} Z[V_j] + I_i^{ext}; \qquad i = 1 \dots N,$$

$$Z[V_i(t)] = \left\{egin{array}{ccc} \mathsf{0} & ext{if} & V_i(t) < heta \ & & & \ 1 & ext{if} & V_i(t) \geq heta \end{array}
ight.$$

Neural Spike Time Synaptic Plasticity



Usually protocol/organism dependent

 $\delta W_{ij}^{(\tau)} = \epsilon \left[r_d W_{ij}^{(\tau)} + \frac{1}{T} \sum_{t=T}^{T+T_s} \omega_j^{(\tau)}(t) \sum_{u=-T_s}^{T_s} f(u) \, \omega_i^{(\tau)}(t+u) \right] \quad \begin{array}{l} \text{``Offline'': An epoch has fixed connections during a transient time and a} \\ \end{array}$

computation time T.

 $-1 < r_d < 0$, corresponding to passive LTD. $T_s \stackrel{\text{def}}{=} 2 \max(\tau_+, \tau_-).$

Base for Modeling ideas

- Infinite number of Candidates for a probability distribution that agree with finite given data observables (firing rate, correlations etc.)
- Entropy : randomness or lack of interactions among variables...
- (Jaynes 1957) :Minimally structured distribution (consistent with given data observables) = Maximum Entropy distribution.

Moreover : It exist an energy function for the system.

Crash introduction to theory(I)

$$p_i = \frac{1}{Z} e^{-E_i/(kT)} = e^{-(E_i - A)/(kT)}$$

$$P_2(\sigma_1, \sigma_2, \dots, \sigma_N) = \frac{1}{Z} \exp\left[\sum_i h_i \sigma_i + \frac{1}{2} \sum_{i \neq j} J_{ij} \sigma_i \sigma_j\right]$$

• Boltzmann distribution (yields to a Poisson distrib.)

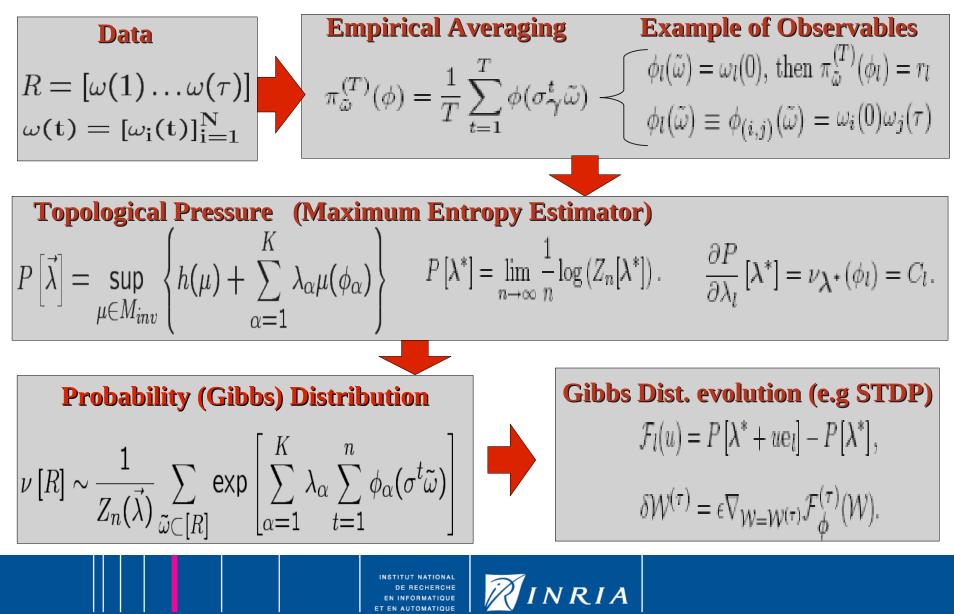
Ising Model distribution
 (used for retina pairwise paradigm)

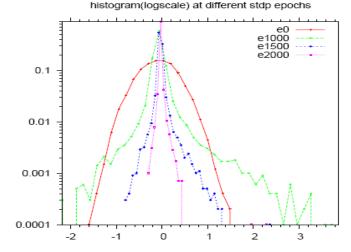
$$p(\mathbf{x}) = \frac{1}{\sum_{\mathbf{x}\in\mathcal{X}} \exp\left(\sum_{i=1}^{k} \lambda_i f_i(\mathbf{x})\right)} \cdot \exp\left(\sum_{i=1}^{k} \lambda_i f_i(\mathbf{x})\right)$$

•Generally it is a Lagrange multipliers problem

•Gibbs Distribution(Ergodic Theory)

Crash introduction to theory (II)





