
On Extracting Security Policies From Program
Invariants

A static analysis for dynamic decision making

José Faustino Fragoso Ana Almeida Matos

February 17, 2011

Abstract

This report approaches the problem of verifying program compliance with in-
formation flow policies by proposing a framework that enables dealing with com-
plex and dynamic policies in an efficient and flexible manner. We introduce a cal-
culus for extracting the fundamental dependencies that are encoded into a program
which is proved to be both sound and optimal. From the output of this analysis, the
strictest security policy under which a program may be executed is then statically
inferred. This policy can be used to dynamically decide whether a program is al-
lowed to run, or as a comprehensive and succinct digest of the reasons for which a
program is not deemed secure.

Contents
1 Introduction 1

1.1 Synopsis . 2

2 Specifying Confidentiality Policies 2
2.1 Security lattices generated via flow relations 3
2.2 Security lattices generated by arbitrary closure operators 6
2.3 Specifying Integrity Policies . 7

3 Trace Noninterference 8
3.1 A type system for trace noninterference 10
3.2 Typing programs by comparing policies 11

4 Computing the strictest integrity policy 15
4.1 Inferring the strictest integrity policy generated by a closure operator . 15
4.2 Inferring the strictest integrity policy generated by a flow funtion 26

i

5 Dependency analysis 28
5.1 Semantic Characterization . 28
5.2 Integrity analysis as a calculus of dependencies 30
5.3 Dependencies as Types . 32

6 Connecting the Analysis 34
6.1 Dependency Based Confidentiality Certification 36

7 Inferring security labellings 40
7.1 A calculus of fixed types . 40
7.2 A dependency based approach to fixed types computation 48

8 Computing the strictest confidentiality policy 49
8.1 Confidentiality policies induced by security labellings 50
8.2 Computing the strictest confidentiality policy 51

9 Related Work 55

10 Conclusion and Future Work 55

ii

1 Introduction
Information flow security regards the compliance of a program to a policy that restricts
what information can be inferred from the execution of the program by a given ob-
server of the system. In the classical setting [18], the program is analysed against a
certain lattice of security levels, and typically suffers from imprecision and inflexibil-
ity problems, if the analysis is done statically, or soundness and efficiency problems,
if it is done dynamically. This report proposes a different strategy to information flow
analysis, aiming to profit from the efficiency of statical approaches, and the flexibility
of the dynamic ones.

The main observation that motivates the proposal is that information flows that are
encoded in a programs are not intrinsically secure or insecure, but are so with respect
to a given context. Context, which includes the relevant security policy and security
labellings, is dynamic by nature. For this reason, classical approaches to information
flow analysis that rely on a predefined security labelling of levels that are related by a
single flow policy are often inadequate for real world applications.

Declassification mechanisms offer different degrees and forms of flexibility to an
information flow analysis [19]. They enable dynamic security labellings [22], dynamic
policies [3, 6] and also deal with differences in policies that arise in distributed contexts
[2]. However, even when incorporating such mechanisms, a framework that statically
accepts or rejects programs is inherently constrained.

In a scenario in which access permissions (or security labellings) that are attached
to resources are allowed to change, compliance of a given program with a given infor-
mation flow policy depends on the runtime labelings of the resources that the program
handles. Complementarily, the security policies that establish which information flows
are allowed in a system may also vary over time or according to the computational
domain in which the program is executed. It is therefore desirable to postpone the
decision of whether a program is allowed to run to as close to runtime as possible.
Clearly, this poses an additional overhead on program execution (which can be quite
considerable depending on the size of the program to execute).

This report proposes a mechanism for coping with dynamic and distributed security
labelings, as well as with dynamic and distributed security policies, that relies on a
static dependency analysis between the computational objects of a program. The aim
is to infer the information flows entailed by the program in order to perform sound and
dynamic decisions concerning the execution of the program in an efficient manner.

More precisely, the main technical contributions of this report are:

• A calculus of dependencies that is precise with respect to a classical type system,
in the sense that verifying typability of a program is equivalent to verifying that
variables only depend (syntactically) on variables that are lower with respect to
a given typing security labelling.

• A method for determining, for a given program and type system, the weakest
security labelling that renders the program typable.

• A mechanism for calculating the strictest flow policy with which a program com-
plies, when fixing the security labelling.

1

• A discussion of several different ways to express security policies over sets of
principals.

The above technical results can be applied to build a platform for making dynamic
decisions regarding program security, that is adequate in the sense of correctness, effi-
ciency and practicality. Furthermore, we point out its usefulness in building tools for
assisting the development of secure programs. More concretely, the following direct
applications of the technical contributions in this report may be highlighted:

• The strictest flow policy entailed by a program can be used for efficiently veri-
fying compliance with a given security policy (be it a confidentiality or integrity
policy). This can be applied in a variety of contexts, ranging from access control
runtime monitors to proof carrying code.

• The strictest flow policy provides a succinct and comprehensive explanation of
the reasons why the program is not considered secure. Thus, it can be used as an
error-reporting mechanism.

• At the programming level, the specification of security labellings can be left in-
complete, leading to the computation of the weakest labelling higher than the
specified one which types the program. This inference mechanism is different
from traditional type inference for information flow because the inference proce-
dure is allowed to raise the security level of any variable. Nevertheless, it always
yields a correct labelling.

1.1 Synopsis
We consider a setting in which (integrity and confidentiality) security levels are sets
of principals [3, 16], similar to access control lists. In such a scenario security lattices
correspond to closure operators over the powerset of the set of principals. Section 2
covers this topic in detail and presents several illustrative examples. Section 3 states
the security property that is considered in this report and instantiates the Volpano et al.
type system to enforce both confidentiality and integrity policies expressed as closure
operators. Section 4 presents an analysis for computing the strictest integrity policy
with which a program complies. This analysis is specially important because, when
taking the program variables as the principals of the system, it yields a dependency
calculus (Section 5) which is the cornerstone of all remaining analysis. This depen-
dency calculus is then use in two ways: in Section 7 it is used to infer the lowest
security labelling with which a program complies (when fixing the security lattice),
whereas in Section 8 it is used to infer the lowest confidentiality policy with which a
program complies (when fixing the labelling).

2 Specifying Confidentiality Policies
Originally [9] the problem of certifying that a given program observes a given confi-
dentiality policy was formulated in the following way: one has to specify a security
lattice over a set of confidentiality levels and a security labelling which assigns to

2

each variable a confidentiality level and the goal is to guarantee that information per-
taining to high confidentiality levels does not leak to low confidentiality levels. The
non-interference property [10] provides a formal meaning for information leakage.

In information flow research the term security lattice is pervasive, whereas its
meaning may actually differ according to the author in question. In this report, we
shall abide by the notion that a security lattice is always generated by a closure opera-
tor over a given set of security principals [3, 25], as it is carefully explained below.

