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NEUROCOMP’09 

Foreword 
 
La communauté bordelaise des neurosciences 
computationnelles est très heureuse de vous accueillir pour 

ces 4
èmes

 journées de NeuroComp, Neurocomp09, du 16 au 
18 septembre 2009. Ce cycle de colloques a été créé pour 
réunir régulièrement les principaux acteurs français du 

domaine qu'ils soient francophones ou non. A l’instar des 
éditions précédentes, ce colloque offre un lieu d'échanges 
dont le but est de favoriser des collaborations 

interdisciplinaires entre des équipes relevant des 
neurosciences, des sciences de l'information, de la physique 
statistique et des mathématiques. 

 

Le format retenu cette année est celui d'une conférence école 
avec la présence d'une douzaine de conférenciers 
internationaux invités, la présentation par les jeunes 

chercheurs de leurs travaux lors de sessions poster, ainsi que 
des démonstrations techniques.  

 

La conférence traitera prioritairement de 4 thèmes, 
représentatifs des activités de la communauté bordelaise et 
très présentes dans l’actualité internationale des 

Neurosciences Computationelles, à savoir : 
- La dynamique cellulaire et dynamique de réseau : 

codage et traitement 
- La neuro-économie : Prise de décision fondée sur 

l'estimation de valeurs 

- L’implémentation : supports hardware et software de 
simulation 

- L’analyse : Méthodes et outils 
Chaque journée du colloque traitera l'ensemble de ces thèmes 

selon différents aspects qui sont respectivement pour chaque 
jour « Cognition », « Réseaux » et « Cellulaire ».    

 

Neurocomp’09 a été organisé par un ensemble de chercheurs 
et enseignants-chercheurs des sites universitaires bordelais, 
dans le contexte de mise en place du Neurocampus de 
Bordeaux, ensemble immobilier et scientifique dédié aux 

neurosciences. Les membres du Comité Local d’Organisation 
sont issus de laboratoire dont les activités sont liées peu ou 
prou aux Neurosciences Computationnelles. 

 

Nous remercions la société Bio-Logic Science Instruments et 
les Editions Cambridge University Press pour leur soutien 

financier. Nous remercions aussi les institutions qui nous ont 
soutenus, comme à leur habitude la Région Aquitaine,  
Communauté Urbaine de Bordeaux, Pôle de Recherche et 

Enseignement Supérieur de Bordeaux, Université Bordeaux 1, 
Université Bordeaux 2, CNRS, INRIA, ENSEIRB-Matméca, 
Laboratoire IMS, Laboratoire CNIC. 

Nous tenons à remercier plus particulièrement l’ensemble des 
participants à l’organisation, qu’ils soient chercheurs, 

personnels administratifs et techniques ou doctorants, qui ont 
donné de leur temps et sans qui ce projet n’aurait pas pu 
aboutir.  

 

En vous souhaitant un agréable et fructueux séjour à 
Bordeaux pour Neurocomp’09,  

The third French computational neuroscience conference, 
Neurocomp09, welcomes you in Bordeaux. This conference is 

organized with the Neurocomp initiative with the aim of 
bringing together the French research community in this field. 

 

As in the previous editions, this conference is a place to 
strengthen scientific exchange and interdisciplinary 
collaborations between neuroscience, computer science, 
mathematics and engineering.  

Neurocomp’2009 is organized with a school format. We are 

happy to host 11 international tutorials by experts in state-of-
the–art topics.  In parallel, young researchers will present their 
latest work during poster sessions, and practical workshops. 

We thank all the conference speakers and attendees for their 
participation in Neurocomp’09. 

 
The conference will mainly address 4 topics: 

- Network/cell dynamics: Coding and processing 

- Neuro-economy: Value-based decision making 

- Implementation: Hardware and software simulations 
- Analysis: Methods and tools 

For each day of the conference, these topics will be addressed 
through the following aspects: Cognitive, Network, Cellular. 

 

Neurocomp’09 is organized by researchers from different 
laboratories on the Bordeaux campus. Bordeaux is already 

recognized as one of the leaders in the field of neurosciences 
with particular emphasis on cerebral research. The Aquitaine 
Regional Council has therefore embarked on an ambitious 

Neuroscience research development project, which will be 
sited at Bordeaux University and dubbed ‘the Neurocampus’.  
All the members of the conference local organization 

committee participate in this action through their research 
activities, directly or indirectly related to computational 
neuroscience. 

 

We thank Bio-Logic Science Instruments and the Cambridge 
University Press editions for their financial support. We are 
also thankful to the following institutions, which supported the 

conference : Région Aquitaine,  Communauté Urbaine de 
Bordeaux, Pôle de Recherche et Enseignement Supérieur de 
Bordeaux, University Bordeaux 1, University Bordeaux 2, 

CNRS, INRIA, ENSEIRB-Matméca, IMS laboratory, CNIC 
laboratory. 

Finally, Neurocomp’09 would not exist without the organization 
participants’ support: members of the scientific committee, 
local researchers, administrative or technical staff, and 

students. Many thanks for spending their precious time on the 
conference scientific or logistic issues. 

 

We wish you a pleasant and fruitful stay in Bordeaux !  
 

 

 

 

 

Sylvie Renaud 

      Sylvain Saïghi 
    IMS Laboratory, Bordeaux 

 

Organizing committee: 
 
- Anne Beuter, IMS (CNRS), Bordeaux 
- Thomas Boraud, MAC (CNRS), Bordeaux 

- Yannick Bornat, IMS (CNRS), Bordeaux 
- Laure Buhry, IMS (CNRS), Bordeaux 
- André Garenne, MAC (CNRS), Bordeaux 

- Jacques Henry, INRIA, Bordeaux 
- Olivia Malot, IMS (CNRS), Bordeaux 

- Alain Marchand, CNIC (CNRS), Bordeaux 
- Gilles N'Kaoua, IMS (CNRS), Bordeaux 

- Sylvie Renaud, IMS (CNRS), Bordeaux 
- Sylvain Saïghi, IMS (CNRS), Bordeaux 
- Jean-Marc Salotti, IdC, Bordeaux 

- Jean Tomas, IMS (CNRS), Bordeaux 
- Blaise Yvert, CNIC (CNRS), Bordeaux 
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Large-scale microelectrode recordings of gamma 

oscillations in human neocortex during sleep 

 
Michel Le Van Quyen

1
, Richard Staba

2
, Anatol Bragin

2
, Jerome Engel Jr.

2
 

 

1- Centre de Recherche de l'ICM, INSERM UMRS 975 - CNRS UMR 7225 

Hôpital de la Pitié-Salpêtrière, Paris, France. 
 

2
Neurology Department, David Geffen School of Medicine at UCLA, Los Angeles, USA 

 

Gamma oscillations (40-120 Hz), usually associated with waking functions can be recorded in the 

deepest stages of sleep in anesthetized and naturally sleeping animals. The full details of their large-

scale coordinations across multiple cortical networks are still unknown. For this purpose, we 

examined the existence of gamma patterns during polysomnographically defined sleep-wake states 

using large-scale microelectrode recordings, collected in parallel with macroscopic scalp EEG, in 9 

epilepsy patients undergoing presurgical clinical setting. We report that gamma oscillations 

recurrently emerged over time windows of several hundreds of msec in many cortical sites during 

slow-wave sleep (SWS) and they are also present, but generally less pronounced, during waking 

and REM sleep. During SWS, gamma oscillations were correlated with positive peaks of EEG slow 

oscillations showing that gamma patterns were associated with cortical cells' simultaneous switch to 

the UP state. Several discrete spectral peaks were systematically identified in the low gamma range, 

around 50 Hz and 70 Hz, and also, occasionally, in the high gamma range around 90 Hz and 110 

Hz, suggesting that multiple gamma generators are present within
 
the human neocortex. Gamma 

oscillations often involved a single local cortical area but occasionally involved multiple different 

cortical areas, forming large-scale spatial patterns. Nevertheless, the spatial coherence between 

cortical foci exhibiting gamma activities was local and fell off quickly with distance when 

computed between different neocortical sites. After single unit isolation, consistent with a switch to 

the UP state, we observed that the majority of cells (144 / 206) exhibited a strong increase in spike 

firing during gamma patterns and that many of these cells (52%) were significantly phase-locked to 

the oscillations, preferentially around the troughs of the gamma cycle. Furthermore, coincident 

firings with millisecond precision were specifically enhanced during gamma oscillations between 

cells over the same cortical area, suggesting that fast oscillations facilitate local neuronal 

synchronization. Our findings confirm and extend earlier animal studies reporting that gamma 

oscillations, generally regarded as characterizing states of brain arousal, are transiently expressed 

during SWS. In particular, we report, for the first time during sleep, that gamma oscillations play a 

key role in promoting millisecond precise synchrony of unit activities within cortical areas, 

providing short windows of opportunity for interactions of coactivated groups of cortical neurons. 

We speculate that these gamma patterns briefly restore “micro-wake” activity patterns and are 

important for consolidation of memory traces acquired during previous awake periods. 
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Figure: Gamma patterns recorded during sleep stage 2 

A. Middle: Examples of detected gamma patterns (black triangles) recorded over 30 

microelectrodes in the field potentials (LFP) of the right and left posterior parahippocampal gyri 

(PHG, ant: anterior part and post: posterior part) Top: Simultaneous recordings of scalp EEG 

indicate that gamma oscillations were temporally correlated with positive peaks of EEG K-

complexes. Strong multi-unit activities (MUA) were observed during these patterns. Bottom: 

Envelope amplitudes of the filtered signals in the gamma range. Note that gamma activities formed 

large spatial patterns occurring almost simultaneously between all recorded cortical sites.  

B. Top: Display of one detected gamma pattern in the 40-120 Hz frequency range.  

C. Display of two homotopic channels with their corresponding wavelet transforms. Note, in the 

time-frequency maps, strong gamma oscillations with distinct narrow band frequencies around 50 

Hz (green arrows). 
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Utility maximization by reactive policies  

a game-theoretic approach 

 
Yonatan Loewenstein

1
 

 

Depts. of Neurobiology and Cognitive Sciences and the Interdisciplinary Center for Neural 

Computation, Hebrew University, Jerusalem, 91904, Israel 

 

 

 

According to rational choice theory, subjects make choices as to maximize their well-being or 

utility. In its standard framework, rational choice theory posits that subjects have complete 

information about the state of the world and choose their actions as to maximize the expectation 

value of the sum of present and exponentially discounted future rewards. In this case, the optimal 

policy is deterministic and can be attained by several simple reinforcement learning algorithms. 

Whether the brain actually implements these algorithms and what is their neural basis are subjects 

of intense neuroscience research.  

However, in many real-life situations, the state of the world is only partially known. Technically, 

these situations are referred to as POMDPs. Furthermore, the temporal discounting of future 

rewards, as measured using intertemporal choice experiments in both human and animal subjects, is 

typically non-exponential. It is not clear how to define an optimal policy, let alone find it, if the full 

observability or the exponential discounting assumptions are relaxed. The reason is that in general, 

the optimal plan at one point in time is not optimal at a later time and therefore will not be followed, 

leading to a paradoxical intertemproal conflict.  

Here we present a novel theory of choice that is based on learned reactions.  We consider a subject 

with an arbitrary discounting function that operates in a POMDP in which an observation at each 

decision point provides partial information about the state of the world. We consider the set of 

stochastic reactive policies in which the subject responds to each observation by choosing an action 

from an observation-dependent probability distribution over all possible actions. To address the 

intertemporal conflict, we define an intertemporal game in which choices made by a subject over 

time are viewed as if they are made by different ‘selves’, each making a single choice at a different 

point in time. We define optimal policy to be a time-invariant Nash equilibrium of the game 

between the multiple selves. 

How can this Nash equilibrium be attained? We show that the fixed point of a simple on-line 

reinforcement learning algorithm, previously used to generate a biased estimate of the gradient of 

the average reward, is the time-invariant Nash equilibrium of the intertemporal game. We show 

preliminary results that show how such algorithm can be implemented in the brain by a reward-

modulated synaptic plasticity rule.  
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Associative memory properties of a large-scale 

biophysically detailed neuronal network model of layers 

2/3 of mammalian neocortex  

 
Anders Lansner

1
 

 

Dept of Computational Biology 

Stockholm University and KTH 

Stockholm, Sweden  
 

 

One of the most prominent theories of cortical memory function is the theory of cell assemblies put 

forward in 1949 by Donald Hebb. Critical components of his theory are the Hebbian synapse 

displaying associative plasticity and the cell assembly formed in the recurrent cortical “attractor” 

neuronal networks by means of such plasticity. The theory addresses the perceptual and associative 

memory functions of the cortex, but its relevance for the real neuronal networks of the mammalian 

cortex has been unclear. I will describe simulations of a large-scale biophysically detailed model of 

layers 2/3 of mammalian neocortex aimed at investigating this and other related issues. The 

simulated network is composed of multi-compartmental Hodgkin-Huxley type pyramidal cells and 

two types of inhibitory interneurons connected via glutamatergic and GABA-ergic synapses. This 

model has been scaled up on a parallel cluster computer to a size of 11 million neurons and 22 

billion synapses, corresponding to a cortical patch of about 22x22 mm. 

Memories are stored in this cortical network by means of a Hebbian learning rule. The trained 

network displays appropriate associative memory functionality, like e.g. memory recall as well as 

perceptual completion and rivalry, on time scales compatible with those measured experimentally. 

It reproduces several dynamic phenomena seen at the cellular, microcircuit and global network 

levels, and provides possible explanations for cognitive phenomena like e.g. attentional blink. 

In the context of this large-scale cortical network model I will also illustrate and discuss some 

methodological aspects of performing multi-scale neuronal simulations in general as well as 

ongoing work within the FACETS project on hardware implementation of spiking large-scale 

neural networks and cortical computation. 
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Functional imaging techniques have certainly changed the way neuroscientists and clinicians are 

looking at the brain. In that respect, positon emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have largely contributed to mapping the brain in action. 

With increasing numbers of sensors integrated in whole-head arrays, electro and 

magnetoencephalography (EEG, MEG) have now matured as true functional imaging 

modalities. With a temporal resolution in the millisecond range, their contribution to the 

exploration of brain functions has unprecedented potentials. Imaging the neural sources of EEG 

and MEG scalp signals is essentially a modelling problem. We will discuss how the integration 

of structural information from MRI contributes to leverage the basic indeterminacy in the 

modelling of MEG/EEG neural generators.  

The fine time resolution of MEG/EEG imaging can take many faces while studying brain 

functions. We will therefore illustrate how basic evoked brain responses can be complemented 

by the identification and localization of neural oscillatory components and interactions in 

specific frequency domains.  

From a more technical standpoint, this talk will introduce the basic signal and image processing 

apparatus being used for MEG/EEG source imaging and also discuss more recent developments 

dedicated to the identification of propagating patterns of cortical currents using optical flow 

techniques. A variety of experimental data examples will be provided for illustration. 

Representative publications: 

Lefèvre, J. & Baillet, S. (2008) Optical Flow and Advection on 2-Riemannian Manifolds: a 

Common Framework, IEEE Trans. on Pattern Analysis & Machine Intelligence, June 30(6): 

1081-92 

Jerbi, K.; Lachaux, J.; N'Diaye, K.; Pantazis, D.; Leahy, R.; Garnero, L., Baillet, S. (2007), 

Coherent Neural Representation of Hand Speed in Humans Revealed by MEG Imaging, 

Proceedings of the National Academy of Sciences of the USA, 104(18):7676-81 

C. Sergent, S. Baillet & S. Dehaene (2005), Timing of the Brain Events Underlying Access to 

Consciousness during the Attentional Blink, Nature Neuroscience, Oct; 8(10): 1391_1400. 
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This talk highlights technological aspects in the field of large-scale cultured neuronal networks and 

outlines a few analysis methods that are used to extract relevant information from the underlying 

processes. Conventional electrophysiological instrumentation, such as patch-clamp techniques, 

allows accessing and monitoring a few individual neurons. Functional methodologies, such as 

implanted electrodes, functional-MRI and electroencenphalography reveal relationships between 

various brain areas.  

However, learning and plasticity processes in a network consisting of thousands of cells are difficult 

to track and analyze with those methods.  In this respect, primary neuronal cell cultures as well as 

organotypic brain slice cultures represent valuable models of reduced complexity for the study of 

such neuronal processes and for the screening of potential drugs. Microelectrode arrays (MEA) can 

be used to monitor these large assemblies of neurons.  