100 80 60 40 20 - 1.5 - 0.5 - 0.5

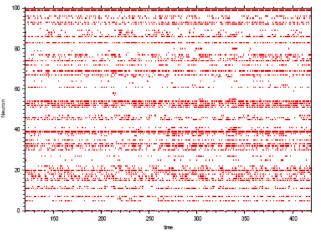
60

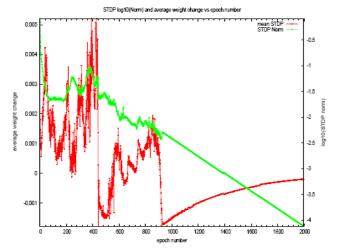
80

100

Weights distribution after2000 epochs

raster plot at the start





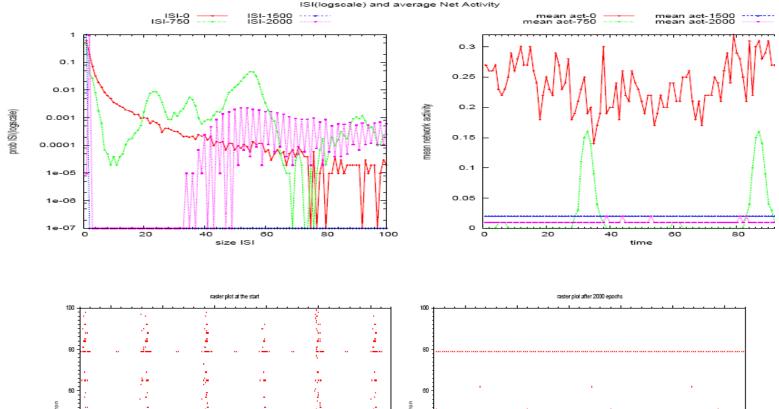
40

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

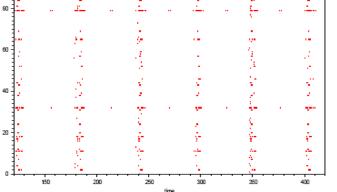
0

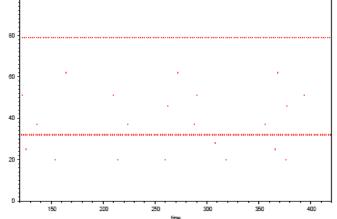
0

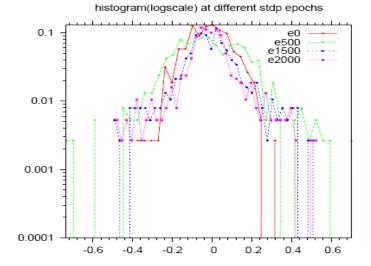
20

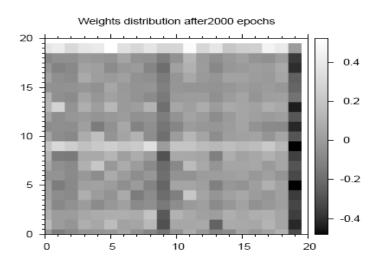


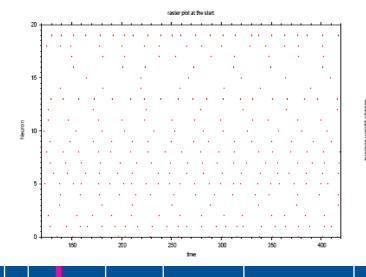
훈



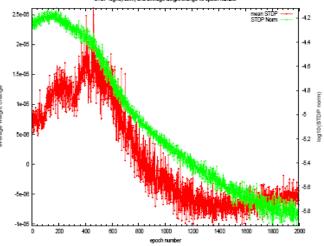




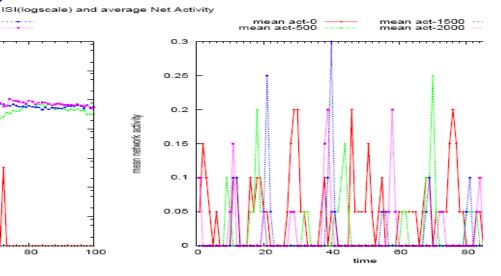




STDP log10(Nom) and average weight change vs epoch number



ISI-0 ISI-1500 ISI-2000 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 o size ISI



raster plot after 1000 epochs 18 -3. 2 -

time

tahiti-4

raster plot after 2000 epochs

17 -14 -13 -time

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Future/Ongoing work

• **NEURAL MODELING**: Comparison between statistical models of different time order, specially with respect to time-zero order models (rates, Ising models) on both simulated neural networks/experimental data.

- •**LEARNING:** After STDP, is the final distribution a Gibbs distribution? Which is its Potential (order of intrinsic interactions)?
- **CONTROL**: How to control the probability distribution/spike statistics by using STDP in not trivial cases?
- **CONTROL** (naive approach): continue to analyze the effects on dynamics and statistical properties by other plasticity/dynamical rules (e.g. Dale's principle)