Given a set P of principals, a confidentiality level is any subset l of P. From this
point of view, the confidentiality level P is the most public one (also denoted ⊥): a
variable labeled P may be read by every principal. Conversely, ∅ is the most secret
security level (also denoted ⊤): a variable labelled ∅ is so secret that no one can read
it. In this setting, we can interpret reverse inclusion of security levels as indicating
allowed flows of information: if a variable x is labelled l and l ⊇ l ′, then the value of x
may be transferred to a variable y labelled l ′.
2.1 Security lattices generated via flow relations
A flow relation is a binary relation over P. A pair (p,q) ∈ F is to be understood as
“information may flow from principal p to principal q”. That is: “everything that
principal p is allowed to read may also be read by principal q”. Naturally, every flow
relation over P induces a closure operator over P(P):

L ↑F= {l′ ∣ ∃l ∈ L ⋅ lF∗l′} (1)

where F∗ is to be understood as the reflexive-transitive closure of F.
Since ↑F is a closure operator, its range is a Moore family and thus a lattice when

equipped with set inclusion as its partial order. This means that when establishing a
flow relation over a given set of principals, we are implicitly reducing the size of the
original security lattice, as illustrated in the following example.
Example 1. Consider the following security lattice:

{ f ,m,s}
{ f ,s} { f ,m} {m,s}
{ f} {s} {m}

{∅}

Here, the set of pricipals is { f ,m,s} where f , m and s stand for father, mother and
son respectively. Now suppose that the members of this family wish to implement a
security policy such that everything that the son can read may also be read by his
parents. This policy can be stated as: F = {(s, f),(s,m)}. Having established this
flow relation, when assigning the security level s to a given variable x, one is in fact
assigning security level {s} ↑F= { f ,m,s}. As such, the new security lattice will be:

3

{∅}
{ f} {m}

{ f ,m}
{ f ,m,s}

The previous example shows that when establishing a flow relation, one is indeed
collapsing confidentiality levels in P(P), thus obtaining a new lattice that shall be
considered the de facto security lattice.

As it is, we are now considering security lattices generated by closure operators
which are in turn generated by arbitrary binary relations (flow relations) over a finite
set. However, when generating a closure operator through a flow relation, one ensures
that it is actually a additive closure operator which is proved in the following lemma.

Lemma 1. Given a flow relation F over a finite set of principals P, the closure operator↑F is an additive closure operator, that is:(l1∪ l2) ↑F= l1 ↑F ∪l2 ↑F
Proof. From monotonocity of the closure operator it follows that:

l1 ↑F ∪l2 ↑F⊆ (l1∪ l2) ↑F
For the converse inclusion, observe that if p ∈ (l1 ∪ l2) ↑F , this means that there must
exist q ∈ l1 ∪ l2 such that qF∗p. However, q must belong to either to l1 or to l2, so
p ∈ l1 ↑F or p ∈ l2 ↑F .
So each security lattice obtained by establishing a flow relation F over a given

finite set of principals P corresponds to an additive closure operator ↑ F . Naturally,
each additive closure operator over P(P) is completely defined once defined for each
element of P since:

l ↑F=⋃
p∈l{p} ↑F (2)

Therefore, we establish the notion of flow function, that is, a function which assigns to
each principal p the set of principals that can read all the information labeled with p.
For instance, if q ∈ !(p), then principal q may read all the information that principal p
can read. Every flow function ! ∶ P→P(P) must verify the following two properties:

∀p ∈ P ⋅ p ∈ !(p)∀p,q ∈ P ⋅q ∈ !(p)⇒ !(q) ⊆ !(p) (3)

Given a flow relation F, its corresponding flow function can be obtained in the
following way:

!F(p) = {p} ↑F (4)

4

Given a flow function ! ∶ P→P(P), define the operator !∗ ∶P →P(P) as:
!∗(l) =⋃

p∈l!(p) (5)

Lemmas 2 and 3 establish the relation between flow functions as defined in equation 3
and closure operators.

Lemma 2. If ! is a flow function then !∗ (defined as above) is an additive closure
operator.

Proof.

• Monotonocity: l1 ⊆ l2⇒ !∗(l1) ⊆ !∗(l2)
Assuming that l1 ⊆ l2.

!∗(l1) = ∪p∈l1!(p)∪p∈l1!(p) ⊆ ∪p∈l2!(p) since l1 ⊆ l2
!∗(l1) ⊆ !∗(l2)

• Extensivity: l1 ⊆ !∗(l1); since ! is a flow function, for every principal: p ∈ !(p).
• Idempontence: !∗(!∗(l1)) = !∗(l1). We only have to prove that !∗(!∗(l1)) ⊆
!∗(l1), the converse inclusion comes from extensivity. So let’s assume that p ∈
!∗(!∗(l1)). This implies that there is a q ∈ !∗(l1) such that p ∈ !(q). On the
other hand, the fact that q ∈ !∗(l1), implies that there is a s ∈ l1 such that q ∈ !(s).
So, assuming that p ∈ !∗(!∗(l1)), we must conclude that there are q,s ∈ P such
that: s ∈ l1, q ∈ !(s) and p ∈ !(q). But, since ! is a flow function, we must
conclude that p ∈ !∗(l1).

Lemma 3. If " ∶ P(P)→P(P) is a closure operator then the function ! ∶ P→P(P)
such that !(p) ="({p}) is a flow function.
Proof.

• !(p) ="({p}). Applying extensivity: p ∈ !(p).
• Suppose q ∈!(p). Then: {q}⊆"({p}). Bymonotonocity: "({q})⊆"("({p})).
Then, applying idempotence: "({q}) ⊆"({p}).

Clearly, given a finite set of principles P there is a one-to-one correspondence be-
tween the set of flow functions over P and the set of security lattices generated by the
flow relations over P. Given a flow function ! ∶ P→P(P), the confidentiality lattice
corresponding to ! shall be denoted:

L! = (!∗(P(P)),⊇) (6)

5

The order on flow functions (and thus on security lattices generated by flow func-
tions) is defined as follows:

!1 ⊑ !2⇔∀p∈P.!1(p) ⊆ !2(p) (7)

The set of flow functions over a given set of principals P equipped with the order
introduced above is a lattice as the following lemma proves.

Lemma 4. When equipped with the ordering introduced in 7, the set of flow functions
over a finite set of principals P is a lattice.

Proof. It is clear that it is a poset. It remains to show that it is also a lattice. To
accomplish this we propose the following greatest lower bound:(!1⊓!2)p = !1(p)∩!2(p)
having to prove that the lower bound proposed is itself a flow function.

• Assuming that !1 and !2 are flow functions, it follows that for every principal p,
p ∈ !1(p) and p ∈ !2(p) and thus p ∈ (!1⊓!2)(p).

• Suppose p ∈ (!1 ⊓!2)(q), by definition it must be the case that p ∈ !1(q) and
p ∈ !2(q). Since, !1 and !2 are assumed to be flow functions, it follows that(!1⊓!2)(p) ⊆ (!1⊓!2)(q).

The order on flow functions introduced above may be understood in the following
way: if !1 ⊑ !2, then !1 is more strict than !2 in the sense that not all the information
flows allowed by !2 are allowed by !1. However, all the information flows allowed
by !1 must also be allowed by !2. Otherwise, they would not be comparable. The
following lemma clarifies this interpretation concerning the order relation established
on flow functions.