Statistical methods are applied to extract relevant parameters from the bulk of data in order to 

characterize the network under different biological conditions. Cross-correlation and mutual 

information between neurons are computed to access the functional dependence of groups of 

neurons within a network. In the end, this would lead to a functional mapping of the underlying 

network, however it is computationally very expensive. An alternative method for the 

characterization of a neuronal culture is the use of some global parameters that describe the overall 

state of a network (e.g. center of activity trajectory). Such parameters are of particular interest for 

high-throughput pharmaceutical screenings.  

An important shortcoming of the current MEA technology is its limited spatial resolution. Only a 

few tens to a few hundreds of neurons can be monitored with current implementations and therefore 

a large spatial undersampling of the activity is expected. Recently, CMOS-based MEAs were 

introduced and they enable the integration of thousands of electrodes (figure 1). The spatial 

resolution is increased down to a single cell and at the same time a large network consisting of 

many thousands of neurons can still be monitored. In analogy to conventional imaging techniques, 

these new MEA devices can thus provide and visualize data as a sequence of images (figure 1). 

Hence, analysis concepts inspired from the imaging field are introduced. As an illustrative example, 

the center of gravity of activity can efficiently describe the different burst behaviors of an in vitro 

neuronal network, however without trading off for temporal resolution (figure 2). 
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Figure 1: High-resolution large-scale MEA  

The sensor integrates 4096 electrodes on an area of 7 mm
2 

(left). Measured burst activity of a 

dissociated hippocampal culture (rat, DIV 27) is depicted. Two specific bursts are shown as a 

sequence of images (right). 

 

 

 
 

Figure 2: Center of Activity 

Trajectory of the Center of Gravity of Activity of burst 1 and 3 from figure 1 (temporal evolution 

from white to black). 
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How primates make decisions or choices in various contexts is currently the subject of intense 

investigations in neurosciences. Many of these decisions are important to flexibly adapt behavior 

based on the expected outcome of the choice. One topic of interest in this field is the role of rewards 

on decision making. Animal research and human brain imaging studies suggest that a number of 

interacting brain regions contribute to reward-based decision making. Also, psychiatric disorders 

are associated with disturbances in decision processes as a consequence of impaired evaluation of 

future rewards as well as uncontrollable translation into unwanted or inappropriate actions 

(compulsions). The complementary strengths of neurophysiological approaches, in humans (fMRI) 

and animals (neuronal recordings), with economic approaches that take into account the probability 

of reward, the value of reward, and the cost of the work to obtain reward, provide a framework for 

understanding the computations in the brain during decision making. I will briefly review the 

neuronal evidence for the role of specific brain regions, particularly orbitofrontal cortex, striatum 

and amygdala, during reward-based decision making. Computational models have yielded insights 

about the contribution of each of these key structures to evaluation and action selection processes 

and how their interactions may allow the brain to choose among several possible options. In 

particular, the role of the striatum and midbrain dopamine neurons in reward processing is well 

established. It has been shown that striatal neurons encode the reward value of stimuli and/or 

actions. In our recent work, we found that a population of striatal neurons, thought to be 

interneurons, are sensitive to changes in the probability of a rewarding outcome, with a subset of 

them being candidates for encoding a reward prediction error (Figure 1). Because an important 

aspect of decision making concerns the ability to detect prediction errors and adjust behavior 

accordingly, these findings suggest that a local circuit system in the striatum has a specialized role 

in combining prediction error signal input with motor, cognitive, and motivational signals carried 

by striatal output neurons during decision making. Establishing the direction and nature of 

interactions between cortical and subcortical areas involved in reward processing and action 

selection remains an important goal for understanding how neuronal circuits implement decisions 

about reward. In this regard, the combination of experimental findings and theories of economic 

rationality has proven extremely valuable in guiding investigations into our ability to process 

various alternatives and make a "good" decision. 
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Figure1. The averaged activity of presumed striatal interneurons was modulated by the 

probability of reward in a classical conditioning task 

The study was conducted on macaque monkeys subjected to a Pavlovian procedure in which reward 

delivery (a drop of fruit juice) was predicted by a visual stimulus. In different trial blocks, rewards 

occurred at four different probabilities. Population response histograms with reward probabilities 

ranging from p = 1.0 to p = 0.25 are shown from top to bottom and included only rewarded trials. 

These data were obtained from samples of 56-87 putative interneurons recorded in the striatum. 

Arrows indicate the onset of the conditioned stimulus and the delivery of reward 1 s later. The 

biphasic neuronal response (pause-rebound) to reward is maximal at p = 0.25 and p = 0.5 and less 

prominent at higher probabilities.With increasing probability of reward, the neurons also respond 

somewhat stronger to the conditioned stimulus. Such a response profile across reward probabilities 

may reflect a positive prediction error. 
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The essential dynamics of neurons underlying synaptic integration and spike generation are 

understood to define these cells' unique computational role within the neural net. Yet, in the context 

of the intact system and physiological function the quantitative and qualitative identification of 

specific biophysical mechanisms is still at an early stage. In this talk I will review our recent work 

in addressing these questions using in vivo dynamic-clamp recordings that are strongly tied to 

cellular and membrane models. In particular, we are characterizing the influence of shunting 

synaptic inhibition and the BK potassium current on the neuron's transfer function, probed with 

both artificial and functional, visual stimuli. In comparison to previous experimental and theoretical 

studies, we find that realistic shunting inhibition has a significant divisive effect on firing gain, as 

well as important effects on threshold and saturation. Shunting inhibition also has a non-linear 

effect on visual responses, reducing response amplitude but as well tightening response timing. We 

confirm predictions that the BK current facilitates spike firing, despite being a hyperpolarizing 

current. This effect is demonstrated by an increase in the gain of the f/I curve and of visual 

responses.  
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Complex systems, when poised near a critical point of a phase transition between order and 

disorder, exhibit scale-free, power law dynamics. Critical systems are highly adaptive and flexibly 

process and store information, which prompted the conjecture that the cortex might operate at 

criticality.  This view is supported by the recent discovery of neuronal avalanches in superficial 

layers of cortex.  The spatiotemporal, synchronized activity patterns of avalanches form a scale-free 

organization that spontaneously emerges in vitro as well as in vivo in the anesthetized rat and awake 

monkeys.  Avalanches are established at the time of superficial layer differentiation, require 

balanced fast excitation and inhibition, and are regulated via an inverted-U profile of 

NMDA/dopamine-D1 interaction.  Neuronal synchronization in the form of avalanches naturally 

incorporates driven conditions such as found in nested theta/gamma-oscillations.  Neuronal 

avalanches also pose a general stochastic framework that for sequential activations similar to 

synfire chains.  Importantly, a single avalanche is not an isolated network event, but rather its 

specific occurrence in time, its spatial spread, and overall size is part of an elementary organization 

of the dynamics that is described by three fundamental power laws.  Overall, these results suggest 

that neuronal avalanches indicate a critical network dynamics at which the cortex gains universal 

properties found at criticality. These properties constitute a novel framework that allow for a precise 

quantification of cortex function such as the absolute discrimination of pathological from non-

pathological synchronization, and the identification of maximal dynamic range for input-output 

processing. 
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Spatial aspect of the cell dynamics refers to snapshots of electrical states mapped on structural 

elements of a neuron displaying how these elements act together to produce characteristic patterns 

of action potentials at the cell output, the neuronal codes. Complexity and diversity of cell shapes 

defined mainly by the dendrites are generally thought of as structural prerequisites for complex and 

diverse functions of neurons and their networks in the brain. Complex structure and nonlinear 

membrane properties of neurons impede relating dynamics of individual cells and their network. A 

usual compromise is reduction of the cell structure that affects both the spatial and temporal aspects 

of the cellular dynamics. Well-known examples are the "point" neuron reduced to a single-

compartment, the soma and the "ball-and-stick" neuron composed of the soma with attached non-

branching dendrite. In the first case the spatial aspect is absent and the output codes result from 

temporal processing of synaptic inputs targeted at the soma. In the second case the output depends 

on temporal and spatial processing of inputs situated at various path distances from the soma. Here 

the spatial aspect includes the "distal-to-proximal" relations between sites communicating by lateral 

currents transferred in somatopetal (forward) and somatofugal (backward) directions. In cells with 

branching dendrites the spatial relations are significantly enriched by the "path-to-path" relations 

between sites situated at the same path distances from the soma but on different dendritic paths. 

These relations crucially depend on such structural feature of the dendrites as metrical asymmetry 

due to difference in lengths and/or diameters between the dendritic branches and paths emerging 

from the common origin. Size and complexity (lengths and number of branches) also do matter. 

Demonstrative examples are neocortical pyramidal and cerebellar Purkinje neurons obviously 

different in both geometry of the dendritic arborizations and population of ion channels. The 

structure-defined features of cellular dynamics were highlighted in the model neurons exposed to 

synaptic input of the same type: tonic excitation homogeneously distributed over the dendrites. 

Spatial electrical maps were explored for different discharge patterns, i.e. sequences of elementary 

events such as single spikes or bursts (spike doublets, triplets, quadruplets, etc.) generated in 

various combinations at different intensities of synaptic activation. In the both models, the patterns 

were regular with different number of elementary events in the periodically repeating sequence or 

irregular, stochastic. Each pattern had its distinct spatial signature: a characteristic combination of 

states of high (upstate) or low (downstate) depolarization of metrically asymmetrical dendritic 

domains. Depending on synaptic intensity, the asymmetrical dendritic sub-trees united or disunited 

to form larger or smaller cooperatively behaving spatial domains. Pyramidal and Purkinje cells 

showed the same transformations of patterns in different ranges of synaptic intensities indicating 

size-dependence of the cellular dynamics. The disclosed spatial heterogeneity of electrical states 

during generation of different patters is important for the network dynamics: for signal processing it 

does matter not only "when in time", but also "where in space" of the dendritic arborisation the cell 

receives phasic synaptic inputs. 
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Spiking Neural Networks (SNN) are used in computational neurosciences to simulate information 

processing in the brain. SNN implement biologically plausible models of neural networks, from the 

detailed neuron physiology to network adaptation and plasticity rules. Various implementation 

solutions exist for SNN, including software, hardware or mixed systems. In this presentation, we 

will focus on hardware-based SNN and propose a review of the most recently developed platforms 

as well as pioneer platforms. These hardware-based platforms often use analog cores to emulate the 

neuron-level behavior while other computation or configuration tasks are distributed on digital 

hardware or software units. 

First we will introduce the principle of hardware implementation, from the primitive 

computational elements (transistors, Boolean operators) to the description of ASIC (Application 

Specific Integrated Circuit) design flow. Typical performance criteria will be pointed out to 

compare analog/digital hardware designs, supported by a detailed example of a real analog solver 

(naturally continuous- and real-time). 

Before reviewing the hardware SNN solutions, we will present an overview of standard 

computational models, from the cellular or sub-cellular level, to the network level. At the neuron-

level, models can be classified in two main categories: conductance-based or threshold-type, with 

several levels of abstraction in each category. At the network level, connectivity between neurons 

can be managed in different ways and plasticity rules can be also implemented with more or less 

details and parameters. This brief overview will highlight the trade-off between biological 

plausibility and computational cost. It finally shows how the models choice is closely related to the 

SNN application field. 

The reviewed hardware-based SNN will be compared in terms of: network size, neuron model 

accuracy, ability to real-time operation, multi-scale configurability and ability to hybrid living-

artificial connection. A few systems will be described in a more detailed fashion, within their 

specific application context. 

Finally, some projects which are currently in progress using hardware SNN will be exposed. 

Their goal is to explore novel paradigms for information processing and overcome the related 

technological limitations. 
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Since the seminal work of Adrian and Zotterman (1926, J Physiol, 61: 465-483), a central working 

hypothesis of systems neuroscience has been that action potential or spike occurrence times, as 

opposed to spike waveforms, are the sole information carrier between brain regions. This 

hypothesis legitimates and leads to the study of spike trains per se. It also encourages the 

development of models whose goal is to predict the probability of occurrence of a spike at a given 

time, without necessarily considering the biophysical spike generation mechanisms. In short it leads 

to the application of the point process / counting process formalism to neuronal spike trains 

introduced by Perkel, Gerstein and Moore (1967, Biophys J, 7: 391-418).  

We will start by reviewing classical and well know spike train analysis methods like the inter-spike 

interval histogram, the auto- and cross-correlation functions (Perkel et al, 1967) as well as less well 

know ones (Fitzugh, 1958, J Gen Physiol 41: 675-692). We will then introduce and discuss methods 

aiming at the estimation of the conditional intensity of spike trains, the key quantity involved in the 

point process / counting process formalism. These methods were first introduce by Brillinger (1988, 

Biol Cybern, 59: 189-200) and have generated a lot of activity during the last decade.  

Emphasis will be but on methods implementations in software and on available goodness of fit 

tests. 
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Brian is a simulator for spiking neural networks written in Python (http://www.briansimulator.org). 

The focus is on making the writing of simulation code as quick and easy as possible, and on 

flexibility: new and non-standard models are no more difficult to define than standard ones. This 

allows scientists to spend more time on the details of their models, and less on their implementation. 

Neuron models are defined by writing differential equations in standard mathematical notation, 

facilitating scientific communication. 

In this tutorial, we will introduce the Brian simulator with concrete examples. Anyone interested 

should bring a laptop, if possible with the software installed as explained on the web site: 

http://www.briansimulator.org/download/ (otherwise we will help you with the installation). No 

previous knowledge of Python is required. 
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The InterCell project aims at offering a cluster of 256 PCs to scientists who need to experiment large 

scale fine grain computing. It implements on such a cluster a generic neural paradigm: computational 

units linked by an arbitrary connectivity, updated in parallel. One of the targeted applications is the 

use of such a paradigm in computational neuroscience, for modelling biologically inspired robot 

controllers. Such a goal implies that the execution of the neural network on the cluster can actually 

be coupled, through the robotic device, to some real environment. Allowing situated computation on 

a cluster is an originality of the project, since the middleware offers client-server facilities to interact 

on-line with the running simulation. 

The project is supported by INRIA and the Region Lorraine (CPER MISN/MIS 2007), and 

managed at the Metz campus of Supélec. 

Links:  

http://intercell.metz.supelec.fr  

http://www.loria.fr/~falex/index.php/Adm/CperMis  

 



 

   

NEUROCOMP’09 

 
 
 
 
 
 
 
 
 
 
 

POSTERS 
 
 
 



 
Keywords—Hardware spiking neural network simulator, 

Mutltiboard system, Real-time distributed STDP computation, 
FPGA processing, Analog Hodgkin-Huxley neurons.  

I. INTRODUCTION 
his work falls into the perspective of developing 

hardware systems to simulate adaptive variability in 
biologically plausible neural networks. A realistic STDP 
model is digitally implemented onto commercial FPGAs while 
Hodgkin-Huxley neuron model is mapped onto analog VLSI 
circuit. The system operates in biological time scale and 
releases accurate simulation results compared with floating-
point software computation.  

II. SYSTEM OVERVIEW 
The global system consists of a system rack connecting a 

series of similar electronic boards. The current version of the 
system can host up to 140 neurons spread across 7 boards. 
Each board is a six layers full-custom board which hosts 4 
analog ASICs and one Xilinx Spartan3™ FPGA. Each ASIC 
incorporates 5 neurons which compute in analog mode 
conductance-based models following the Hodgkin-Huxley 
formalism [1]. Individual neurons produce in continuous time 
action potentials that express their intrinsic dynamic 
properties. Ionic channel properties are fully reconfigurable 
[2]. When the neuron output comparator detects an action 
potential, a digital 1-bit event is transmitted to the FPGA. In 
turn, the FPGA computes the plasticity as it relates to the 

incoming events and generates a digital pulse whose width 
encodes the synaptic weight. This pulse triggers the transition 
to the opening state of the synaptic channels in each 
postsynaptic neuron.  

III. STDP COMPUTATION 

A. STDP model 
The STDP model encodes the timing and amplitude of the 

mutual influence between pre- and postsynaptic spikes. 
Furthermore, it modulates the synaptic strength according to 
the previous history of spike times (spike efficacy). In order to 
avoid infinite evolution of the synaptic strength, saturating 
factors attenuate synaptic weights as the higher or lower 
boundary approaches. Synaptic weights are then updated 
according to the mathematical equation of the STDP model. 

B. Distributed STDP computation 
The system distributes plasticity computation over several 

FPGAs located on different boards. In addition to local 
plasticity processing, each FPGA computes plastic changes of 
afferent events released by external presynaptic neurons. 
Exchanged events are multiplexed in time before their 
transmission through communication bus. The communication 
protocol guarantees the integrity and the required arrival time 
of travelling events. 

C. Simulation results 
The system provides accurate simulation results compared 

with software floating-point computation implemented on a 
PC using C language. The system operates in real-time mode 
and the execution time is similar to the biological counterpart. 
To assess the functional robustness of the system, we provoke 
the worst case situation that can happen in SNNs 
(simultaneous activity in all-to-all connected network). The 
system is then able to simulate STDP related applications for 
any network configuration. 

IV. BIBLIOGRAPHY 
[1] T. Lévi, N. Lewis, S. Saïghi, J. Tomas, Y. Bornat, and S. Renaud, 

"Neuromimetic Integrated Circuits," in VLSI Circuits for Biomedical 
Applications, K. Iniewski, Ed. Boston: Artech House, 241-264 (2008). 

[2] L. Buhry et al. , "Parameter estimation of the Hodgkin-Huxley model 
using metaheuristics: application to neuromimetic analog integrated 
circuits," IEEE Biomedical circuits and systems, 173-176 (2008). 

[3] A. Destexhe and Z. F. Mainen, “Plasticity in Single Neuron and Circuit 
Computation,” Nature, 789–795 (2004). 
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Plasticity Computation in a Multiboard System 
Simulator Dedicated to SNN  
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Fig. 1.  The system rack is composed by a series of electronic boards
connected via a common 64-bit wide bus. A token-ring based
communication protocol assures information exchange between boards.   
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I.INTRODUCTION 

hat is the contribution of conditioning in the general 

learning process? This type of learning is important as 

it could be a basic element used in more complex learning 

mechanisms of animals or robots. This work is therefore 

related to the growing field of developmental robotics 

(Lungarella et al., 2004).  

We already had a conditioning model for classical and 

operant conditioning but the aim of this work was to adapt it 

within the computational neuroscience framework (Salotti & 

Lepretre, 2008). The idea is to change our view and to 

improve the model thanks to the synergy of different 

disciplines. 

II.DEVELOPMENT 

A.Starting model 

Our model is based on the learning of a Bayesian network. 

It is a predictive model in the sense that it does not focus on 

the action selection mechanism but mainly on the probability 

that reinforcement will follow a given event. An important 

assumption of the model is that conditioning is strictly event 

based: It does not matter if a stimulus is present or not (i.e. On 

or Off). What matters is the existence of variations in the 

representation of the environment (stimulus On/Off or action 

event). 

 

B.Proposed modeling 

It is similar to the critic part of the Actor-critic approach 

(Barto, 1995) in that a prediction is proposed first and updates 

of synaptic weights are made depending on the outcome. The 

main originality of our model is that there are two variable 

synaptic weights per stimulus, the first between layer 1 and 

layer 2 and the second between layer 2 and the outcome (see 

figure 1). The propagation is strictly feed-forward. Updates 

rules are based on Hebb's rule and an adapted version of the 

Rescorla-Wagner function. Intra-layer 2 connections are both 

excitatory and inhibitory with constant weights. However, the 

activity of layer-2 neurons strongly depends on the timing of 

its neighbors (which neuron is activated first). Layer-2 

connections enable blocking and secondary conditioning.  

                                                             
  

III.RESULTS 

 We managed to fully reproduce active and passive 

extinction, blocking (strict), latent inhibition, secondary and 

even n-ary conditioning and reacquisition. Furthermore, we 

also added a forgotten rule, which slowly decreases or 

increases synaptic weights towards their original value. Such 

rules make it possible to reproduce spontaneous recovery, 

which is a well known complex conditioning feature. 

IV.CONCLUSION 

 The synergy is successful. Complex conditioning 

phenomena, such as spontaneous recovery, can be handled by 

our model with two adaptive weights per stimulus.   

V.BIBLIOGRAPHY 

 Barto, A. G. (1995). Adaptive Critics and the Basal Ganglia. In: Houk, J. 

C., Davis, J. and Beiser, D., editor, Models of Information Processing in the 

Basal Ganglia, Cambridge, MA: MIT Press : 215-232. 

 Joel, D., Niv, Y. and Ruppin, E. (2002). Actor-Critic Models of the Basal 

Ganglia: New Anatomical and Computational Perspectives. Neural Networks, 

15 : 532-547.  
 Lungarella, M., Metta, G., Pfeifer, R. and Sandini, G. (2004). 

Developmental Robotics: a Survey. Connection Science, 0 : 1-40. 

 Rescorla, R. A. and Wagner, A. R. (1972). A Theory of Pavlovian 

Conditioning: Variations in the Effectiveness of Reinforcement and 

Nonreinforcement. In Black, A. H. & Prokasy, W. F. (eds.), Classical 

Conditioning II, New York Appleton-Century-Crofts : 64-99. 

 Salotti, J.M. and Lepretre, F. (2008). A Bayesian Approach for Classical 

and Operant Conditioning. Actes du Workshop « From Motor to Interaction 

Learning in Robots », IEEE/RSJ International Conference on Intelligent 

Robots and Systems, 22 – 26 Septembre 2008. 

W 

Modeling Classical and Instrumental 

Conditioning in Computational Neuroscience 

 
 

Fig. 1.  Example of neural network with only 2 units per layer.  Neurons in 

layer 1 are activated when events corresponding to onsets of stimuli or 

triggered actions are detected. R is the reward unit (dopamine like). NF is a 
predictor of the reward. 
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I. INTRODUCTION 

UMAN beings process the information coming from 

their different senses to finely grasp their environment. 

The perception of temporally co-occurring multisensory (MS) 

stimuli may lead to either cross-modal effects (the percept 

depends on the two stimuli) or segregation effects (one of the 

stimuli is detected independently of the other). 

This work aims at showing how an accurate MS perception 

model, including both of these effects, can be built using the 

notion of context-specific independence (CSI). 

II. EXPERIMENTAL PROTOCOL AND RESULTS 

Subjects were sat in complete darkness and had to localize a 

primary stimulus which might come with a temporally 

coincident but possibly spatially discrepant secondary 

stimulus. In the acoustic perception task (APT), the primary 

and secondary stimuli were auditory and visual signals 

respectively (beeping buzzer and flashing diode) and vice 

versa in the visual perception task (VPT). 

Subjects did experience both cross-modal and segregation 

effects. Indeed, their judgements about primary stimulus 

locations were strongly impacted by the secondary stimulus in 

the APT whereas this secondary stimulus effect is nearly 

absent in the VPT. 

III. BAYESIAN NETWORK MODEL 

A. Finding the model’s structure  

To build a Bayesian network (BN) model of MS perception, 

the observable events are modelled by random variables (rv’s). 

These are S1, S2, and S1*, denoting respectively the primary 

and secondary stimuli, and the subjects’ judgment. Another rv 

N should be introduced to model the subject’s perceptual 

mode (induced by the acoustic or visual nature of the 

perception task). Mutual information (MI) and conditional MI 

[MacKay, 2003] give means for analyzing the dependence and 

independence between these rv’s [Besson et al., 2009]. This 

set of statistical conditional independence statements can be 

expressed as a graph (BN). 

As expected, subjects’ judgements exhibit a stronger 

dependence with primary than with secondary stimuli. The 

model thus catches the cross-modal effect. However the 

segregation effect observed in the VPT does not explicitly 

appear since no conditional independence between S2 and S1* 

can be stated. 

B. Context-specific independence for a finer model 

For the model to account for the segregation effect, we can 

use CSI [Boutilier et al., 1996]. CSI represents conditional 

independences that hold only for specific values of an rv in the 

conditioning set (a “context”). The context N=1, denoting the 

VPT, leads to a conditional independence between S2 and S1*. 

As a result, both the integration and the segregation effects are 

captured by the model (Fig. 1). The latter explicitly handles 

the perceptual mode subjects are using, thus fits better the 

physical process. Eventually, the conditional probability 

distributions for S1* can be written P(S1*|S1,S2,N=0) and 

P(S1*|S1,N=1) for the APT and VPT respectively. 

IV. CONCLUSION 

A CSI analysis added to traditional MI approaches for 

determining a BN model’s structure provides means for a 

complete and efficient representation of MS perception. The 

resulting model affords a better interpretation of the involved 

physical process since the perceptual mode used by the subject 

is explicitly captured by the model. Furthermore, S1* 

prediction residuals are improved over a fully-connected 

model. 
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Keywords — bursting activity, neuronal growth, overshoot  

I. INTRODUCTION 

ISSOCIATED cortical neurons grow their processes after 

plating and form a newly structured network since the 

first days in vitro. Over weeks, cultures undergo several 

developmental stages showing strong changes in activity. The 

dynamics stabilizes after a maturation period during which an 

activity overshoot in the network firing is often observed [1]. 

Here we present a model of neuronal growth reproducing both 

the bursting dynamics and the overshoot found in the 

experimental recordings, thanks to an ad hoc single cell 

intrinsic firing rate and the introduction of inhibitory cells.  

II. MATERIAL AND METHODS 

A. Cultures of dissociated neurons 

Primary neuronal cultures were obtained from cerebral 

cortices of Sprague-Dawley rats at day 18 of gestation. 

Embryonic cortices were dissociated and suspended in culture 

medium at the concentration of 1500!2000 cells/"l. Cells 

were plated upon a 60-channel Micro-Electrode Array (MCS, 

Reutlingen) at a final density of 1200-2000 cells/mm
2
. 

B. Model of neural growth 

A model of neuronal growth [2] was considered for 

studying firing dynamics at the network level. Briefly, each 

neuron is represented by a growing circle which shrinks 

(stretches) if its internal Calcium concentration, intrinsically 

decreasing to zero, is higher (lower) than a reference value [3]. 

Single cell firing rate relaxes to an intrinsic value f0. Each 

spike triggers an influx of Calcium. The area of overlap gives 

connection strength between neurons. With respect to the 

purely excitatory model proposed in [2], we decreased the 

value of f0 and introduced uniformly disposed inhibitory cells. 

III. RESULTS 

A lower f0 value drove the dynamics of the model to a 

bursting behaviour highly resembling the one observed in 

experiments (~ 10 bursts / min). The introduction of inhibitory 

cells led the model to undergo the same firing overshoot 

observed in vitro (see Fig. 1). 

 

 
Fig. 1. Raster plot of modeled data (A.1) compared with experimental ones 

(A.2) (different electrodes/neurons are reported in different rows: thick lines 

are bursts, thin lines are spikes). Overshoot phenomenon is present in both the 

activity of the model (B.1) and the cultures (B.2). 

IV. CONCLUSIONS 

A model of neuronal growth is presented. Simulations showed 

that an appropriate value of the individual intrinsic firing rate 

is needed to reproduce a plausible bursting behavior. 

Furthermore, inhibitory dynamics introduced the in vitro firing 

overshoot, unobserved in a purely excitatory network. 
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Mots-clefs / Keywords— Cuneate nucleus, Information theory, 

Mechanoreceptors, Spike train metrics 

I. INTRODUCTION 
 

uring haptic exploration tasks, forces are applied to 
the fingertips, which constitute the most sensitive 
parts of the hand and are prominently involved in 

object manipulation/recognition tasks. The epidermis is 
innervated with thousands of sensory cells, called 
mechanoreceptors, which encode the mechanical indentations 
and deformations of the skin. These cells project directly to a 
dorsal column nucleus called the cuneate nucleus (CN), which 
constitutes the first synaptic relay to the central nervous 
system. Recent microneurography studies in humans [1] 
suggest that the relative timing of impulses from ensembles of 
mechanoreceptor afferents can convey information about 
important contact parameters faster than the fastest possible 
rate code, and fast enough to account for the use of tactile 
signals in natural manipulation. 

II. WORKING HYPOTHESIS 
 

The rationale behind this study is to corroborate our 
working hypothesis that the CN does not constitute a mere 
synaptic relay, but it rather conveys an optimal contextual 
account (in terms of both fast and reliable information 
transfer) of peripheral tactile inputs to downstream structures 
(in particular to the thalamus and the cerebellum). Therefore, 
the CN may play a relevant role in the early processing of 
haptic information and it would constitute an important 
component of the haptic classification process (e.g., by 
facilitating fast discrimination of haptic contexts, minimising 
destructive interference over lifelong learning, and 
maximising memory capacity). 

III. METHODS 
Here, we study a biologically-plausible encoding/decoding 

process accounting for the relative spike timing of the signals 
propagating from peripheral nerve fibres onto second-order 
CN neurons. The CN is modelled as a population of 450 
spiking neurons receiving as inputs the spatiotemporal 

                                                           
  Granted by the EC Project SENSOPAC (SENSOrimotor structuring of 
Perception and Action for emergent Cognition), IST-027819-IP. 

responses of real mechanoreceptors obtained via 
microneurography recordings in humans. An information-
theoretic approach is used to quantify the efficiency of the 
haptic discrimination process. To this extent, a novel entropy 
definition has been derived analytically. This measure 
constitutes a promising decoding scheme to generalize the 
classical Shannon's entropy for spiking neural codes, and it 
allows us to compute mutual information (MI) in the presence 
of a large output space (i.e., 450 CN spike train responses) 
with a 1-ms temporal precision. We also use a plasticity rule 
designed to maximise information transfer explicitly [2].  

IV. RESULTS 
The discrimination capacity of the model CN layer has 

been assessed when considering only one spike per 
mechanoreceptor afferent. Population coding permit a 
complete discrimination of 81 tactile stimuli already within 40 
ms after the first afferent spike. Partial discrimination (80% of 
the maximum MI) is possible as rapidly as 20 ms. 
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learning, reward, decision-making. 

 

I.INTRODUCTION 

earning the consequences of our actions in their 

context is a fundamental cognitive ability, because it 

allows us and other animals to anticipate relevant events and 

to adapt to varying environments. If the relation between the 

visual stimulus, or context, the action, and its outcome is 

arbitrary and causal, we refer to as arbitrary visuomotor 

learning (Wise and Murray 2000). Associative theory 

(Dickinson 1980) postulates that learning the consequences of 

our actions is represented as stimulus-response-outcome 

associations that evolve according to prediction error signals 

(the discrepancy between the observed and predicted 

outcome). With further training, goal-directed behaviors are 

transformed into habitual responses that gradually become 

elicited by the antecedent stimuli (Yin and Knowlton, 2006). 

The aim of our work is to test these theories on functional 

magnetic resonance imaging (fMRI) data acquired from 

human participants and to provide quantitative descriptions of 

the neural computation mediating the acquisition of 

instrumental behaviors. 

II.METHODS 

A. Task Design and fMRI analysis 

Our implementation of arbitrary visuomotor learning 

required subjects to find by trial-and-error the correct 

associations between 3 colored circles and 5 finger 

movements. We developed a new task that systematically 

manipulates learning and induces highly reproducible 

performances.  

We performed two type of analyses: the first looked for the 

neural computations related to the processing of outcomes 

during learning (Brovelli et al., 2008); the second looked for 

the brain correlates of the decision-making processes that are 

deploited during the different phases of learning. 

                                                             
  French Ministère de la Recherche (ACI Neurosciences intégratives et 

computationnelles); and 2-year post doc fellowship awarded by the Fondation 

pour la Recherche Médicale (Paris, France) to A.B. 

III.RESULTS 

Outcome-related brain responses  

Consistent with the Rescorla-Wagner model, prediction-

error signals are computed in the human brain and selectively 

engage the ventral striatum. In addition, we found evidence of 

computations not formally predicted by the Rescorla-Wagner 

model. The dorsal fronto-parietal network, the dorsal striatum, 

and the ventrolateral prefrontal cortex are activated both on 

the incorrect and first correct trials and may reflect the 

processing of relevant visuomotor mappings during the early 

phases of learning. The left dorsolateral prefrontal cortex is 

selectively activated on the first correct outcome (Brovelli et 

al., 2008). 

 

Decision-related brain responses  

We tested the hypothesis that the selection of action during 

the different phases of instrumental leaning is mediated by 

complementary fronto-striatal loops (the associative and 

sensorimotor newtorks) transforming goal-directed actions 

into stimulus-driven habits (Yin and Knowlton, 2006). 

Preliminary results showed that the fMRI activity in the dorsal 

caudate nucleus increases during the exploratory phase and it 

correlates with the learning curve. In parallel, the activaty in 

the putamen increases slower during learning and it correlates 

with the probability that the stimulus is a good predictor of the 

correct action. 