Lemma 5. For any two flow functions !1 and !2 over a given set of principals P, if !1 ⊑
!2 then for any security levels l1, l2 ∈P(P), if !∗1 (l1) ⊆ !∗1(l2), then !∗2 (l1) ⊆ !∗2 (l2).
Proof.
By extensivity: l1 ⊆ !∗1 (l1).
Applying the hypothesis: l1 ⊆ !∗1(l2)
By monotonocity: !∗2 (l1) ⊆ !∗2(!∗1 (l2))
By hypothesis: !∗1(l2) ⊆ !∗2 (l2)
By monotonocity and extensivity: !∗2(!∗1 (l2)) ⊆ !∗2 (l2)
2.2 Security lattices generated by arbitrary closure operators
Section 2.1 states that the security lattices that arise from establishing flow relations
over a given set of principals P correspond to those lattices generated by the additive
closure operators over P(P). However, there are confidentiality policies which may
not be captured by the security lattices generated in that way as is illustrated in the
following example.

6

Example 2. Suppose that the family considered in example 1 wishes to change its
confidentiality policy so that all of the son’s information that is shown to one parent
is also shown to the other. It is not possible to enforce this particular confidentiality
policy through a flow relation. To specify this confidentiality policy one has to specify
the closure operator itself. Furthermore, this closure operator is not additive.

{∅}

{ f ,m,s}
{ f} {m}{ f ,m} {s}

Example 2 stresses the fact that in some situations flow relations are not expressive
enough to model the confidentiality policy which one wishes to enforce. In such situ-
ations the closure operator must be fully specified. Therefore, flow functions cease to
be useful, in this context the term flow operator shall be used.

As done for flow functions, one can establish an order on closure operators overP(P) in a similar way:
"1 ⊑"2⇔∀l∈P(P) . "1(l) ⊆"2(l) (8)

thus obtaining a lattice as proved in lemma 6.

Lemma 6. The set of closure operators over P(P) equipped with the order defined in
8 is a lattice.

Lemma 7. Given two closure operators overP(P),"1 and"2, and two security levels
l1, l2 ∈P(P), such that "1 ⊑"2 and"1(l1) ⊆"1(l2), then "2(l1) ⊆"2(l2).

The proofs of lemmas 6 and 7 shall be omitted since they are similar to the proofs
of the corresponding lemmas in the preceeding section: 5 and 4.

Given a set of principals P and a closure operator " ∶ P(P)→ P(P) over P(P),
the confidentiality lattice generated by" is:

L" = ("(P(P)),⊇) (9)

2.3 Specifying Integrity Policies
Confidentiality policies constrain who can read the secret data and therefore where
the secret data can flow to, hence the notion of flow function which assigns to each
principal the set of principals who can read his/her information. Complementarily,
one can assign to each principal the set of principals who ‘trust him to be a reliable
source’. This kind of policy is deemed an integrity policy [5]. That is, an integrity
policy constrain who can write the data and thus where the data may have come from.

Again, integrity policies shall be expressed as closure operators over a given set of
security principals. Given a set P of principals, an integrity level is any subset l of P.

7

Thus, the integrity level P corresponds to those variables who can be written by every
principal, whereas ∅ corresponds to those variables that no one can change.

Clearly, flow functions can be used to specify integrity policies. However, they
must be interpreted in a complementary way: if q ∈ !(p), then principal q is allowed to
change information belonging to principal p and therefore, in this sense, information
belonging to principal p does also belong to principal q. Analogously, if instead of
considering flow functions, one considers flow operators the same interpretation holds.

For instance, when interpreted as an integrity policy, the flow policy stated in ex-
ample 1 settles that the parents can change all information belonging to their son (all
the information that belongs to the son also belongs to his parents). Similarly, taken as
an integrity policy, the flow operator stated in example 2 establishes that all the infor-
mation belonging to the son which is mother can change may also be changed by his
father and vice-versa.

As observed in [14], “this style of integrity policy can be defined formally using
the same definition of noninterference used for confidentiality”. However, using the
same defininition of noninterference for confidentiality and integrity, requires ordering
integrity levels under subset inclusion (and not under reverse subset inclusion as hap-
pened with confidentiality levels). Therefore, given an integrity policy generated by
a closure operator " ∶ P(P)→ P(P), the lattice of integrity levels generated by " is
defined to be: L" = ("(P(P)),⊆) (10)

3 Trace Noninterference
Vopano et al introduced in [23] a type system for enforcing non-interference. However,
as observed in [23], this type system enforces a much stronger property than plain
noninterference [10]. This particular version of noninterference shall be henceforth
referred to as trace noninterference.

This section presents a formal definition of trace noninterference (in definition 5),
as well as the usual type system for enforcing trace noninterference (in definition 6).
Both are specified for arbitrary security lattices. As such, both can be instantiated
for confidentiality and integrity lattices generated by closure operators as discussed in
previous sections.

This report uses a simple WHILE language (presented in definition 1). Its semantics
(presented in definition 2), though fairly standard, is borrowed from [25].

Definition 1 (Model Language).

c ∶∶= skip ∣ while b do c ∣ v ∶= e ∣∣ if b then c1 else c2 ∣ c1;c2
Definition 2 (Operational Semantics).

8

< v ∶= e,M > v→ < skip,M[v↦M(e)] >< i f b then c1 else c2,M > ⋅→ < c1,M > if M(b) = true< i f b then c1 else c2,M > ⋅→ < c2,M > if M(b) = f alse<while b do c,M > ⋅→ < c;while b do c,M > if M(b) = true<while b do c,M > ⋅→ < skip,M > if M(b) = f alse< skip;c2,M > #→ < c2,M >< c1;c2,M > #→ < c′1;c2,M′ > if < c1,M > #→< c′1,M′ >
The operational semantics defined in 2 is a structural operational semantics. Each

configuration < c,M > consists of a program c and a memory M. Each transition< c,M > #→< c′,M′ > from configuration < c,M > to configuration < c ′,M′ > is annotated
with an event #, which is either a ⋅, indicating that no assignment occurred during the
corresponding transition step, or a given variable v, indicating that v has been updated.
Terminal configurations have the form < skip,M >.

The relation→ is obtained from #→ by erasing the annotated event. A configuration< c,M > is said to converge, if there is a memoryM ′ such that < c,M >→∗< skip,M′ >,
written < c,M >⇓M′, where→∗ denotes the reflexive transitive closure of→, otherwise
it is said to diverge. WhenM′ is unimportant it can be omitted, thus writing < c,M >⇓.