IV.CONCLUSION 

 The results provide quantitative evidence of the neural 

computations mediating arbitrary visuomotor learning and 

suggest new directions for future computational models. 

V.REFERENCES 
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Keyword—Neural network, control 

I. INTRODUCTION 

 entral pattern generators (CPGs) are dedicated to 

neuronal networks that generate rhythmic motor 

behavior such as locomotion [1]. There are evidences that 

such neural circuits also exist in human [2]. In a previous 

study, we demonstrated the existence of a metachronal 

(segment by segment) descending wave of trunk muscles 

activity during human walking [3]. This pattern of 

propagation is similar to the one observed in other 

vertebrates like rats [4], lamprey [5] and salamander [6] and 

it has been suggested that it relies on the existence of a CPG 

dedicated to trunk control [4]. It may be therefore interesting 

to model a human CPG in order to reproduce the trunk 

metachronal descending wave. 

II. METHOD 

A. Data acquisition of trunk activity 

We recorded 10 young subjects (27±6 years), they wore 

shorts and sandals and were asked to perform walking and 

gait initiation trials. Bilateral EMG and kinematics of the 

trunk were recorded as well as resultant forces under feet in 

the laboratory movement analysis platform. 

B. Adaptation of the salamander model  

In order to modelize its supposed activity, we adapted an 

oscillator network developed by Ijspeert [2] for salamander. 

The command of the network was then developed on two 

levels: voluntary command (walking, running ± speed) and 

adaptative command (inclined pathway,   stairs). 

III. RESULTS 

 

A. Trunk activity during walking and gait initiation 

With the recorded data we were able to extend some feature 

about trunk activity during walking: 

- The presence of a metachronal (segment by segments) 

descendant wave in ES from C7 to L3 during both walking 

and gait initiation.  

- A concordance between muscular activity and trunk 

flexion/rotation during walking, whose anticipatory aspect 

let think that it could help rising the pelvis and the leg. 

 
 

B. Adaptive command  

As shown in Ijspeert [7], voluntary command allows easily 

speed and locomotor mode variation then it appears 

interesting to adapt CPG activity with external conditions. 

We used vertical acceleration collected from an 

accelerometer to synchronize he phase of the oscillator 

network with an adapted controller. Data were recorded 

during flat floor walking and up/downward stairs walking. 

Adapting the principle of PLL (Phase locked loop), we 

synchronized CPG model and chosen acceleration signal.  

 

IV. CONCLUSION AND FUTURE WORK  

We developed a model of trunk CPGs that is able to express 

different type of synchronization under different voluntary 

and external solicitation. Then in further study we developed 

a protocol aiming to explore pattern change in muscular and 

kinematics activity of the trunk during running, cycling and 

hopping. Each of those activities is rhythmic but present 

wide differences. New patterns could then improve our 

model.  

The model control could be improved on the adaptative part; 

in fact the used network controller deduced the phase in a 

discrete way that induces a lag in external change adaptation 

(gait initiation, slope, stairs). To improve this, we propose to 

detect gait initiation and to estimate continuously the phase 

of walking cycle with sensors placed on the trunk. 
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I. INTRODUCTION 
he recognition of visual motion patterns such as walking,  
fighting and face gestures among others, is remarkably 

efficient in humans and many other species. Experiments have 
already given some clues about the nature of the internal 
mechanisms of recognition. These experiments are based on 
point-light stimuli in psychophysics [1], electro-physiological 
data and functional imaging [3] techniques. In this work, we 
study some of the identified properties and we propose to 
model them by means of asymmetric neural fields.  

II. BIOLOGICAL DATA 

A. Properties and coding 
Visual motion pattern recognition in the human brain seems 

to be extremely sensitive to temporal correlations [2]. On the 
contrary, it appears spatially robust: even though the visual 
input can be severely diminished, stimuli as simple as point-
lights [1], where only joints (or random points) are enlighten, 
can be recognized. Similarly, the observer angle may be 
perturbed by up to 20 degrees [2].  

Experiments [3] indicate that a 2D representation is 
sufficient to explain brain coding schemes for 3D body 
actions, indicating a possible template based coding.  

B. Biological arguments 
The existence of template units in motion information has 

not yet been proved. Nevertheless, there is a direct analogy 
with “snapshot” units found in the ventral pathway. Moreover, 
these templates could be the input for decision units that may 
be similar to some single neurons observed in areas EBA and 
OFA that are sensitive to human actions such as walking [2].  

III. MODELING 
Taking into account the tolerance to diminished stimuli, we 

consider motion information that could be available from 
areas V1/MT as relevant to model. To extract discriminative 
information, we build local flow pattern detectors as observed 
in area STS (motion as: spirals, expansions, translations, etc.). 
These two operations approximate a “joints-like” detector. 

From the discriminative points’ information ( )txB ,r  (see 
Fig. 1) we generate a population of units to simultaneously 

 
 

track the different trajectories. We use one of these 
populations ( )txm ,r  for each motion pattern. To achieve 
temporal selectivity with high sensitivity, we use 2D 
asymmetric neural fields (extending the 1D model of [4]):  
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where the asymmetric kernel ( )', xxw rr
 gives the direction 

selectivity in time. Our model implicitly has all “snapshots” in 
the same population, eliminating global comparators as in [2].  

IV. RESULTS & CONCLUSION 
Simulations show that our model is able to classify synthetic 

patterns and we are currently working with real videos, from 
noisy environments to test our model further. 

In this work we show that several key features of the human 
recognition of visual motion patterns may be modeled using 
2D asymmetric neural fields. Additionally, we conclude that 
the key evidence to support template-based recognition from 
the dorsal pathway is the existence of units or populations 
acting as snapshots.  
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recognition of biological movements”. Nat. Rev. Neurosci. 4 
179—192, 2003.  
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influences on stereoscopic depth-perception”. Nat. Neurosci. 3 
254—257, July 1998. 
[4] Xie, X. and Giese, M.., “Nonlinear dynamics of direction-
selective recurrent neural media”. Phys Rev E 65, 2002. 
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Fig. 1.  Schematic view of our model for the left/right discrimination task. 
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I. INTRODUCTION 

n order to understand the dynamics of large neural 

networks, where information is widely distributed 

over thousands of cells, one of today’s challenges is to 

successfully monitor the simultaneous activity of as many 

neurons as possible. This is made possible by using the 

Micro-Electrode Array (MEA) technology allowing neural 

cell culture and/or tissue slice experimentation in vitro. 

Thanks to development of microelectronics’ technologies, 

a novel data acquisition system based on MEA technology 

has been developed, the BioMEA. It combines the most 

advanced MEA biochips with integrated electronics, and a 

novel user-friendly software interface. 

II. DEVELOPMENT 

BioMEA is the result of a research project 

(NEUROCOM) where the first prototype was specified 

and tested by CEA/LETI/MINATEC and CNRS 

Bordeaux, France. BioMEA is both a stimulus generator, 

and a high sensitivity data acquisition system, which 

permits 256 electrodes to be stimulated and monitored 

simultaneously. To move from prototype to manufactured 

product, a number of changes have been made: BioMEA 

offers a novel user-friendly interface allowing rapid and 

easy setting of stimulation and acquisition parameters; a 

spike detection algorithm for identification of active 

electrodes; an adjustable gain of each electrode depending 

on electrical cell activity measured; and all 256 electrodes 

can be selected simultaneously for recording and 

stimulation. Furthermore, all data from the 256 channels 

can be saved and reloaded with BioMEA software or 

further analyzed using Spike2 software (Cambridge 

Electronic Design Limited, UK). 

 

 

 

 

 

 

 
 

 
 

BioMEA has been designed modularly, allowing the use 

of MEA biochips including 64, 128 or 256 

recording/stimulation electrodes on the same system. A 

wide choice of MEA biochips adapted to BioMEA 

including various electrode geometries (planar and 3D tip-

shaped electrodes for an optimized tissue penetration) and 

single or multi-well format (up to 9 wells) configurations 

are currently available. 

III.  BIOMEA APPLICATION 

BioMEA offers unprecedented capabilities to address 

applications such as evaluation of neural plasticity, 

functional screening and toxicology/safety pharmacology. 
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I. INTRODUCTION 

II. GABA SYNAPSES: FROM EXCITATION TO INHIBITION 
DURING EMBRYO DEVELOPMENT  

A. Single synaptic responses 
At the MN level, we analyzed the characteristics of 

responses evoked by GABAAR activation after isoguvacine 
pressure application. These responses include two 
components: an inhibition (shunt) and an excitation 
(depolarization). Inhibition is present during raising phase of 
the GABA response, whereas excitation is present during the 
repolarizing phase of the GABA response. We found that, 
whereas at E13.5 GABA response is mainly excitatory and 
spike inducing, at E17.5 the response remained depolarizing 
but prevented spiking. Between these two stages, three main 
changes were observed: MN size (capacitance) increased, 
input resistance decreased and ECl dropped. However, to 
assess the role played by each of these parameters in the 
excitatory/inhibitory effect of the GABA response, it is 
necessary to study them independently. This is not possible 
using the only physiological approach. This is why we used a 
combination of physiological analysis and simulations. 

 
Références éventuelles sur les financements des travaux / Eventual 

references about grants 

 
In order to test the respective roles of these three parameters 

in the ontogenetic maturation of inhibition, we developed 
realistic models of E13.5 and E16.5-E17.5 MNs in the 
NEURON environment (Hines and Carnevale, 1997, 2000). 
These simulations showed that: 1) the ontogenetic capacitance 
increase favored the excitation; 2) the input resistance 
decrease favored shunting inhibition; 3) the ECl drop played 
the major role in the occurrence of shunting inhibition. 

Using experimental approach, in which E16.5-E17.5 MNs 
were recorded, the change of ECl from physiological value to 
E13.5 value reversed the GABAAR induced shunting 
inhibition to excitation, highlighting the preponderant role of 
ECl in maturation of inhibition. 

 

B. Trains of synaptic events 
IPSPs generally occur in burst. Therefore, the two 

components (inhibition and excitation) will interact during 
bursts of IPSPs. In order to understand how MNs integrated 
bursts of chloride-mediated post-synaptic responses, we 
analyzed the effect of trains of GABAR depolarizing 
responses, using simulation. This simulation showed that, for 
each frequency (between 5 to 100 Hz), there was a critical ECl 
value for which trains of GABA events switched from 
excitatory to inhibitory. Interestingly, these critical ECl values 
were in a restricted domain (-45 to –50 mV) that is crossed 
during the ontogenetic ECl drop from E13.5 to E17.5 

III. CONCLUSION 
The increase in frequency discharge could therefore be 

crucial to elicit clear-cut alternating rhythmic activities 
observed at E17.5 but not at E16.5. 
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In mature spinal network, alternation between ipsilateral and 
contralateral motor networks is supported by reciprocal 
inhibition mediated by GABA/glycine. As soon as embryo
day 17.5 (E17.5), alternation is expressed when mouse spinal 
networks are activated by exogenous application of 
5HT/NMDA (Branchereau et al. 2002). However, at this 
stage, even though the equilibrium potential for chloride ions 
(ECl) has dropped dramatically, GABA and glycine still 
evoke depolarizing responses in motoneurons (MNs) via the 
activation of their ionotropic receptors (Delpy et al. 2008). In 
order to understand this paradox (how can inhibition be 
mediated via depolarizing events, which are generally 
excitatory?), we performed both physiological experiments 
and modeling. 
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 Keywords: Izhikevich model, Population density approach, 
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I. INTRODUCTION 
   nderstanding the behaviour  of a neural network  in 
response to various stimulations  is nowadays of great 

interest. We propose here a mathematical model describing 
the dynamics of a population of neurons; the evolution of the 
state of a single neuron in the population is given by the 
Izhikevich model [1]. 

II. THE MODEL 
The model we use is the following: 

 
Where p(t,v,u) is the population density at time t in the state 

(v,u); F(v,u)p(t,v,u) is the neural flux flowing trough the state 
(v,u) at time t, and σ(t) is the average reception rate for a 
single neuron.  The expression of F is given by the Izhikevich 
model: 

where  

     
In the expression above, I represents the injected current. 
The reset mechanism from the Izhikevich model is naturally 

translated in our case to a periodic boundary condition for the 
neural flux. 

The model we presented has been introduced by J. Modolo 
[2] in his Ph.D. thesis. The main inconvenient lays in the 
supposition that the neurons in the population are identical, 
therefore all of them have the same behaviour. Nevertheless, it 
is important to stress that this approach is totally independent 
of  the number of neurons of the population, therefore, the size 
of the population does not influences the computation time in 
a simulation. 

We are interested first in the study and numerical 
simulation of the model using conservative schemes. The 
second objective we have is to describe the phenomenon of 
synchronization; this is done in the case when a weakly 
connected neurons network is considered. To this end, we 
have used the analytical tools of the weakly connected 
 

This project has been financed by the neuroinformatic program of CNRS 

systems theory [3]. 
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merical simulation of the mathematical model via a upwind 
conservative scheme  

III. CONCLUSIONS 
This method, although based on strongly simplifying 

assumptions, has the advantage of using a very concise model 
for the mathematical analysis and numerical simulations, and 
computation times totally independent of the number of 
neurons of the population. 
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[2] J. Modolo : Modélisation et analyse mathématique des 
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Neural Network, Springer 1997 
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no. (2007), 625655 
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offered by a computational model of deep brain stimulation, J 
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Mots-clefs / Keywords— mathematical modelling, behavioural 
sensitization, nicotine dependance.  

I. INTRODUCTION 
hanges in the external environment, occurring repeatedly, 
can cause neuro-adaptations and changes to long-term in 

the functioning of the nervous system. Behavioral 
sensitization induced by nicotine is a good example of these 
phenomena desadaptation. A dozen injections of nicotine are 
sufficient to change long-term behavior of rats. This 
behavioral sensitization depends on the activation of nicotinic 
receptors α2β4 increasing psychostimulants and disinhibitors 
(anxiolytic) effects of nicotine [1] [2]. It is associated with 
morphological changes [3] and the long-term alteration of 
dopaminergic, glutamatergic and serotonin activity [4] [5] [6]. 
The classical approach is to compare locomotor activity 
elicited by nicotine and saline in both sexes [7]. 

II. MATHEMATICAL MODEL 
The analytical model describes the kinetic profile of the 
evolution of the locomotor activity, with two parameters:  

• So expresses the initial activity, and hence a high state 
of awareness caused by the first contact with the 
environment, and exploration. 

• λ which expresses the speed with which the locomotor 
activity decreases, i.e. the loss of motivation to 
explore and the decrease in the level of arousal. 

The long-term model expresses the changing parameter  λ 
from the first model assessed during daily sessions over a long 
period.  The theory of neuroadaptation shows the brain's 
response to chronic treatment, characterized by direct 
influences on the way locomotor activity declines. By 
iteration, we calculate two indices λmax   and L (see Fig. 1). 

III. RESULTS 
With this new approach, significant differences were 
observed. Indeed  λmax which expresses the maximum speed 
of decrease in locomotor  activity differed significantly 
between the four groups with a small gap between  saline / 
nicotine male  groups and a an important gap saline / nicotined 
female groups. The second parameter L, which expresses the 
habituation, is identical in males' saline and nicotine, whereas 
there is a difference in value between nicotined and saline 
females. The first correlations of this model (Spearman and 
Kendall coefficients), give good results in four cases: 
nicotined females, saline females, nicotined males and saline 
males, which gives great validity to our model.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Monitoring λ parameters during 45 days of sensitization to nicotine. 
 

Indeed, the gender differences are clearly significant, the 
maximum speeds differ among the four groups, this index 
correlates with basic biological differences between male and 
female. On the other hand, the index of habituation is very 
different between sex, as it can detect the effect of nicotine 
awareness among females, but not in males. 

IV. CONCLUSION 
With the approach of analysis of the locomotor activity, these 
results were confirmed by experiments involving the 
intravenous administration of nicotine, but could not be in the 
presence of a subcutaneous administration. 
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Keywords  —  Neural  fields,  correlation  based  learning,  
contour detection,  gestalt connectivity.

I. INTRODUCTION

ne  approach   to  neuroscience  is  to  detail  very 
accurately  each  mechanism  observed  at  the 

microscopic level hoping that this might help understanding 
the  emergence  of macroscopic  behaviors.  Without  denying 
the  importance  of  such  an  approach,  we  do  think  that 
developing  large  scale  models  of  idealized  neurons  is 
potentially  very  fruitful  and has not  been explored  enough. 
We  use  a  combination  of  mathematics  and  computer 
simulations, well-grounded in biology, to drive our research 
toward a macroscopic understanding of the brain.

O

II.NEURAL FIELDS FORMALISM

Neural  fields  are  an  interesting  option  for  modeling 
macroscopic  parts  of  the  cortex.  Indeed,  by  considering 
neural  masses  (i.e.  populations  of  similar  neurons)  as 
building  blocks,  the  neural  fields  formalism  makes  it 
possible  to  handle large pieces  of cortical layers  and study 
their dynamics. They provide a mathematically elegant, well 
posed  and powerful  framework  for  studying generic  neural 
mass  networks:  a  single  continuous  functional  nonlinear 
integro-differential  equation  governs  the  neural  field 
evolution  (for  a  given  input).  This  formalism  provides  a 
versatile  method  to  model  efficiently  any biological neural 
network.

III. LEARNING IN LARGE SCALE NEURAL FIELDS

We think that correlation based learning is the organizing 
principle of sensory areas. To build the connectivity within a 
neural field (exposed to a certain input statistics), one should 
therefore  couple  dynamical  learning  and  the  neural  field 
evolution.  This  results  in  a  set  of  coupled  functional 
nonlinear  integro-differential  equation.  A  rigorous 
mathematical  analysis  of  large  scale  learning  implies 
studying  the  well  posedness  of  such  a  system.  We  have 
systematically analysed the global existence and uniqueness 
of  the  solution  for  several  learning  rules  (e.g.  Hebb  with 
different  normalizations,  BCM),  using  functional  analysis 
tools.  Other  general  properties  such as the boundedness  of 
the solution and its stability are also obtained. Moreover, by 
identifying the problem as a slow-fast dynamical system, we 

The research leading to these results has received funding from the EC IP 
project Facets and the PACA region.

mathematically justify a number of computational algorithms 
that are commonly used to perform learning, proving that the 
approximation that they imply can be bounded.

IV. APPLICATION TO VISUAL PERCEPTION

To illustrate the way this large scale learning process may 
shape neural  fields,  we  model  the  visual  contour  detection 
task performed in the visual cortex.  We consider  2 cortical 
layers with more than 100,000 neural masses that interact in 
a recurrent  fashion. Neurons  of the  first  layer  are tuned  to 
orientation and scale at some particular places of the visual 
field.  Lateral  connectivities  in  the  2 layers  implement  the 
classical mexican hat pattern. The connections between the 2 
layers are assumed to be symmetric and evolve according to 
a correlation based learning rule (e.g. BCM).  This leads to 
an unsupervised  learning of the connectivity  between the 2 
layers  that  eventually  defines  the  receptive  field  of  the 
neural  masses  in  the  2nd  layer.  The  system  is  also 
constrained  with  isotropy  and homogeneity  arguments  and 
the final receptive fields correspond to regularly distributed 
and oriented  smooth  pieces  of  curves.   The corresponding 
neurons are complex cells. More precisely,  the connectivity 
between the 2 layers strongly links co-circular neural masses 
of the 1st layer (see figure below). It implies that co-circular 
edges  are  particulary  well  detected  by  this  neural  field, 
clearly  implementing  the  Gestalt  good  continuation 
principle.

V. CONCLUSION

We have built the basis of a rigorous Mathematical analysis 
of large scale learning in Neural Fields. Much work remains 
to be done, for instance to qualify the attractors of such a 
system or  to extend the theory to  time-based learning. On 
the other hand, the implementation of these macroscopic 
networks already shows significant results since it suggests 
a mechanism underlying the good continuation principle. 
The next step is to go higher in the cortical hierarchy to 
unravel the structure of other receptive fields and  identify 
functional properties of neurons.
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I. INTRODUCTION 
HE general ability to learn delayed responses and more 

specifically temporal sequences of signals (spikes or 
bursts) is associated in part with the properties  of cerebellar 
neural networks. In the last few years, several attempts have 
been made to clarify the relationship between the neural 
network architecture and its capacity and to deal with timing 
sequences using spiking neuron networks models (Suri & 
Schultz, 1999; Medina et al., 2000; Garenne & Chauvet, 2004; 
Yamazaki & Tanaka, 2007, Goodman & brette, 2008). Indeed, 
learning of temporal sequences of signals plays a key role in 
both cognitive and motor acquisition processes. In the case of 
complex motor sequence, this model has to take into account 
one important property which is often put aside: a capacity to 
adjust the motion speed (and thus the emitted signal sequence 
speed) to the dynamics of the task to achieve. A closed-loop 
approach is presented here which involves a cerebellar-like 
neural network, a robotic arm, a sensory-motor interface 
linking both and precise timing constraints in a behavioural 
reaching task. 

II. MATERIALS AND METHODS 

A. Neural network model 
The cerebellar network architecture used here relies on 

network connectivity data from literature as well as on some 
synaptic plasticity properties experimentally observed and 
based on relative presynaptic and postsynaptic event spike 
timing plasticity. The neuron representations are 
interconnected Izhikevich  models (Izhikevich et al., 2004). 

B. Sensory-motor interface 
A two degree of freedom (DOF) arm is connected to the 

neural network output and thus driven by its spiking activity. 
The main goal of this effector is to show the ability of the 
whole system to adapt motor trajectory speed to various 
sensory inputs (in this case, to catch a moving prey by 
touching it with its extremity). The moving target that has to 
be caught, a  lways follows the same trajectory but at 
different speeds. This speed is encoded linearly as an input 
firing rate to the network, arm configuration is used as a 
proprioceptive signal and the final distance between target and 
arm extremity is encoded as an error signal.  

III. RESULTS 
Temporal sequence learning and "grasp" position reaching 

The network learns supervised spike sequences. It shows 
the ability of cerebellar-like neural networks to make use of 
the large frequency time domain exhibited by the granule cell 
activity and of the high degree of convergence between 
parallel fibres and Purkinje cells. Using the proper error 
signal, the trajectory learning rapidly converges. 
Arm motion speed adaptation 

The robotic arm is then trained to adjust its motion speed to 
the fastest and slowest moving targets and exhibits then a 
perfect capacity to anticipate its passage past the grasping 
position.  
 

 
Fig. 1.  A: activity sample of an Izhikevich neuron membrane potential model, 
B: sample of Spike-Timing Dependent Plasticity profile used in the network 
model, C: Two DOF robotic arm, L1 and L2 are respective joint distances to 
the target used as an error signal. 

IV. CONCLUSION 
We show that a properly designed neural network, taking 

into account realistic biological features and embedded into a 
sensori-motor closed-loop, is able to learn temporal sequences 
of spiking events and to apply them to the control of a robotic 
arm at the adequate speed in a dynamical reaching task. 
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I. INTRODUCTION 
here is continued debate about the role of cortex-basal 

ganglia loops in decision making and action selection 
processes. In particular, it has been shown that there are 
several parallel functional loops through the basal ganglia 
connecting back to distinct areas of cortex. The picture of 
segregated loops is complicated by studies showing axonal 
divergence that imply that the loops are not completely 
segregated. Here we propose a unified computational model 
of cortical – basal ganglia loops that has two functional loops, 
one cognitive and the other motor (Figure 1). There are two 
pathways through each loop, the direct pathway through the 
striatum to the GPi and the hyperdirect pathway via the STN 
to the GPi. The separate loops interact only via divergent 
projections to GPi from striatum and STN.  

II. METHODS 

A. Task modeled 
The model is used to simulate a two-choice decision task 

that has been shown, in monkeys, to have two distinct phases1; 
a first stage in which a target is selected and a second in which 
a direction of movement is selected. The monkey is shown 
two targets that have different probabilities of reward and, 
using a joystick, selects one target. 

B. Model architecture 
The two loops in the model receive input from different 

areas of cortex. The first loop in the model is considered to be 
cognitive, receives cortical input regarding the value of the 
two targets shown and acts in deciding which of the two 
targets to select. The second loop is considered to be more 
motor related and receives cortical input regarding the two 
possible directions of movement that could be taken to reach a 
target (although there is no information on the value of the 
targets directly available to structures in this loop) and acts to 
choose the direction of movement. The two model loops 
perform the two stages of the task in parallel, with the 
decision in the target selection phase feeding forward via the 
divergent projections to influence the decision in the direction 
selection phase. Reconvergence from GPi to thalamus 
integrates the information to perform the action selection. 

 
 

III. RESULTS 
Action selection 

In a simulation of 200 runs, 4 (2%) did not complete when 
the model made no choice. Of the other 196 runs, 100% chose 
the correct target and 165 (86.2%) chose the correct direction. 
 
Activation levels 

Using 2-way ANOVA we tested which units responded to 
the choice value (Cv), the action value (Av), the action alone 
(A) or were not responding (NR) in each task phase (Table 1).  
Table 1. Proportion of units responding to task 
parameters 
Phase Cv Av A NR 
Target selection 33%   67% 
Movement decision 25% 50% 17% 8% 

IV. CONCLUSION 
The model is able to perform a two-stage action selection 

task with a high rate of success. The proportions of units that 
responded to the various parameters of the task in GPi in each 
phase of the task were in accordance with the proportions 
found in electrophysiological recordings in monkeys1. 

V. BIBLIOGRAPHY 
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Fig. 1.  Typical run of the model. Two targets, a cross and a rhombus are 
presented at 90° and 180° respectively. The values of these targets are 
transferred to cognitive cortex at the start of the run. In the first (decision) 
phase, the target with a higher value (rhombus) is chosen. In the second 
phase the direction corresponding to that target (180°) is chosen. 
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Fig. 1.  Calcium transients were evoked in insect olfactory interneurons. The 
fluorescence transients recorded at 340 and 380 nm were simultaneously 
fitted using the direct method. The goodness of fit was assessed by the 
autocorrelation of the residuals (C) and the quantile-quantile plot (D). 

 
Keywords — calcium imaging, parametric model, square root 
transformation, constraints. 

I. INTRODUCTION 

EASURING variations of intracellular free calcium 
concentration ([Ca2+]) through the fluorescence changes of 
a calcium sensitive dye is a ubiquitous technique in 

neuroscience. Some dyes like Fura-2 present different absorption 
spectra between their calcium-bound and calcium-free forms. 
This leads to ratiometric measurements giving an estimate of 
[Ca2+] with minimal processing [1]. We focus here on the 
construction of meaningful confidence intervals (CIs) on calcium 
dynamics parameters obtained from ratiometric measurements. 

II.THE CLASSICAL VIEW: THE RATIOMETRIC 
TRANSFORMATION 

According to the ratiometric transformation, [Ca2+] = Keff × 
(R–Rmin) / (Rmax–R), where R = (F340–F340,bg) / (F380–F380,bg). Rmin 
and Rmax, the respective minimum and maximum fluorescence 
ratios of the dye, and Keff, the effective dissociation constant of 
the dye in the cell, are obtained from calibration experiments. 

Mono- and bi-exponential calcium dynamics models are 
commonly fitted to the [Ca2+] transient deduced from the 
ratiometric transformation, theoretically giving estimates (and 
CIs) of the [Ca2+] baseline, influx and time constants. 

Using Monte-Carlo simulations, we found that the CIs 
provided by this ratiometric approach were meaningful for the 
time constants only, and largely underestimated for [Ca2+] 
baseline and influx. This was mainly due to the fact that the 
measurement uncertainty of the calibration experiments was not 
taken into account. 

III. A NEW APPROACH: THE DIRECT METHOD 
To overcome this limitation, we were led to develop a new 

“direct” method. This method embeds a calcium dynamics model 
within a full data generation model. The raw fluorescence data 
read out of the CCD camera at the two wavelengths are predicted 
simultaneously by the model, without any data ratioing. The use 
of a probabilistic model of the camera led us to the construction 
of meaningful CIs on the calcium dynamics parameters. These 
CIs take into account the finite precision with which the 
calibrated parameters are known. Moreover, we show how to 
handle a time-dependent buffer concentration, improving thereby 
considerably our goodness of fit (Fig. 1). 

 

 

IV. CONCLUSION 
The direct method has been implemented in the open-source 

environment R and is freely distributed in the CalciOMatic 
package. Hence, we warmly encourage calcium imagers to 
analyze their data using the direct method. 
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I. INTRODUCTION 

XTRACELLULAR electrical stimulation of excitable 

tissues has been used empirically for decades, both with 

fundamental and clinical goals. New advances in 

microelectrode arrays allowing interfacing neural networks 

with hundreds of recording and stimulating sites require 

finding pertinent paradigms of extracellular microstimulation 

to modify and even control the dynamics and plasticity of 

neural networks. To address this question, the first step is to 

understand the direct effect of an extracellular stimulation on 

the membrane response of a single cell within the tissue. 

II. THE CLASSICAL VIEW: THE ACTIVATING FUNCTION 

The cable equation (CE) formalism was originally proposed 

by McNeal (1) and extended by Rattay (2). These pioneering 

works have shown that the spatio-temporal variations of the 

membrane potential are driven by the following CE: 

. 

The source term of this equation, called the activating function 

(AF = !
2
*!

2
Vext/!s

2
), is proportional to the second derivative 

of the extracellular potential field Vext along the fiber. The AF 

has long been used as an intuitive estimate of the membrane 

polarization in response to an extracellular stimulation. It was 

particularly useful to determine excitation and inhibition sites 

without requiring a full knowledge of biophysical properties 

of the cell. However, subsequent studies have pointed out 

several limitations of the AF, mainly due to the importance of 

longitudinal intracellular currents (neglected when considering 

the AF as the solution to the CE) and boundary fields playing 

an important role at the fiber terminations. 

III. A NEW APPROACH: THE MIRROR ESTIMATE 

We show here that a very simple analytical steady-state 

solution to the CE can often be used as an alternative to the 

AF. Figure 1 illustrates the fact that while the AF 

approximates well the steady-state solution to the CE for very 

small space constants !, this is no longer the case for high 

space constants. In the latter case, the membrane polarization 

is well predicted by a mirror estimate: Vm(s) = –Vext(s) + 

 
 

<Vext>, where <Vext> is the spatial mean of Vext along the cell 

arborization. 
 

 
 

We numerically examined the domains – in terms of space 

constants, stimulation durations, fiber lengths, and electrode-

fiber distances – where either the mirror or the AF estimates 

are most adequate. We found that the mirror domain includes 

a wide range of these parameters encountered in practice, and 

that this simple analytical estimate can advantageously be 

used in practice to predict the response of fibers as well as 

complex neurons to extracellular stimulation. 

IV. CONCLUSION 

The mirror estimate can often be preferred to the activating 

function to intuitively predict membrane polarization during 

extracellular stimulation. 
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Fig. 1.  The steady-state response of a uniform passive fiber to an 

extracellular potential field depends on the space constant !. For ! = 1 "m, 

the steady-state membrane potential profile is close -in shape and amplitude- 

to the activating function, while for ! = 1000 "m, the membrane polarization 

becomes the opposite of the centered extracellular potential (mirror). 
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I. INTRODUCTION 
Growing evidence indicates that the anterior cingulate 
(ACC) and dorsolateral (DLPFC) prefrontal cortices 
play complementary roles in performance monitoring 
and cognitive control. However, the precise 
mechanisms at stake are not yet known. Our recent 
electrophysiological data from a primate visuo-motor 
task alternating exploration and exploitation periods 
suggest the existence within the ACC of neural 
activities related to 1) reinforcement learning (RL), 2) 
feedback categorization (e.g. responses to the first 
correct trial (COR1), responses to errors (ERR)), 3) 
task monitoring signals (e.g. cells that distinguish 
between exploration and exploitation) (Quilodran et 
al., 2008). Here we propose a new computational 
model which integrates reinforcement learning and 
task-monitoring. We use the model to predict monkey 
behavior and to analyze single-unit data recorded 
from the DLPFC-ACC network. 
 

II. REINFORCEMENT LEARNING MODEL 
We extend an existing RL model called 'Q-learning' 
to predict monkey behavior in this task (Sutton and 
Barto, 1998). The model performs quasi-optimally 
but can predict only 60% of monkeys’ specific 
choices, primarily because a behavioral shift occurs 
when a new exploration phase starts. By adding a 
component that enables flexible reset of action values 
(taking into account individual spatial preferences) 
when detecting the need to switch to exploration, the 
model can reproduce 74% of the monkeys’ choices. 
 