The trace of the execution of configuration < c,M >, denoted Trace(< c,M >), is
the sequence of configurations:

< c0,M0 >#0→< c1,M1 >#1→⋯ < ci,Mi >#i→⋯ (11)

Definition 3 (l-projection of a trace). For any trace t, given an arbitrary security lat-
tice L = (L,⊑,⊔,⊓,⊺,<), a security labelling $ ∶Var→ L and a security level l ∈ L, the
l-projection of the trace t, written t ∣$,Ll , where:

t =< c0,M0 >#0→< c1,M1 >#1→⋯ < ci,Mi >#i→⋯
is the sequence of (l-restrictions), of memories:

m =M0∣$,Ll ,Mi1 ∣$,Ll ,Mi2 ∣$,Ll ,⋯
such that 0 < i1 < i2 <⋯ and for every transition < c j,Mj ># j→< c j+1,Mj+1 > in t, if # j
corresponds t a variable and $(# j) ⊑ l, then j+1 = ik for some k, and for every ik in m
there is a j such that j+1 = ik.

In definition 3, the restriction M∣$,Ll of memory M to security level l with respect
to security labelling $ is defined by restricting the mapping (correspondign to memory
M) to variables whose security level is at or below l.

If two memories (or traces) are equal at a certain security level l ∈ L, they are said
to be indistinguishable at level l. Accordingly, definition 4 lifts indistinguishability
at given level l from memories (and thus traces) to configurations. Notice that weak
indistinguishability is termination insensitive because it deems a diverging configura-
tion weakly indistinguishable from any other. Trace noninterference is introduced in
defintion 5. Informally, a program is said to verify trace noninterference if, given two

9

memories indistinguishable at level l, the execution traces corresponding to execution
of the program on each memory are also weakly indistinguishable up to l.

Definition 4 (Weak Indistinguishability). Given a security lattice L and a security la-
belling $ ∶Var→ L, two confiturations < c1,M1 > and < c2,M2 > are said to be weakly
indistinguishable up to the security level l (written < c1,M1 >≈$,Ll < c2,M2 >) if when-
ever their corresponding traces (t1 = Trace(< c1,M1 >) and t2 = Trace(< c2,M2 >))
terminate:

t1∣$,Ll = t2∣$,Ll
Definition 5 (Trace non-interence). Given a security lattice, L = (L,⊑,⊔,⊓,⊺,<), a
security labelling $ ∶ Var→ L and a program c, we say that c verifies non-interference
with respect to $ and L, which is denoted by $ ⊧L c, if:∀l,M1,M2.M1 =l M2⇒< c,M1 >≈$,Ll < c,M2 >
3.1 A type system for trace noninterference
Definition 6 presents the classical type system for enforcing noninterference [23]. Each
typing judgement has the form $ ⊢L c ∶ l where l corresponds to the writing effect of
c, that is: the greatest lower bound on the security level of the variables updated in c.

Definition 6 (Volpano-Smith-Irvine Type System).

SKIP
$ ⊢L skip ∶ ⊺

ASSIGN
le ⊑ $(x) le =⊓y∈vars(e)$(y)

$ ⊢L x ∶= e ∶ $(x)
SEQ

$ ⊢" c1 ∶ l1
$ ⊢" c2 ∶ l2

$ ⊢" c1;c2 ∶ l1⊓ l2
IF

lb =⊓y∈vars(b)$(y)
$(b) ⊑ l1⊓ l2 $ ⊢L c1 ∶ l1

$ ⊢L c2 ∶ l2
$ ⊢L if b then c1 else c2 ∶ l1⊓ l2

WHILE
$ ⊢L c ∶ l lb =⊓y∈vars(b)$(y)

lb ⊑ l
$ ⊢L while b do c ∶ l

Lemma 8 (Soundness of the Type System). Given a security lattice,L=(L,⊑,⊔,⊓,⊺,<),
a security labelling $ ∶ Var→ L and a program c, if there is a security level l ∈ L such
that $ ⊢L c ∶ l then $ ⊧L c.

Lemma 8 states that the Volpano et al type system is sound with respect to trace
noninterference. We shall omit the proof of 8, the interested reader is referred to [25].

10

3.2 Typing programs by comparing policies
The type system stated in definition 6 can be instantiated in order to certify a given
programwith respect to a given integrity policy (specified by a closure operator" I) and
a given confidentiality policy (specified by a closure operator"C), which is illustrated
in definition 7. In this case, the security lattice corresponds to the cartesian product of
the integrity lattice and the confidentiality lattice:L = L"I ×L"C = ("I(P(P))×"C(P(P)),(⊆,⊇)) (12)

Definition 7 (Volpano-Smith-Irvine type system for certifying confidentiality and in-
tegrity).

SKIP
$ ⊢L"I×L"C skip ∶ (P,∅)

ASSIGN

"I(⋃v∈vars(e)$(v)) ⊆"I($(x))
"C($(x)) ⊆ ⋂v∈vars(e)"C($(v))

$ ⊢L"I×L"C ∶ ("I($(x)),"C($(x)))
SEQ

$ ⊢L"I×L"C c1 ∶ (l1I , l1C)
$ ⊢L"I×L"C c2 ∶ (l2I , l2C)

$ ⊢L"I×L"C c1;c2 ∶ (l1I ∩ l2I ,"C(l1C ∪ l2C))
IF

"I(⋃v∈varsb(b)$(v)) ⊆ l1I ∩ l2I
"C(l1C ∪ l2C) ⊆ ⋂v∈vars(b)"C($(v)) $ ⊢L"I×L"C c1 ∶ (l1I , l1C)

$ ⊢L"I×L"C c2 ∶ (l2I , l2C)
$ ⊢L"I×L"C if b then c1 else c2 ∶ (l1I ∩ l2I ,"C(l1C ∪ l2C))

WHILE
$ ⊢L c ∶ (lI , lC) "I(⋃v∈vars(b)$(v)) ⊆ lI

lC ⊆ ⋂v∈vars(b)"C($(v))
$ ⊢L"I×L"C while b do c ∶ (lI, lC)

It is worth noting that when considering a scenario in which the security policies
under which a program is executed are determined by the site where the program is ex-
ecuted rather than by the programmer (a typical Web scenario) and in which a program
may be executed several times, it is much more useful to compute the strictest security
policies to which the program complies (or to verify them, if they are provided with
the program) rather than just checking if the program is compliant with the policy that
one wishes to enforce. The first approach allows the site to change its allowed policies
without having to reanalyse all the programs that were already so. Thus, it only has to
verify for each program if its corresponding policies are stricter than the new ones the
domain wishes to enforce.

Lemmas 9 and 10 prove that once found the closure operators corresponding to the
strictest integrity and confidentiality lattices to which a program complies, the problem
of verifying if this program is compliant with a given security policy (be it an integrity
or a confidentiality policy) amounts to a comparison between closure operators.

11

Lemma 9. For every program c, security labelling $ ∶ Var → P(P), and two con-
fidentiality policies generated by the closure operators "1

C,"
2
C respectively, such that

"1C ⊑"2C, if there is a security level l1 ⊆ P such that:
"1C ○$ ⊢L"1C c ∶ l1

Then, there is a security level l2 ⊆ P such that:∀v∈Var . l1 ⊆"1C($(v))⇒ l2 ⊆"2C($(v)) ∧ "2C ○$ ⊢L"2C c ∶ l2
Proof. Without loss of generality, the security levels corresponding to the writing effect
of the typing judgements are closed with respect to the closure operator associated with
the security lattice under which the command is being typed. We proceed by induction
on the derivation of "1 ○$ ⊢L

"1C
c ∶ l1.