III. MODEL-BASED ANALYSIS OF BRAIN 
ACTIVITY 

We tested the correlation of some model variables 
such as Q-values and the reward prediction error 
(RPE) with single-unit activity recorded in ACC and 
DLPFC (Quilodran et al., 2008). We analyzed a 
selected sample of 76 neurons. We found 18 cells 
(20%) correlated with one of the model’s Q-values. 
These neurons could encode the value of spatial 
targets and contribute to decision-making. 20 cells 
(25%) were correlated to the RPE. However, only 2 
cells quantitatively encoded RPEs and could be 
interpreted as participating to RL. The other 18 cells 

were either neurons that respond to errors, neurons 
that respond to correct trials, or neurons that respond 
to the first correct trial of each problem. We interpret 
the latter neurons as participating to task-monitoring. 
 

IV. NEURAL-NETWORK MODEL 
We use these principles to develop a neural network 
model extending our previous cortico-striatal loop 
model (Dominey 2005). In our ACC component, 
prediction error signals are extracted to produce 
COR1 and ERR signals. The latter are used to update 
a modulatory variable (MV) which boosts the DLPFC 
system after errors during exploration, and which 
attenuates it during exploitation, when the cortico-
striatal pathway assures action repetition. 
This model performs the task optimally, and enabled 
us to reinterpret additional ACC single unit 
observations such as cells that respond both to errors 
and to cues signalling the beginning of exploration 
phases (which require an increase of MV), and cells 
that respond more during exploitation phases (where 
MV is low). The model also explains several key 
characteristics of DLPFC including increased spatial 
selectivity as exploration progresses, and a drop of 
spatial selectivity during exploitation. 
 

V. CONCLUSION 
This work provides a formal link between theoretical 
(Q value, TD) models, their neural network 
implementation, and the underlying neurophysiology. 
Our model proposes a testable mechanism of 
integration between RL and task-monitoring within 
the ACC-DLPFC network. 
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 INTRODUCTION 
To describe choice learning behaviour in decision Markov 
processes, artificial intelligence proposes different approaches 
in which choice behaviour can be based on dynamic action 
evaluation. The limit of action value based approaches is the 
complex computation necessary to integrate the agent initial 
preference for one of the alternative. A simpler learning rule 
directly updates choices based on past reward and choices, 
and authorizes an initial preference for one alternative without 
extensive computation.  This approach consists in finding the 
optimal policy by policy iteration and is not based on action 
evaluation. In this work we test if this simple linear 
mathematical equation based on linear reward inaction 
properties can partially reproduce experimentally observed 
behavioural results in a two alternatives decision task in which 
2 monkeys had to learn new associations of reward 
probabilities and targets randomly presented in 4 directions.  

I. METHODS 

A.  Behavioural experiment:    
2 female monkeys (4 kg) performed a 2 armed bandit free 

choice learning task  

B. Model: 
Paj (t+1) = η * r(t) * (A(t) - Paj(t)).   
Paj (t+1): probability of choosing alternative Aj on the next 

trial; Paj (t): probability of choosing Aj in the current trial; η: 
learning factor or plasticity rate; A (t): current choice; r (t): 
reinforcement received.  

The error rule driving probability of choice is: δWj(t) = η(t) 
* r(t) * (Ai(t) - Paj(t)) 

II. DISCUSSION 
 We first show that probabilistic conditions modulate 
performance of the monkey while no directional bias was 
observed. 
  Learning was characterized by two phases: a dynamic phase 
where the preference of the monkey progressively builds up, 
then a suboptimal stationary phase.  

 
This work was supported by the Université Victor Segalen , the CNRS and french 

israeli neurorobotic fund (embassade de France en Israel) and PID neuroinformatique, 
CNRS and the french-Israel neuroscience lab (CNRS HUJI). 

  We then used computational methods to extract the simplest 
mathematical parameters that could support the behavioural 
results and showed that a simple linear mathematical equation 
based on reward inaction properties could reproduce the 
behavioural results with 67-70 % likelihood. Where the model 
couldn’t reproduce a similar level of exploration to the late 
behaviour, it fitted with its general dynamic.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. CONCLUSION 

The present study shows that a primate complex learning 
behaviour in a probabilistic decision task, can mechanistically 
be described by a one free parameter gradient based model. 
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ABSTRACT

n Gibson's theory, an object is defined by its interactions 
with people, named affordances. Affordances raise from 

the   association   of   the   object's   sensory   perceptions. 
Bienenstock Cooper and Munro's (BCM's) cells converge to 
one   of   the   input   patterns   with   a   decentralized   and 
unsupervised learning (refer to [1]). We want to extend this 
mechanism   in   order   to   develop   a   generic   incremental 
modalities   association   paradigm.   We   introduce   a   feedback 
modulation   of   BCM's   neurons   to   obtain   a   spatial   self­
organization.  This   feedback  will  be  the reflect  of   the multi 
modal constraints.

I

I.BCM'S NEURONS

A.Biological facts

Some experiments (see [2]) show that the LTD (Long­Term 
Depression)   /  LTP   (Long­Term   Potentiation)   threshold   is 
sliding.   This   threshold   between   hebbian   and   anti   hebbian 
learning depends on the past history of neuron spiking. This 
mechanism   restrains   synaptic   weights   and   induces   the 
specialization of the neuron to one input pattern.

B.Mathematical equations

The neuron  potential  u  is  equal   to the dot product  of   its 
synaptic weights and its input x.

The   synaptic   weights   are   modified   according   to   the 
following equation:

w=∗x∗u∗u− (1)
with η the learning rate and θ the sliding LTD/LTP threshold.
θ is equal to the exponential filtering of u².

Under conditions for convergence, the neuron output will 
be    1/p  for   the   discriminate   input   pattern,   with  p  the 
probability of its apparition, and  0  for the others. These two 
outputs are the stable states of the Δw equation: u=0 and u=θ. 
See [3] for more informations.

II.INTRODUCTION OF FEEDBACK MODULATION

A.Motivation

Our work deals with the association of several modalities 
with   a   multi   levels   and   multi   maps   neuronal   architecture 
defined   in   [4].  Each  modal  map  has   to   self  organize   itself 
considering the multi modal environment. One activity bump 
per map, coherent with the others,  appears in a competitive 
layer.   This   bump   will   be   used   as   feedback   modulation   to 
obtain an self organization of the map.

B.Principle

The aim is to encourage the LTP under the bump. To do 
this, we multiply  u by a sigmoidal feedback in order to help 
the potential u to overcome the θ threshold.

The u equation becomes:

u=w . x∗ 

1−1∗e−∗ feedback

III.RESULTS AND CONCLUSION

We obtain a spatial self organization of a BCM's neurons 
isolated map modulated with a bump feedback. This positive 
and  negative  bump appears   in  a  cnft  competitive  layer  and 
influences the spatial  convergence of the map. Multi modal 
constraints will have to influence the position of each modal 
bump.
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I. INTRODUCTION 

PONTANEOUS activity is a common feature of immature 

neural networks (1–4) observed in various species and 

parts of the developing central nervous system (CNS), and 

known to play a critical role in the maturation of neural 

systems. However, the spatiotemporal (ST) patterns of 

spontaneous activity have rarely been described at the level of 

the whole immature CNS. Moreover, how ST patterns evolve 

along the maturation of the CNS, and whether stereotyped 

patterns can be identified as specific landmarks of 

development stages, remain unknown. 

II. RESULTS 

Here, we address this question by studying the day-by-day 

evolution of spontaneous activity in organotypic cultures of 

whole embryonic mouse hindbrain-spinal cord preparations. 

Microelectrodes arrays (MEAs) composed of 60 electrodes 

were used to record spontaneous activity over this whole 

system. Hindbrain and spinal cord were isolated at embryonic 

day 12 (E12), and maintained in culture on MEAs for at least 

seven days. Spontaneous activity was recorded every day for 

at least one hour. Both local field potentials (LFP) and spiking 

bursts activity were considered.  

 

We developed specific algorithms inspired from image 

processing and automatic clustering to detect and classify the 

different spatiotemporal patterns expressed during episodes of 

LFPs and/or bursts of spikes. In order to link these patterns 

with the anatomy, we also designed a cartographic software 

based on spline interpolation to generate maps of activity. The 

clustering analysis revealed that the numerous episodes of 

spontaneous activity occurring in the cultured preparations 

expressed a limited number of spatiotemporal patterns. 

Another critical feature of spontaneous activity is its evolution 

over time, in terms of pattern variability, frequency of 

occurrence, single/multiple events ratio, as well as amplitude 

and spatial extent. A thorough analysis of these parameters 

brought to light a stereotyped scheme of evolution of 

 
 

spontaneous activity across all our preparations. Especially, 

episodes composed of single LFPs were observed at early 

stages (from day in culture DIC1), while multiple-LFPs 

episodes occurred later on (from DIC 3 on). Moreover, 

thereafter DIC3, a rostro-caudal maturation of activity was 

observed. 

III. CONCLUSION 

Altogether, these results contribute to define a detailed 

characterization of spontaneous activity during development 

in culture of entire structures of the CNS. 
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I.  INTRODUCTION 

he kinetics of presynaptic Ca2+ signaling play a major role 
in the control of neurotransmitter release, and thus, in the 

communication between neurons. Endogenous Ca2+ buffers 
such as parvalbumin (PV), calretinin and calbindin, modify 
the shape of presynaptic Ca2+ transients, and can therefore 
interfere with synaptic neurotransmitter release. In cerebellar 
molecular layer interneurons, PV has been shown to be 
responsible for the biphasic decay of action potential-evoked 
(AP-evoked) Ca2+ signals in single axonal varicosities (see [3] 
and Fig.1). 

Unfortunately, some parameters such as the kinetics of the 
Ca2+ extrusion mechanisms, the intracellular concentration of 
PV and the Ca2+ influx associated with each AP are hardly 
measurable experimentally. Moreover, fluorescence recording 
techniques require the use of a probe which is also an 
exogenous buffer that alters presynaptic Ca2+ decay kinetics. 
To overcome experimental limitations, we have developed a 
mathematical model allowing us to further investigate the 
influence of PV on AP-evoked Ca2+ signals in single axonal 
varicosities. 

II.  CALCIUM DYNAMICS MODEL 
Our single compartment model describes the kinetic effects 

of endogenous buffers (ATP, PV, Mg2+) in the presence of an 
exogenous buffer (fluorescent probe P) using first-order 

                                                           
  

ordinary differential equations. All extrusion systems (Na+-
dependent Ca2+ efflux and ATP-fueled Ca2+ pump) have 
been lumped as a single, voltage-independent system bearing 
Michaelian kinetics [4]. AP-evoked Ca2+ transients are 
simulated by an instantaneous Ca2+ rise (Ca2+ pulse). 

III.  PARAMETERS OPTIMIZATION 
Our Ca2+ dynamics model is embedded into a fluorescence 

model which takes into account the properties of the CDD 
camera  (gain and readout noise). This direct approach allows 
us to directly compare simulations results with raw 
fluorescence data instead of using fluorescence ratios 
(�F/F0), as usually done. The parameters of the Ca2+ 
dynamics model were optimized so as to minimize the 
weighted least squares error between experimental and 
simulated fluorescence transients. We focused on the 
optimization of three unknown parameters i.e: the total 
concentration of PV, the maximal Ca2+ efflux velocity (or 
extrusion rate) and the Ca2+ influx. 

Experiments were performed in cultured cerebellar 
interneurons. We compared Ca2+ from wild-type and PV(-/-) 
mice at two stages: postnatal days 10-12 (P10-P12) and P19-
P21.  

IV.  CONCLUSION 

Using this model, we investigate Ca
2+

 dynamics in 
presynaptic axonal varicosities in the presence of PV. It 
allows us to quantify Ca2+ extrusion kinetics, PV intracellular 
concentration and AP-induced Ca2+ influx. 

The direct approach, taking into account a probabilistic 
model of the acquisition system, will enable us to assess  
meaningful confidence intervals on our estimated parameters. 

Moreover, this optimized model of Ca2+ dynamics will 
allow us to predict the actual time course of Ca2+ signal in the 
absence of exogenous Ca2+ probes. 
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Fig. 1. Depolarization-induced [Ca
2+

]i transients in stellate/basket cells have 
a marked spatial heterogeneity, being much larger in discrete spots of the axon 

than in dendrites and soma [1,2]. The Ca
2+

 signal presents local maxima at 
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I. INTRODUCTION 

WO-photon laser scanning microscopy is a useful tool that 

facilitates very high-resolution in vivo imaging of neuronal 

populations [1]. We present a novel statistical framework for 

extracting functional information from two-photon calcium 

fluorescence images. Our results show that the proposed 

technique substantially outperforms the existing approaches. 

II. METHODS 

A. Experiment  

Neurons in the visual cortex of anesthetized ferrets were 

bulk-loaded with the fluorescent calcium indicator OGB. In 

vivo imaging was performed using a two-photon microscope. 

Time-series traces with a 250x250μm field-of-view were 

obtained at 1 Hz. The visual stimulus consisted of three 

repetitions of a square-wave grating with 100% contrast 

rotating by 10˚ in successive data frames. The traces at each 

pixel in the frame were used in the time-series analysis below. 

B. Signal Model 

As the stimulus described above is periodic, we can express 

the neuronal response in terms of its Fourier series expansion. 

We thus use a multiple harmonic model to estimate the 

baseline and stimulus-evoked response, with the number of 

harmonics determined by model order selection criteria. The 

residual stimulus-free response, which represents various 

colored noise processes, is modeled with an autoregressive 

(AR) process of the appropriate order. The stimulus-evoked 

component is a noise-free estimate of the neuronal response. 

C. Parameter Estimation  

By separating the signal and noise components, we can 

recast the estimation problem into two multiple regression 

problems which can be solved efficiently. We use an ordinary 

least squares procedure to estimate the harmonic coefficients, 

and the Burg algorithm to estimate the AR coefficients. A 

cyclic descent algorithm is developed that iteratively estimates 

the harmonic and AR coefficients jointly, converging rapidly. 

 
This work was supported by NIH Grants DP1 OD003646 and EY07023. 

III. RESULTS 

These methods are applied to in vivo visual cortex data to 

study the orientation selectivity of neurons and astrocytes. We 

find that a sufficiently low-order model, consisting of 4 

harmonics and 8 AR terms, is sufficient to represent the data 

accurately. The cyclic descent converges after about 5 

iterations, and is thus computationally efficient. The estimates 

thus obtained for each pixel of the frame are used to construct 

denoised neuronal response to the stimulus applied. Fig. 1 

shows the response of a single neuron as an example, whose 

preferred orientation is at about 180˚ (corresponding to the 

third frame). Our approach achieves remarkable denoising and 

contrast improvement, making the cell boundary and dendritic 

structure clearly observable while suppressing the noise at 

nonpreferred orientations and from the surrounding neuropil.  

IV. CONCLUSION 

Our statistical model and algorithms provide a principled 

and efficient method for obtaining improved neuronal response 

estimates from high-resolution two-photon images of the brain. 

The resulting denoised images enable the analysis of inter- and 

intra-neuronal structures and their functional characteristics 

with substantially improved clarity and reliability. 
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Fig. 1.  Two-photon images showing the functional response of a cell 

(location marked with blue circle) to a visual stimulus with orientation 

indicated by the arrow in each frame: (a) With conventional processing 

based on averaging across multiple trials; (b) Estimate from our technique. 

(Scale bar represents 10 μm; brightness scale represents ΔF = [0, Fmax]). 
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I. INTRODUCTION 

CCORDING to experimental evidence, spatial 

navigation planning is likely to rely upon a distributed 

neural network spanning limbic and cortical brain structures. 

This network includes (i) the hippocampus, which mediates 

robust spatial representations, and (ii) neocortical structures, 

such as the prefrontal cortex, which participate to the 

elaboration of more abstract contextual descriptions (e.g., 

accounting for motivation-dependent memories and action 

cost/risk constraints).  

 

II.  METHODS 

 In order to investigate this working hypothesis, we model 

the interaction between the hippocampus [1] and the prefrontal 

cortex [2]. We focus on the cortical columnar organisation to 

study a neuromimetic architecture suitable for spatial 

navigation planning. We validate the system’s learning 

performance on a classical spatial behavioural task, the 

Tolman & Honzik’s detour protocol [3], which suggests that 

rodents can plan flexible goal-directed trajectories in the 

presence of blocked pathways. We also put forth a set of 

statistical analysis to assess the spatial coding properties of the 

model hippocampal place and cortical column cells.  