• assign: x ∶= e.
"1C($(x)) ⊆ ⋂v∈vars(e)"1C($(v))∀v∈vars(e)."1C($(x)) ⊆"1C($(v))∀v∈vars(e)."2C($(x)) ⊆"2C($(v)) (Applying lemma 7)
"2C($(x)) ⊆ ⋂v∈vars(e)"2C($(v))

Suppose that for a given variable v ∈Var, l1 ⊆"1C($(v)), then:
"1C($(x)) ⊆"1C($(v))
"2C($(x)) ⊆"2C($(v)) (Applying lemma 7)
l2 ⊆"2C($(v))

• if: if b then c1 else c2. The hypothesis ensures that there are security lev-
els l′1 and and l′′1 such that:

"1C ○$ ⊢L"1C c1 ∶ l′1
"1C ○$ ⊢L"1C c2 ∶ l′′1

l1 ="1C(l′1∪ l′′1) l1 ⊆ ⋂v∈vars(b)"1C(v)
The induction hypothesis guarantees the existence two security levels l ′2 and l′′2
such that:∀v∈Var . l′1 ⊆"1C($(v))⇒ l′2 ⊆"2C($(v)) ∧ "2C ○$ ⊢L"2C c1 ∶ l′2∀v∈Var . l′′1 ⊆"1C($(v))⇒ l′′2 ⊆"2C($(v)) ∧ "2C ○$ ⊢L"2C c2 ∶ l′′2
Naturally, l′1∪ l′′1 ⊆"1C($(v))⇒ l′2∪ l′′2 ⊆"2C($(v)). Furthermore:

"1C(l′1∪ l′′1) ⊆"1C($(v))
l′1 ∪ l′′1 ⊆"1C($(v)) (Applying extensivity)
l′2 ∪ l′′2 ⊆"2C($(v))
"2C(l′2∪ l′′2) ⊆"2C($(v)) (Applying monotonocity and extensivity)

12

Thus proving the first claim. The proof of "2
C ○$ ⊢L"2C c ∶ l2 follows:

"1C(l′1∪ l′′1) ⊆⋂v∈vars(b)"1C($(v))∀v∈vars(b)"1C(l′1∪ l′′1) ⊆"1C($(v))∀v∈vars(b)"2C(l′2∪ l′′2) ⊆"2C($(v))
"2C(l′2∪ l′′2) ⊆⋂v∈vars(b)"2C($(v))

• seq: c1;c2. The hypothesis ensures that there are security levels l ′1 and and l′′1
such that:

"1C ○$ ⊢L"1C c1 ∶ l′1
"1C ○$ ⊢L"1C c2 ∶ l′′1

l1 = l′1∩ l′′1
The induction hypothesis guarantees the existence two security levels l ′2 and l′′2
such that:∀v∈Var . l′1 ⊆"1C($(v))⇒ l′2 ⊆"2C($(v)) ∧ "2C ○$ ⊢L"2C c1 ∶ l′2∀v∈Var . l′′1 ⊆"1C($(v))⇒ l′′2 ⊆"2C($(v)) ∧ "2C ○$ ⊢L"2C c2 ∶ l′′2
The first claim follows exactly in the same way as in the [if] case. The second
claim is immediate.

• while: while b do c. The hypothesis ensures that there is a security level l1
such that:

"1C ○$ ⊢L"1C c ∶ l1 l1 ⊆ ⋂v∈vars(b)"1C($(v))
The induction hypothesis guarantees the existence of a security level l 2 such that:∀v∈Var . l1 ⊆"1C($(v))⇒ l2 ⊆"2C($(v))

"2C ○$ ⊢L"2C c ∶ l2
The result follows immediately from the induction hypothesis.

Lemma 10. For every program c, security labelling$ ∶ Var→P(P), and two integrity
policies generated by the closure operators "1

I ,"
2
I respectively, such that "1I ⊑"2I , if

there is a security level l1 ⊆ P such that:
"1I ○$ ⊢L"1I c ∶ l1

Then, there is a security level l2 ⊆ P such that:
l1 ⊆ l2 ∧ "2I ○$ ⊢L"2I c ∶ l1

13

Proof. The proof proceeds by induction on the derivation " 1
I ○$ ⊢L"1I c ∶ l1. Without

loss of generality, the security levels corresponding to the writing effects of the typing
judgements are considered to be closed set under the corresponding closure operator.

• assign: x ∶= e. By hypothesis we know that"1
I ($(e)) ⊆"1I ($(x)). So, lemma 7

guarantees that: "2I ($(e)) ⊆"2I ($(x)). By hypothesis: "1I ($(x)) ⊆"2I ($(x)),
thus: l1 ⊆ l2.

• seq: c1;c2. The hypothesis ensures that there are security levels l ′1 and and l′′1
such that:

"1I ○$ ⊢L"1I c1 ∶ l′1
"1I ○$ ⊢L"1I c2 ∶ l′′1

l1 = l′1∩ l′′1
The induction hypothesis guarantees the existence two security levels l ′2 and l′′2
such that:

l′1 ⊆ l′2 ∧ "2I ○$ ⊢L"2I c1 ∶ l′2
l′′1 ⊆ l′′2 ∧ "2I ○$ ⊢L"2I c2 ∶ l′′2

It follows that: l′1∩ l′′1 ⊆ l′2∩ l′′2 .
• if: if b then c1 else c2. The hypothesis ensures that there are security lev-
els l′1 and and l′′1 such that:

"1I ○$ ⊢L"1I c1 ∶ l′1
"1I ○$ ⊢L"1I c2 ∶ l′′1

"1I (⋃v∈vars(b)$(v)) ⊆ l′1∩ l′′1
The induction hypothesis guarantees the existence two security levels l ′2 and l′′2
such that:

l′1 ⊆ l′2 ∧ "2I ○$ ⊢L"2I c1 ∶ l′2
l′′1 ⊆ l′′2 ∧ "2I ○$ ⊢L"2I c2 ∶ l′′2

It follows:

l′1∩ l′′1 ⊆ l′2∩ l′′2
"1I ($(b)) ⊆ l′1∩ l′′1 ="1I (l′1∩ l′′1) (hypothesis)
"1I ($(b)) ⊆"1I (l′2∩ l′′2) (monotonocity and transitivity)
"2I ($(b)) ⊆"2I (l′2∩ l′′2) = l′2∩ l′′2 (lemma 7)

• while: while b do c. The hypothesis ensures that there is a security level l1
such that:

"1I ○$ ⊢L"1I c ∶ l1
"1I ($(b)) ⊆ l1
14

The induction hypothesis guarantees the existence of a security level l 2 such that:

"2I ○$ ⊢L"2I c ∶ l2
l1 ⊆ l2

Thus applying lemma 7, it follows that:

"1I (l1) ⊆"1I (l2)
"1I ($(b)) ⊆"1I (l2)
"2I ($(b)) ⊆"2I (l2) = l2

4 Computing the strictest integrity policy
This section addresses the problem of computing the strictest integrity policy to which
a program complies. It presents a static analysis that, given a program c and an initial
security labelling $ ∶ Var→ P(P) computes the least (and thus the strictest) closure
operator"I such that:

"I ○$ ⊢L"I c ∶ lI (13)

for some security level lI ⊆P. As discussed in section 2, establishing a closure operator
over the original lattice requires reinterpreting the security labelling.