Here, we couple our hippocampal place cell [1] and 

columnar cortical [2] models to provide a better understanding 

of the dynamics of the action planning neural network. We 

also improve the biological plausibility of the cortical model 

[2], by explicitly identifying the subpopulations of neurones 

that encode different information (e.g., current spatial state, 

goal-related and prospective memory signals, local actions). 

The response of each subpopulation being more specific, it 

makes it possible to perform a series of analyses of multiple 

neural activity correlates. 

 

III. RESULTS 

The spatial planning model reproduces the experimental 

results by Tolman & Honzik [3]. It also unravels the possible 
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links between the single unit level and the behavioural level 

relevant to the learning of the task (e.g., to the selection of the 

shortest path to the reward, and to the prediction of future state 

sequences). Finally, our neural response analysis suggests how 

the interplay between the model hippocampus and the 

prefrontal cortex can yield to the encoding of manifold 

information pertinent to the spatial planning function (e.g., 

prospective and distance-to-goal correlates).  

 

IV. DISCUSSION 

 Extensions of the model are being currently explored. In 

particular, multidimensional encoding (such as motivational 

information and mutiscale spatial correlates) is being 

introduced in the columnar network model. This will increase 

its representational capacity so that it will be able to mediate 

more complex decision-taking processes (e.g. cost-benefit 

analysis, large maze solving). In addition, the model is being 

validated by comparing the simulated neural responses against 

those obtained by in vivo electrophysiological recordings from 

the hippocampus and the prefrontal cortex of freely moving 

rats [4]. This comparative study aims at providing new insights 

on the interaction between the hippocampus and the prefrontal 

cortex. It can also lead to testable predictions about the 

learning processes related to spatial memory, such as 

declarative memory consolidation occurring during sleep. 
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I. INTRODUCTION 
arious recent brain-machine interfaces (BMI) have 

emphasized the potential of using cortical signals for the 
kinematic control of artificial devices such as robotic arms or 
legs [1]. However, very few studies are available for dynamic 
control as well as for the control of grasp movements. 

In this work our main goal is to first provide a proof-of-
concept that a 4 Dof anthropomorphic robot finger can be 
controlled by intra-cortical signals recorded in monkeys and 
second to replicate the applied force. 

II. METHOD  
The biological signal is composed of the activity of 33 
corticomotoneuronal (CM) cells and multiunit EMG signals 
recorded from up to eight intrinsic hand and forearm muscles 
as the monkey performed a low force precision grip task as 
shown in Figure 1 [2]. 

In subsequent work [3] it has been demonstrated that the 
muscle activity can be predicted by means of artificial neural 
networks. However, only the correlation between a given 
muscle activity and one of the corresponding CM cells was 
investigated. The average estimated performances in 
predicting EMG signals were 8.9% and 29.37% for TDMLP 
and TempUnit (two different types of artificial neural 
networks ANN) respectively. In the current work we first tried 
to increase the reported performances by using all available 
CM cell activities as input to the ANNs, i.e. all CM cells that 
facilitated the same EMG. Figure 2 shows an example of the 
used experimental data during one trial as well as the real and 
estimated EMG signals obtained during successive trials. In 
 

This work is supported by the FRM project DBC20080713368 

the training phase we set the number of hidden layer neurons 
to 25 and used the adaptive learning rate backpropagation 
algorithm. We showed that the estimation performance can be 
increased to 32.7% and 48% with the same types of ANNs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Experimental data from 1 trial of isometric precision grip force. (A) 
Right, from top to bottom: applied force and the rectified EMG signals of the 
muscles (FDI and EDC). Left: corresponding CM cell activities which 
facilitated the FDI as determined by spike-triggered averaging. (B) The real 
(blue) and estimated (red) EMG signals of several successive trials. 
The second step of the work will comprise the application of 
this EMG estimator to control an anthropomorphic robotic 
finger actuated by antagonist artificial muscles to replicate the 
recorded monkey index finger movements as shown in Fig. 3     
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Fig. 1.  Schematic diagram of the manipulandum used for the precision grip 
task and the examples of the recorded signals. 

(A) 

(B) 

Fig.3. The schematic representation of successive steps for the biomimetic 
control of an anthropomorphic robotic finger unit (Shadow Robot Co.)  

alain
Zone de texte 
P-25



 
Keywords—Cerebellar microcomplex, spatial navigation, 

spiking network model. 
 

I. CONTEXT 

ecent experimental findings have begun to unravel the 
implication of the cerebellum in high-level functions such 

as spatial cognition [1,2]. We focus on behavioural genetic 
data showing that L7-PKCI mice (lacking LTD at parallel 
fibre–Purkinje cell synapses) have a spatial learning 
impairment in the Morris Watermaze (MWM), whereas they 
exhibit normal performances in the Starmaze, a paradigm that 
reduces the procedural demand of the task [3]. These results 
suggest that cerebellar learning may prominently contribute to 
the procedural component of spatial learning [3].  
 

II. METHODS 
We model the main information processing components of 

the cerebellar microcomplex via a large-scale network of 
spiking neurons. We test the performances of artificial L7-
PKCI mice in simulated MWM and Starmaze environments. 
Importantly, we isolate the purely procedural component of 
the learning process by endowing simulated controls and 
mutants with identical declarative learning capabilities.  
 

III. RESULTS 
The model reproduces most of the experimental results on 

the learning impairments of L7-PKCI mice: in the MWM, the 
mean escape latency and the mean angular deviation between 
the optimal direction to the target and the actual motion 
direction of the animal are both significantly larger compared 
to controls. These differences are not due to swim capability 
deficits. Furthermore - consistent with experimental data - 
simulated mutants and controls exhibit comparable learning 
capabilities in the Starmaze paradigm.  

On the other hand, our simulations cannot reproduce the 
experimentally observed difference between the goal-
searching behaviour of mutants and controls in the MWM [3]. 
In fact, our results suggest that a purely local impairment of 
the procedural component cannot explain this latter deficit. 

IV. THE CEREBELLUM AND THE EXPLORATION - EXPLOITATION 
TRADE-OFF  

 To explain the experimental discrepancy between control 
and L7-PKCI, we have put forth a hypothesis according to 
which the mutants’ impairment in optimizing their goal-
searching behaviour could be due to a deficit in trading-off 
exploration and exploitation strategies [4]. This hypothesis has 
been tested by perturbating the ability of simulated mutants to 
properly balance their exploration-exploitation behaviour 
when solving the MWM and Starmaze tasks. By simulating 
this deficit, we could reproduce all the differences observed 
experimentally between control and mutant performances [3]. 

V. CEREBELLUM AND SPATIAL LEARNING 
The cerebellum plays an important role in integrating 

proprioceptive information to predict future state variables, 
such as body orientation and position, given a motor 
command [5]. A hypothesis being tested with our model is 
that the ability of L7-PKCI mice to integrate idiothetic (e.g. 
proprioceptive) signals might be impaired. This would 
indirectly affect the path integration process [6,7]. Since the 
latter contributes to the learning of stable spatial 
representations [6,8], we therefore propose that L7-PKCI mice 
might have a deficit in acquiring spatial representations that 
remain stable under different environmental conditions. This 
hypothesis is being evaluated by coupling our cerebellar 
model to an existing model of the hippocampal spatial 
learning function [8,9]. Preliminary results suggest that the 
cerebellum might be critical to build declarative spatial 
knowledge when idiothetic inputs are the most reliable source 
of information (e.g. when navigating in darkness). 
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Short presentation of a large moving pattern elic-
its an Ocular Following Response (OFR) that exhibits
many of the properties attributed to low-level motion
processing such as spatial and temporal integration,
contrast gain control and divisive interaction between
competing motions. Similar mechanisms have been
demonstrated in V1 cortical activity in response to
center-surround gratings patterns measured with real-
time optical imaging in awake monkeys. More recent
experiments of OFR have used disk gratings and bipar-
tite stimuli which are optimized to study the dynam-
ics of center-surround integration. We quantified two
main characteristics of the global spatial integration
of motion from an intermediate map of possible local
translation velocities: (i) a finite optimal stimulus size
for driving OFR, surrounded by an antagonistic modu-
lation and (ii) a direction selective suppressive effect of
the surround on the contrast gain control of the central
stimuli (Barthélemy et al., 2007).
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x(t)+ dt. V(t)

V(t+ dt)

Figure: Architecture of the model. The
system selects a priori continuous direction
according to the advection equation. Im-
plementation as a Markov Chain.

We explore here an hypothesis where center-
surround interactions could be understood as the ef-
fect of velocity prediction. In fact, the integration step
in previous models (see (Perrinet and Masson, 2007))
assumes independence of the local information while
natural scenes are very predictable due to the rigid-
ity and inertia of physical objects in visual space. We
implement this in a retinotopic velocity map, where
predictions are propagated by lateral recurrent inter-
actions (Rao and Ballard, 1999; Bayerl and Neumann,
2004). Similarly to (Cremers, 2007), writing the veloc-
ity field as a vector field, velocity is conserved along
path-lines:

∇V.V + ∆tV = NV

This leads to the auto-advection term in the Navier-
stokes equations and adds-up to the equation for in-
tensity conservation.

We implement this in a realistic model of a layer
representing velocities in a map of cortical columns,
where predictions are implemented by lateral interac-
tions within the cortical area. First, raw velocities are
estimated locally from images and are propagated to
this area in a feed-forward manner. Using this veloc-
ity map, we progressively learn the dependance of local
velocities in a second layer of the model. Results show
that this simple model is sufficient to disambiguate
characteristic patterns such as the Barber-Pole illusion.
Due to the recursive network which is modulating the
input to the velocity map, it also explains that the rep-
resentation may exhibit some memory, such as when
an object suddenly “disappears” or when presenting a
dot followed by a superimposed line (line-motion illu-
sion). This model may be applied to algorithms for
the efficient representation of video sequences since it
gives a Partial Derivate Equation (PDE) for an optimal
dynamical evolution of the representation for natural
scenes.
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I.INTRODUCTION 

EEG recordings have been used as a tool to measure  the 

brain activity for a long time. Especially, through the stimulus 

evoked experimental paradigm, numerous cortical activation 

patterns have been discovered, as sequences of evoked related 

potentials (ERP) components. 

Our aim is to use tools from machine learning in order to 

systematically investigate ERP. More precisely, we focus on 

detecting cognitive components and localize them in time and 

space. The main issue is to deal with as few trials as possible. 

II.METHOD 

A.Current methods 

Generally, ERP are assumed to be generated by a set of 

sources inside the brain. In order to extract these hidden 

sources, principal components analysis (PCA) and, more 

recently, independent components analysis (ICA) are two 

main  approaches. 

Both techniques project data on a lower dimensional space, 

representing the signals of hidden sources. Data records are a 

linear combination of these signals. The weights are given by 

a matrix which represents the contribution of each hidden 

source to each recorded channel. It may be considered as a 

kind of activity map w.r.t. the hidden sources. 

Usually, these techniques are applied on a truncated dataset, 

within a specific time-window where ERP components are 

expected. It brings limitations since the time-window has to be 

known in advance. In addition, only one activity map and a 

fixed number of hidden sources are computed for the dataset. 

B.Proposed probabilistic model 

In order to overcome these limitations, we have developed a 

new technique relying on probabilistic inference. The goal is 

to extract the same kind of information as by conventional 

techniques, within several time windows, that are detected 

automatically. Thus, the activity map and the sources may 

change over time. 

Our algorithm is based on a continuous hidden Markov 

model (HMM) while, in contrast to previous studies, here we 

propose to use probabilistic PCA analyzers instead of 

Gaussian components. The HMM segments time-series into 

time-windows. Each time-window is modeled by a 

probabilistic PCA analyzer. 

This model has been set up within a Bayesian framework. 

Therefore, with appropriate prior probabilities, an automatic 

relevance determination (ARD) mechanism infers the number 

of PCA analyzers and, for each analyzer, the number of 

dimensions (i.e. the number of hidden sources) [1][2]. This 

approach tends to avoid overfitting. Moreover, The inference 

of the Bayesian model is conducted using the variational 

approximation [2]. 

III.RESULTS 

A.Synthetic data 

A first experiment has been made on with 10-dimensional 

synthetic time-series. The model performed very well to 

isolate the different time-windows, i.e. the different states of 

the HMM. 

B.BCI P300 dataset 

The model was also used on a trial average of EEG records 

representing P300 evoked potentials [3]. 

As expected, the time-series was split into several parts. 

Interestingly, these parts were correlated to several known 

ERP components. Furthermore, the different activity maps 

extracted by each PCA analyzer correspond to possible 

activated areas on the scalp for the observed task. 

IV.CONCLUSION 

We propose a new probabilistic model combining two 

known approaches (HMM and PCA) in order to add the time 

information to the conventional PCA approach. 

First results, on synthetic and real datasets, are promising. 

However, more tests have to be done on real datasets, in order 

to assess the correlation of inferred transitions and ERP 

components. Future work is also concentrated on the 

robustness of the model w.r.t. to the number of trials used. 
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I. INTRODUCTION  
 

E consider a deterministic case of reservoir computing 
[2] with spiking neurons (e.g. gIF [1]) with connection 

weights and delays. The purpose is to study a class of 
algorithmic methods able to calculate the proper parameters 
(weights and delayed weights) allowing the exact 
reproduction of a spike train produced by an unknown neural 
network.  

 
 

II. METHODS   
The problem is known as NP-hard when delays are to be 
calculated. We propose here a reformulation, now expressed 
as a Linear-Programming (LP) problem, thus allowing to 
provide an efficient resolution. It is clear that this does not 
change the maximal complexity of the problem, whereas the 
practical complexity is now dramatically reduced at the 
implementation level. 
More precisely we make explicit the fact that the back-
engineering of a spike train (i.e., finding out a set parameters, 
given a set of initial conditions), is a Linear (L) problem if the 
membrane potentials are observed and a LP problem if only 
spike times are observed, for a gIF model. Numerical 
robustness is discussed. We also explain how it is the use of a 
generalized IF neuron model instead of a leaky IF model that 
allows to derive this algorithm. 
Furthermore, we point out how the L or LP adjustment 
mechanism is distributed and has the same architecture as a 
“Hebbian” rule. A step further, this paradigm is easily 
generalizable to the design of input-output spike train 
transformations. 

III. RESULTS  
Numerical implementations are proposed in order to verify 
that is always possible to simulate a expected spike train. The 
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results obtained shows that this is true, expect for singular 
cases. 
In a first experiment, we consider the linear problem and use 
the singular value decomposition (SVD) mechanism in order 
to obtain a solution, in the least-square sense, from the 
observation of spikes and membrane potential, allowing also 
to better understand the geometric nature of the problem. 
When the aim is to find the proper parameters from the 
observation of spikes only, we consider the related LP 
problem and the numerical solutions are derived thanks to the 
well-established improved simplex method as implemented in 
GLPK library.  
Several variants and generalizations are carefully discussed 
showing the versatility of the method. 

IV. DISCUSSION 
The neural network model parameters learning is a complex 
issue. In biological context, this learning mechanisms mainly 
related to synaptic weights plasticity and as far as spiking 
neural network are concerned STDP [3].  
In the present study, the point of view is quite different since 
we consider supervised learning, in order to implement the 
previous capabilities. To which extends we can “back-
engineer” the neural network parameters in order to constraint 
the neural network activity is the key question addressed here. 
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I. INTRODUCTION 

HE prefrontal cortex (PFC) is thought to mediate 

executive functions, including strategic organization of 

behavior [1]. These functions rely on long-term plasticity 

within the PFC [1,2]. Dopamine (DA) input to the PFC has 

been shown to modulate neural activity in this area and affect 

long-term plasticity [3,4].  

DA signaling in the PFC occurs in two distinct modes. 

Transient or phasic release of DA is caused by a short-term 

activation of dopamine cell firing in response to behaviorally 

relevant stimuli. The phasic DA is important for encoding of 

reward signals, and long-term potentiation. In contrast, 

background or tonic dopamine is characterized by an ambient 

concentration of dopamine within the PFC, which is not 

directly related to momentary sensory stimuli. Tonic DA is 

thought to exhibit control over higher cognitive functions 

mediated by the PFC. Several computational studies have 

addressed the roles of tonic vs phasic DA for short-term 

working memory during delay-period activity [5]. The present 

theoretical study is focused on the reproduction of long-term 

effects of DA signaling in the PFC, including long-term 

potentiation and depression (LTP/LTD) [3,4]. 