In this section, security lattices generated by additive closure operators are consid-
ered separately, since they can be represented by flow functions. As such, this section
is divided in two subsections. The first presents an analysis which considers all secu-
rity lattices generated by arbitrary closure operators. The second argues that it is not
possible to infer the strictest additive closure operator to which a program complies
since it may not exist.

4.1 Inferring the strictest integrity policy generated by a closure
operator

We shall now introduce a static analysis that given a program c, a security labelling $,
the security level of the context under which the program is being typed l and a given
closure operator"0I , returns a new closure operator"1

I such that c is typable under the
security lattice generated by "1

I and the security labelling "1
I ○$ in a security context

of level"1I (l).

15

Definition 8 (Strictest integrity policy generated by an arbitrary closure operator).

SKIP F$[[skip]](l,"0I) ="0I
ASSIGN

F$[[x ∶= e]](l,"0I) ="1I
"1I (J) = { "0I (J) if "0I ($(x)) ⊈"0I (J)

"0I ($(e)∪ l∪J) if "10($(x)) ⊆"0I (J)
SEQ F$[[c1;c2]](l,"0I) = F$[[c2]](l,F$[[c1]](l,"0I))
IF F$[[if b then c1 else c2]](l,"0I) = F$[[c2]]("0I ($(b)∪ l),F$[[c1]]("0I ($(b)∪ l),"0I))
WHILE

F$[[while b do c]](l,"0I) = lfp(H)
Where:
H(") = F$("($(b)∪ l),")⊔"0I

Since this analysis (definition 8) aims to infer the smallest closure operator that
generates an integrity policy which the program being analysed is compliant with, the
output of the analysis must be a closure operator. Therefore, Lemma 11 provides the
necessary motivation for the [assign] rule.

Lemma 11. Given a closure operator" overP(P) and two sets of principals X ,Y ⊆P,
the smallest closure operator"′ such that " ⊑"′ and "(X ∪Y) ⊆"′(X) is given by:

"′(J) = { "(J) if "(X) ⊈"(J)
"(J∪Y) if "(X) ⊆"(J)

Proof. The proof must be done in two steps: in the first step we shall prove that " ′ is
a closure operator, in the second steps we prove that it is indeed the samllest.

• Extensivity. For every set of principals J, J ⊆" ′(J). This follows from the fact
that " is a closure operator.

• Monotonocity. Consider two sets of principals P1,P2 ⊆ P, such that P1 ⊆ P2. If
"(X) ⊈"(P1), then:
"′(P1) ="(P1)
"(P2) ⊆"′(P2)
"′(P1) ⊆"(P2) ⊆"′(P2) (applying transitivity and the monotonocity of")

If "(X) ⊆"(P1), then it follows by transitivity that: "(X) ⊆"(P2). So:
"′(P1) ="(P1∪Y)
"′(P2) ="(P2∪Y)

Applying the monotonocity of ": "(P1∪Y) ⊆"(P2∪Y).
16

• Idempotence. For any given set of principals J ⊆P: " ′("′(J)) ="′(J). Suppose
"(X) ⊈"(J):

"′(J) ="(J)
"(X) ⊈"′(J)
"′("′(J)) ="′(J) ="(J)

Suppose"(X) ⊆"(J):
"′(J) ="(J∪Y)
"(J) ⊆"′(J)
"(X) ⊆"′(J)
"′("′(J)) ="′(J∪Y)
"(X) ⊆"(J∪Y)
"′("′(J)) ="′(J∪Y) ="(J∪Y ∪Y) ="(J∪Y) ="′(J)

Before proceeding to second part of the proof, we will argue that if Y ⊆ "(X), then
"′ =". That is, for every set of principals J: " ′(J) ="(J). If "(X) ⊆"(J), then:

"′(J) ="(J∪Y)
Y ⊆"(X) ⊆"(J)
J ⊆"(J)
J∪Y ⊆"(J)
"(J∪Y) ⊆"("(J)) ="(J) (by monotonocity and idempotence of ")

It only remains to prove that "′ is the smallest closure operator which verifies: " ⊑"′
and "(X ∪Y) ⊆"′(X). So, we shall assume that there is a closure operator " ′′ and a
set of principals J such that:

" ⊑"′′
"(X ∪Y) ⊆"′′(X)
"′′(J) ⊂"′(J)

Clearly, it must be the case that Y ⊈ "(X), otherwise "′ = " which contradicts the
assumption. Also, "(X) ⊆"(J), otherwise "′(J) ="(J) which contradicts the hy-
pothesis. So:

"(X) ⊆"(J)⇒"′′(X) ⊆"′′(J) (Applying lemma 7)
"′′(J) ⊂"′(J)⇔"′′(J) ⊂"(J∪Y)
"(X ∪Y)∪"′′(X)⇒Y ⊆"′′(X)⇒Y ⊆"′′(J)
J ⊆"′′(J)
J∪Y ⊆"′′(J)⇒"′′(J∪Y) ⊆"′′(J)⇒"(J∪Y) ⊆"′′(J) (Contradiction)

Lemma 12 guarantees that the analysis presented in Definition 8 is well-defined
(in the sense that each input yiels a unique output), whereas Lemma 13 states that the
output of the analysis is always a closure operator.

17

Lemma 12 (Existence and Monotonocity of the Analysis). For any program c, secu-
rity labelling $ ∶ Var→P(P) the following holds:

• For every security level l ⊆ P and closure operator "0
I , F$[[c]](l,"0I) is well

defined.

• F$[[c]] is monotone.
Proof. We proceed by induction on the structure of c.

• skip: skip.F$[[skip]](l,"0I) ="0I , so both claims hold automatically.
• assign: x ∶= e.F$[[x ∶= e]](l,"0I) is clearly uniquely defined.
Suppose that l1 ⊆ l2 and "1I ⊑ "2I , we must show that for every security level
J ⊆ P:

F$[[x:=e]](l1,"1I)(J) ⊆F$[[x:=e]](l2,"2I)(J).
If "1I ($(x)) ⊈"1I (J), then the result follows immediately.
If "1I ($(x)) ⊆"1I (J), then lemma 7 guarantees that "2

I ($(x)) ⊆"2I (J) and the
result also follows.

• seq: c1;c2.
The uniqueness ofF$[[c2]](l,F$[[c1]](l,"0I)) follows directly from the induc-
tion hypothesis.

Suppose that l1 ⊆ l2 and "1I ⊑"2I , then applying the induction hypothesis:F$[[c1]](l1,"1I) ⊑F$[[c1]](l2,"2I)
Applying the induction hypothesis yet again:

F$[[c2]](l1,F$[[c1]](l1,"1I)) ⊑F$[[c2]](l2,F$[[c1]](l2,"2I))
• if: if b then c1 else c2.
Applying the induction hypothesis one can easily check thatF $[[if b then c1 else c2]](l,"0I)
is uniquely defined.

Suppose that l1 ⊆ l2 and "1I ⊑"2I , then:
$(b)∪ l1 ⊆ $(b)∪ l2 since: l1 ⊆ l2
"1I ($(b)∪ l1) ⊆"2I ($(b)∪ l1) since: "1I ⊑"2I
"2I ($(b)∪ l1) ⊆"2I ($(b)∪ l2)
"1I ($(b)∪ l1) ⊆"2I ($(b)∪ l2) by transitivity

18

Establishing:
l′1 ="1I ($(b)∪ l1)
l′2 ="2I ($(b)∪ l2)
l′1 ⊆ l′2

Applying the induction hypothesis:

F$[[c1]](l′1,"1I) ⊑F$[[c1]](l′2,"2I)F$[[c2]](l′1,F$[[c1]](l′1,"1I)) ⊑F$[[c2]](l′2,F$[[c1]](l′2,"2I))
• while: while b do c.
The induction hypothesis guarantees that F$[[c]] exists and is monotone. As
such, the existence of the least fixed point follows from Kleen’s theorem.

It remains to prove the monotonocity claim. Thus, consider two security levels
l1, l2 ⊆P and two flow functions"1

I and"2I such that: l1 ⊆ l2 and"1I ⊑"2I , which
give rise to two distinct operators on flow operators.

H1(") = F$[[c]]("($(b)∪ l1),")⊔"1I
H2(") = F$[[c]]("($(b)∪ l2),")⊔"2I

We shall now prove the following statement:

∀k∈N .Hk
1(<) ⊑ lfp(H2)

by induction on k.

– k = 0. < ⊑ lfp(H2).
– Applying the induction hypothesis: H k

1(<) ⊑ lfp(H2).
Hk+1
1 (<) =H1(Hk

1(<)) = F$[[c]](Hk
1(<)($(b)∪ l,Hk

1(<))⊔"1I
The outer induction hypothesis guarantees that F$[[c]] is monotone. So:F$[[c]](Hk

1(<)($(b)∪l1),Hk
1(<))⊔"1I ⊑F$[[c]](lfp(H2)($(b)∪l2), lfp(H2))⊔"2I

Thus:
Hk+1
1 (<) ⊑H2(lfp(H2)) = lfp(H2)

The result now follows from the fact that the lattice of closure operators over a
given finite set of principals is also finite.

Lemma 13. For any program c, security labelling $ ∶ Var → P(P), security level
l ⊆ P and closure operator"0I , such that:

"1I = F$[[c]](l,"0I)
Then: "1I is a closure operator.

19

Proof. The proof proceeds by induction on the structure of c.

• skip: skip.F$[[skip]](l,"0I) ="0I . Thus the claim follows immediately.
• assign: x ∶= e.
"1I = F$[[x ∶= e]](l,"0I)
Assuming that "I

0 is a closure operator:

– Extensiveness: It suffices to remark that:

J ⊆"0I (J)
J ⊆"0I ($(e)∪ l∪J).

Thus J ⊆"1I (J).
– Monotonocity: Consider two security levels J1,J2 ⊆ P, such that J1 ⊆ J2. If
"0I ($(x)) ⊈"0I (J1), the result immediately follows. If"0

I ($(x)) ⊆"0I (J1),
then"0I ($(x))⊆"0I (J2) (since"0I (J1)⊆"0I (J2)), which implies that"1I (J1)⊆
"1I (J2).

– Idempotence: One must prove that for any J ⊆ P, "1
I ("1I (J)) ⊆ "1I (J).

The converse side follows from monotonocity and extensivity.
Suppose"0I ($(x)) ⊈"0I (J). Then:

"1I (J) ="0I (J)
"0I ($(x)) ⊈"0I (J) ="0I ("0I (J))
"1I ("1I (J)) ="1I ("0I (J)) ="0I ("0I (J)) ="0I (J)

Suppose"0I ($(x)) ⊆"0I (J):
"1I (J) ="0I ($(e)∪ l∪J)
J ⊆ J∪ l∪$(e)⇒"0I (J) ⊆"0I (J∪ l∪$(e))⇒"0I (J) ⊆"0I ("0I (J∪ l∪$(e)))
"1I ("1I (J)) ="1I ("0I ($(e)∪ l∪J))
"1I ("1I (J)) ="0I ($(e)∪ l∪J)

• seq: c1;c2.
Let us assume that "0I is a closure operator. Applying the induction hypothesis
we get that:

"1I = F$[[c1]](l,"0I)
is a closure operator. So one may apply the induction hypothesis yet again and
thus conclude that:

"2I = F$[[c2]](l,"1I)
is also a closure operator.

• if: if b then c1 else c2.
Assume that "0I is a closure operator and that lb ="0I ($(b)∪ l). Thus, applying
the induction hypothesis:

20

– F$[[c1]](lb,"0I) is a closure operator.
– F$[[c1]](lb,F$[[c2]](lb,"0I)) is a closure operator.

• while: while b do c.
The induction hypothesis guarantees that for any given security level l ⊆ P and
closure opertor"I : F$[[c]](l,"I) is a closure operator.
Since: F$[[while b do c]](l,"I) =⊔k∈N {Hk(<)}

H(") = F$[[c]]("(l∪$(b)),")⊔"I

We now proceed by induction on k.

– k = 0. < is a closure operator since it assigns to every security level the
empty set.

– The induction hypothesis guarantees that: H k(<) is a closure operator. Ap-
plying the exterior induction hypothesis, one gets that H k+1(<) is also a
closure operator.

The result now follows from the fact that the lattice of closure operators over a
given finite set of principals is also finite.

Lemmas 11 and 14 clarify how the analysis works: it systematically raises the
closure operator given as input in order to find the smallest closure operator that types
the instruction being analysed.

Lemma 14 (Extensivity of the analysis). Given a program c, a security labelling $ ∶
Var→ P(P), a security level l ⊆ P, a closure operator "0

I on P(P) and an arbitrary
set of principals J, then:

"0I (J) ⊆"1I (J)
where "1I (J) = F$[[c]](l,"0I).
Proof. The proof proceeds by induction on the structure of c.

• skip: skip.
"0I (J) ⊆"0I (J) ="1I (J).

• assign: x ∶= e.
Observing that:

"0I (J) ⊆"0I (J)
"0I (J) ⊆"0I (J∪$(e)∪ l)

one can conclude: "0
I (J) ⊆"1I (J).

• seq: c1;c2.
Applying the induction hypothesis: "0

I (J) ⊆F$[[c1]](l,"0I)(J).
Applying the induction hypothesis again: F$[[c1]](l,"0I)(J)⊆F$[[c2]](l,F$[[c2]](l,"0I))(J)
The result now follows from transitivity.