II. COMPUTATIONAL MODEL OF DOPAMINE INFLUENCE ON 

PREFRONTAL CELL ACTIVITY  

Using a detailed computational model of a single pyramidal 

cell in layer V of rat PFC, we study the neuronal properties 

that may be responsible for the changes in synaptic efficacy 

following tetanic stimulation in the presence of DA [4]. Our 

model is based on the Hodgkin-Huxley formalism for spike 

generation and includes 6 ionic conductances, excitatory and 

inhibitory synapses. We fit the properties of the model neuron 

to the electrophysiological data provided by S. Otani and 

collaborators and determine the potential changes in the ionic 

and synaptic conductances and/or internal parameters of the 

neuron (e.g. Ca
2+

 concentration) that can eventually give rise 

to the observed changes in the EPSP slope [4]. The underlying 

 
 

hypothesis in this study is that phasic release of endogenous 

DA is necessary for the induction of long-term changes in 

synaptic efficacy, while the concentration of tonic DA 

determines the direction (i.e. LTP or LTD) of these changes 

(Fig. 1) [4]. The computational approach adopted in our study 

helps to determine changes in neuronal properties required by 

this hypothesis as well as predict the impact of this hypothesis 

on a network level. 
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Fig. 1.  Phasic vs tonic dopamine and synaptic plasticity [4]. 
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I. IN-FLIGHT GAZE STABILISATION 
URING their locomotion, animals move their eyes and head for 
various reasons. Flies rotate both their head and body around 
the three axes: yaw, pitch and roll (fig.1). Several studies have 

shown that a freely flying fly exhibits pure translational phases 
lasting between 100 and 200ms, which are interspersed with sudden 
changes in trajectory (yaw saccades) (Collett & Land, 1975; Wagner, 
1986; Schilstra & van Hateren, 1998). Such saccadic behaviour 
minimizes the time during which rotational optical flow (OF) occurs, 
at the benefit of the translational OF phases. A pure translational OF 
is a reliable sensory cue for insects to avoid obstacles (e.g., Wagner, 
1986; Franceschini & al., 2007).  
 
 
 

 

II. HEAD STABILIZATION IN FLIES 

The control of the blowfly’s head orientation relies on no less than 
23 pairs of muscles, and on several proprioceptive (visual, inertial 
and hair) sensors. There exists a typical head roll compensatory 
reflex in flies, which results from the fusion of visual and inertial 
signals (Hengstenberg & al; 1986). The inertial signals are delivered 
by the halteres, which act as genuine micro-rate gyrometers, able to 
measure the animal’s rotational speed around the three axes 
(Nallbach, 1993). 
 

III. GOAL OF THE STUDY AND METHOD 
Our aim is to characterize and identify  the dynamic properties of 

the head compensatory roll reflex in flies..  
The set-up consists of a servomotor able to roll the insect 

accurately and reproducibly. The thorax is glued to a tiny patch of 
cardboard supported by a micro tweezers movable in X and Y by a 
tiny micromanipulator. The animal is illuminated frontally by a 
coaxial ring of infrared LEDs that are  flashed in synchrony with the 
electronic shutter of a high speed camera (up to 500 f/s). The flying 
insect is then subjected to stepwise or sinusoidal rolls about the 
thorax axis, while the camera captures the orientation of an 
infrared reflecting marker (a narrow white line) painted on the 
insect’s front. The whole apparatus is synchronized by an acquisition 
board controlled by a computer. Using a custom-made image-
processing software., the successive frames acquired by the camera 
allow the angular orientation of the head to be followed and the 
frequency response of the head compensatory system to be 
determined. 

 

IV. RESULTS 

Stepwise rolls of the thorax in darkness were observed to induce 
conspicuous head rolls in the opposite direction, provided the insect 
was flying. We assessed the spatial and temporal resolution and 
the dynamics of this head compensatory reflex in the tethered flying 
blowfly in total darkness, to exclude any visual cues and to focus on 
the purely inertial part of the reflex. Fig. 3 shows some preliminary 
results that indicate that the fly compensate only partially the thorax 
movements of amplitude larger than 30 degrees irrespective of their 
frequencies. 
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Fig. 1: Schematics of the three axes of rotation of the blowfly’s thorax; the 
head can move independently about 3 rotational degrees of freedom as well.
The arrows give the direction of  positive angles used for the experiments. 

Fig.3: A, typical curve of the fly’s response to a sinusoidal roll-stimulus in the 
dark; black, sinusoidal motion imposed on the thorax (Rt); green, movement 
of the fly relative to the vertical (Rh). B, distribution of head orientation (Rh) 
during the same experiment: the head stays mostly at +/-20 degrees from the 
vertical 

Fig.2: Roll generator inspired by Hengstenberg & Stange (1996). A, rotational
axis with micromanipulator adjusted tweezers; C, infrared camera with IR
filter; D, ring of IR-emitting LEDs; M, micromotor and reduction gear; P,
potentiometer; T, tachometer; CM, motor control board ; CI, control board. 
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Gibbs Distributions and Spike-Time Dependent Plasti
ityJuan C Vasquez1, Bruno Cessa
1,2, Hora
io Rostro-Gonzalez1, Thierry Vieville31 NEUROMATHCOMP, INRIA Sophia-Antipolis ;2 Laboratoire J.A Dieudonné, U. de Ni
e-Sophia ; 3 CORTEX, INRIA-LORIAI. INTRODUCTIONRe
ently we have shown how Gibbs distributions are nat-ural probability measures to des
ribe the statisti
s ofspike trains, given the data of known empiri
al averagesand, how a Gibbs distribution may arise when 
onsider-ing 'slow' synapti
 adaptation rules[1℄. Here we illustratenumeri
ally these results in the 
ase of a re
urrent neuralnetwork with dis
rete time 
urrent based dynami
s underthe a
tion of a STDP rule.II. THEORY AND METHODSNeuron/Network Model: We 
onsider a simple imple-mentation of the leaky Integrate and Fire model, wheretime has been dis
retized. Call Vi the membrane poten-tial of neuron i. Fix a �ring threshold θ > 0. Thendynami
s is given by:(1)
Vi(t + 1) = γVi(t) (1 − Z[Vi(t)]) +

N
∑

j=1

WijZ[Vj(t)] + Ie
i

i = 1 . . .N , where the �leak rate� γ ∈ [0, 1[ and Z(x) =
χ(x ≥ θ) where χ is the indi
atrix fun
tion namely,
Z(x) = 1 whenever x ≥ θ and Z(x) = 0 otherwise. Wijmodels the synapti
 weight from j to i. The network isfully 
onne
ted and weights are Gaussian.STDP Model: Call ωi(t) ∈ {0, 1} the a
tivity of neuron
i at time t. Then, we 
onsider the plasti
ity rule:(2)

W ′

ij = ǫ

[

rdWij +
1

T

T+Ts
∑

t=Ts

ωj(t)

Ts
∑

u=−Ts

f(u)ωi(t + u)

]where −1 < rd < 0 is a term 
orresponding to passiveLTD, T a large time, 
orresponding to averaging spikea
tivity for the synapti
 weights update, and(3) f(x) =











A−e
x

τ
− , x < 0, A− < 0;

A+e
−

x

τ+ , x > 0, A+ > 0;
0, x = 0;with A− < 0 and A+ > 0, is the STDP fun
tion asderived by Bi and Poo,1998. Ts

def
= 2 max(τ+, τ−) is a
hara
teristi
 time s
ale.Gibbs Distributions: We make the assumption thatat ea
h adaptation step, the time-empiri
al measure forthe spike-statisti
s π

(T )

ω̃(τ) 
an be approximated by a Gibbsmeasure ν
ψ(τ) with potential ψ(τ) and topologi
al pres-

sure P
[

ψ(τ)
]. Then, under small variations, this adap-tation rule is gradient system for(4)

F
(τ)

φ
(W) = P

[

ψ(τ) + (W −W(τ)).φ(W(τ))
]

−P
[

ψ(τ)
]

,whi
h asymptoti
ally rea
hs its minimum 
orrespondingto a stati
 distribution for the synapti
 weights, on aspike-statisti
s given by a Gibbs distribution with poten-tial: (See referen
es for details)(5) ΨSTDP =
N

∑

i=1

N
∑

j=1

λij

n−1
∑

t=0

Ts
∑

u=−Ts

f(u)ωj(t)ωi(u + t).III. RESULTS

Figure 1: (Left) Evolution of the average synapti
 mod-i�
ation (mean STDP) and of the Frobenius norm of thetotal 
hange on the whole synapti
 matrix (STDP norm).(Right)Evolution of the variation of the topologi
al Pressure
al
ulated by two estimation methods.IV. CONCLUSIONSThis work shows: (i) that 
ertain form of palsti
ity(STDP) are variational; (ii) that Gibbs distributions arenatural 
andidates for modeling spike statisti
s. Notethat the form (5) generalizes the form proposed in [2℄ un-der the name ofr Ising distribution.A
knowledgments : Partially supported by the ANRMAPS and the MACCAC ARC proje
ts.VI. REFERENCES1. B. Cessa
 et al. How Gibbs distributions may naturally arisefrom synapti
 adaptation me
hanisms, to appear in J. Stat. Phys.(2009)2. S
hneidman et al. Weak pairwise 
orrelations imply strongly
orrelated network states in a neural population, Nature Vol.440,(2006)3. ENAS library, http://enas.gforge.inria.fr
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 Keywords—  neural illusions, neural fields, bifurcations, 
numerical continuation  
 

I. INTRODUCTION 

verybody has ever seen visual illusions or movement 
illusions in which multiple interpretations can arise 

from a single stimulus. [1] is one of the first that gives a 
mathematical way to compute planforms (which are visual 
states) using bifurcation theory in very good agreement to 
what is reported by people experiencing planforms. These 
planforms result from the dynamics of the cortex when there 
are few cortical inputs. Here we address the question of the 
computation of these cortical states when a visual stimulus is 
applied. We will then interpret these multiple persistent states  
as neural illusions. 

II.  NEURAL FIELD EQUATIONS (NFE) 

A. Introduction 
The NFE modelling the evolution of the membrane potentials 
of the different populations of cortical columns are :  

where W is the connectivity matrix, S is a non-linear function 
of sigmoidal shape, I is the external input, the cortex Ω is 
supposed to be finite. Within this formalism, we can cast the 
equations of [1]. 
 
For any given initial cortical state , there exists a unique 
evolution V(t) satisfying the previous equations, which can 
converges to a persistent state. 
 
Persistent states Vf are solutions of the previous equations not 
depending upon the time, hence satisfying 

They have been studied in [2]. 
 
Neural illusions were analysed in [1] by varying a global 
weight μ in the description of the connectivity matrix W when 

I = 0. However we cope with a problem when I≠ 0 because in 
the formulation of the NFE, the ratio between I and W is not 
given. We decide to solve this problem by scaling I with ε and 

computing the persistent states Vf for different couples (μ,ε) 
using the multi-parameter numerical continuation library 
TRILINOS [3].  

                                                           
  

 
 
 

III. PERSISTENT STATES CALCULUS 

We have to solve the persistent state equations numerically, 
hence we need to discretize the problem. Discretizing the 
space  Ω will generate too many variables which will slow 
down the numerical continuation. 
 
We choose a particular form of connectivity function whose 
range is finite dimensional, they are called Pincherle-Goursat 
kernels : 

Their advantage is to directly look for persistents states of the 
form : 

which proves to be useful when N is small. The numerical 
continuation also provides clues for the linear stability saying 
which cortical states are plausible. 
 

IV. CONCLUSION 
We believe that such computations could help to 

validate/invalidate the NFE modelling of cortical processes. 
The biggest challenge will be to reproduce some simple well-
known neural illusions not involving higher area than V1. 

V. BIBLIOGRAPHY 
[1] Bressloff, Cowan, Golubitsky, Geometric visual 

hallucinations, Euclidian symmetry and the functional 
architecture of striate cortex, The royal society 2001 

 
[2] Faugeras & al Persistent neural states: stationary 

localized activity patterns in nonlinear continuous n-
population q-dimensional neural networks, Neural  

 
[3] http://trilinos.sandia.gov/ 
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Keywords— delays, neural fields, stability  

 

I. INTRODUCTION 

elays are an important aspect in the modeling of 

cognition processes such as vision and motion 

analysis. Delayed continuum neural networks have been 

investigated by many authors [1,2], and more particularly  the 

stability of persistent states. But all the given analytical 

bounds regarding this stability are independent of the delays. 

Here we present a new analytical bound involving the delays 

that is very easy to compute. We then compare this bound to 

the predictions of the linear stability analysis in numerical 

applications. 

II. DELAYED NEURAL FIELD EQUATIONS (DNFE) 

A. Introduction 

The DNFE modelling the evolution of the membrane potential 

are :  

where W is the connectivity matrix, S is a non-linear function 

of sigmoidal shape, I is the external input, L is a diagonal 

matrix describing the dynamics of a single cortical column. 

The delays are given by the function !. The cortex " is 

supposed to be finite. 

 

For any given initial cortical state , there exists a unique 

evolution V(t) satisfying the previous equations.  

 

Persistent states Vf are solutions of the previous equations not 

depending upon the time, hence satisfying 

They have been studied in [3]. 

 

B. Stability 

The question addressed concerns the stability of the states 

Vf when we intoduce delays. If the following conditions (1-2 

or 3) are satisfied, then Vf is stable : 

                                                             
  

where ~W is a modified connectivity. Therefore, there are 

two integrals to compute. If we put a scaling in the delays, 

hence considering a delay term like c.!(r,r'), we find the 

following power law for the stability : 

 

III. NUMERICAL APPLICATION 

We look at the following model with a “mexican hat 

connectivity” where w(x,y)=(1-|x|)exp(-|x|) with  

"=[-1,1] and compare the previous bounds to the (non 

analytical) results from linear stability.  

We see that even if we still underestimate the stability, we 

have improved the previous results which gave the delay 

independent bound. 

IV. CONCLUSION 

These analytical bounds provide a quick way to analyse the 

complicated DNFE. When building a non-delayed model, we 

can easily have clues about the instabilities induced by the 

introduction of delays. Moreover the power law could be an 

intesting prediction for biological experiments. 

 

V. BIBLIOGRAPHY 
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[3] Faugeras & al Persistent neural states: stationary 
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population q-dimensional neural networks, Neural 
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Keywords — Maturation, neural networks, hindbrain, cortex, 
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I. INTRODUCTION 

PONTANEOUS activity is a ubiquitous feature of 

developing neural networks, which has been described in 

many immature structures of the central nervous system 

(CNS), and shown to be essential for the maturation of 

functional connectivity (1–4). However, the origin of 

spontaneous activity remains largely unknown.  

II. RESULTS 

Here, we show that a flow of artificial cerebrospinal fluid 

(aCSF) running over the inner ventricules or around the CNS 

controls the emergence of rhythmic activity in developing 

neural structures. This phenomenon was indeed observed in 

two different regions of the CNS. 

 

First, whole embryonic mouse hindbrain-spinal cord 

preparations (embryonic stages E12.5-E16.5) were isolated on 

microelectrode arrays (MEAs). Spontaneous waves of activity 

originated in the hindbrain and propagated in the spinal cord 

under aCSF perfusion flow over the inner wall of the fourth 

ventricle (Figure 1). During development, the frequency of 

this rhythm increased, while the duration of activity episodes 

decreased. This rhythmic activity was observed with perfusion 

rate as low as a few tens of microliters per minute, and the 

frequency of the rhythm increased with the speed of the aCSF 

flow. However, at all stages of development considered, 

hindbrain activity was abolished as the perfusion was stopped.  

 

Spontaneous rhythmic activity was also recorded in a 

second preparation. Embryonic or newborn (P0-P8) mouse 

cortices were isolated on MEAs or recorded extracellularly 

using glass pipettes and spontaneous activity was observed as 

perfusion flowed either over the inner wall of the lateral 

ventricle or around the meninges-removed cortex. Again, 

activity was abolished when the perfusion flow was stopped. 

This phenomenon, both in the hindbrain and the cortex, could 

not be attributed to changes in temperature, oxygenation level, 

pressure, or pH of the aCSF. 

 

 
 

 
Figure 1. a) Schematics of the embryonic preparation layed on MEAs. b) 

Color-coded map of the peak of hindbrain activity with respect to the anatomy 

of a E14.5 preparation. c) Rostro-caudal wave of activity initiated in the 

hindbrain and propagating down the spinal cord. 

III. CONCLUSION 

Altogether, these results suggest that the movement of CSF 

in the ventricles and around the brain during development may 

control the genesis of spontaneous rhythmic activity in the 

developing CNS. 
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