21

• if: if b then c1 else c2.
The result follows in the same way as in the case of [seq].

• while: while b do c.
"1I =⊔k∈N {Hk(<)}⊔"0I . We will now show by induction on k that for any set
of principals J ′ ⊆ P, "0I (J′) ⊆Hk(<)(J′).
– k = 0. H0(<) ="0I .
– The induction hypothesis ensures that: "0

I (J′) ⊆Hk(<)(J′).
Hk+1(<)(J′) = F$[[c]](l,Hk(<))(J′).
The exterior induction hypothesis implies that:
Hk(<))(J′) ⊆Hk+1(<)(J′). The result now follows by transitivity.

Lemma 15 guarantees that the output of the analysis allows typing the program
being analysed, whereas Theorem 1 guarantees that it is in fact the lowest closure
operator that allows typing the program.

Lemma 15 (Soundness). Given a program c, a security labelling $ ∶ Var → P(P),
security level l ⊆ P and closure operator"0

I ∶P(P)→P(P) such that:F$[[c]](l0,"0I) ="1I
Then there is a security level l1 ⊆ P such that "0I (l0) ⊆ l1 and $○"1I ⊢L"1I c ∶ l1.
Proof. Without loss of generality, the writing effects of the typing judgements are al-
ways considered to be closed sets under the closure operator of the corresponding se-
curity lattice. The proof proceeds by induction on the structure of c.

• skip: skip.F$[[skip]](l0,"0I) ="0I .
$○"0I ⊢L"0I skip ∶"0I (P).
l0 ⊆ P⇒"0I (l0) ⊆"0I (P) = P

• assign: x ∶= e.F$[[x ∶= e]](l0,"0I) ="1I .
"1I ($(e)) ⊆"0I ($(e)∪ l) ⊆"0I ($(x)∪ l∪$(e)) ="1I ($(x))
As such: $○"1I ⊢L"1I x ∶= e ∶"1I ($(x)).
Naturally: "0I (l) ⊆"0I (l∪$(e)∪$(x)) ="1I ($(x)).

• seq: c1;c2.F$[[c1;c2]](l0,"0I) = F$[[c2]](l0,F$[[c1]](l0,"0I)). Applying the induction
hypothesis:

"1I = F$[[c1]](l0,"0I)
$○"1I ⊢L"1I c1 ∶ l1
"0I (l0) ⊆ l1

22

Applyng the induction hypothesis again:

"2I = F$[[c2]](l0,"1I)
$○"2I ⊢L"2I c2 ∶ l′2
"0I (l0) ⊆ l′2

Lemma 14 guarantees that "1
I ⊑ "2I . As such, applying lemma 10, one may

conclude that:
$○"2I ⊢L"2I c1 ∶ l′′2
l1 ⊆ l′′2

It follows that:
$○"2I ⊢L"2I c1;c2 ∶ l′2 ∩ l′′2
"0I (l0) ⊆ l1 ⊆ l′′2
"0I (l0) ⊆ l′2
"0I (l0) ⊆ l′2∩ l′′2

• if: if b then c1 else c2.F$[[if b then c1 else c2]](l0,"0I) = F$[[c2]](lb,F$[[c1]](lb,"0I)).
lb ="0I ($(b)∪ l0)
Applying the induction hypothesis:

"1I = F$[[c1]]("0I ($(b)∪ l0),"0I)
$○"1I ⊢L"1I c1 ∶ l1
"0I ($(b)∪ l0) ⊆ l1

Applying the induction hypothesis yet again:

"2I = F$[[c2]]("0I ($(b)∪ l0)),"1I)
$○"2I ⊢L"2I c2 ∶ l′2
"1I ("0I ($(b)∪ l0)) ⊆ l′2

Lemma 14 guarantees that "1
I ⊑ "2I . As such, applying lemma 10, one may

conclude that:
$○"2I ⊢L"2I c1 ∶ l′′2
l1 ⊆ l′′2

It follows that:

$○"2I ⊢L"2I if b then c1 else c2 ∶ l′2∩ l′′2
"1I ("0I ($(b)∪ l0)) ⊆ l′2⇒"2I ($(b)) ⊆ l′2
"0I ($(b)∪ l0) ⊆ l1 ⊆ l′′2 ⇒"2I ($(b)) ⊆ l′′2
"2I ($(b)) ⊆ l′2∩ l′′2

23

• while: while b do c.
"1I = F$[[c]]("1I (l0∪$(b)),"1I)⊔"0I .
The induction hypothesis may be applied:

"1I ○$ ⊢L"1I c ∶ l1
"1I ("1I (l0∪$(b))) ⊆ l1⇒"1I (l0∪$(b)) ⊆ l1

Thus: "1I ○$ ⊢L"1I while b do c ∶ l1.
Theorem 1 (Optimality of the analysis). Given a program c, a security labelling $, a
security level l1 ⊆ P and closure operator "0I on P(P) such that:F$[[c]](l1,"0I) ="1I
If there is a closure operator"2I and a security level l2 ⊆ P such that:

"2I ○$ ⊢L"2I c ∶ l2
"0I ⊑"2I l1 ⊆ l2

Then: "1I ⊆"2I .
Proof. The proof proceeds by induction on the structure of c.

• skip: skip.F$[[skip]](l1,"0I) ="0I ⊑"2I
• assign: x ∶= e.F$[[x ∶= e]](l1,"0I) ="1I .
Lemma 11 guarantees that "1

I is the smallest closure operator such that:

"0I ⊑"1I "0I ($(x)∪$(e)∪ l1) ⊆"1I ($(x))
Since "2I ○$ ⊢L"2I x ∶= e ∶"2I ($(x)), it follows that:

"2I ($(e)) ⊆"2I ($(x)) l1 ⊆"2I ($(x))
As such: "2I ($(x)∪$(e)∪ l1) ⊆"2I ($(x)), which implies that:

"0I ($(x)∪$(e)∪ l1) ⊆"2I ($(x))
• seq: c1;c2.F$[[c1;c2]](l1,"0I) = F$[[c2]](l1,F$[[c1]](l1,"0I)). Suppose that there is a
closure operator"2I such that:

"2I ○$ ⊢L"2I c1;c2 ∶ l2 "0I ⊑"2I l1 ⊆ l2
24

Then, there must exist two sets of principals l ′2, l′′2 ⊆ P such that:
"2I ○$ ⊢L"2I c1 ∶ l′2 "2I ○$ ⊢L"2I c2 ∶ l′′2 l2 = l′2 ∩ l′′2

As such observing that:

"11I =F$[[c1]](l1,"0I) "0I ⊑"2I "2I ○$ ⊢L"2I c1 ∶ l′2 l1 ⊆ l′2
It is possible to apply the induction hypothesis and conclude that: " 11

I ⊑ "2I .
Again, observing that:

"12I = F$[[c2]](l1,"11I) "11I ⊑"2I "2I ○$ ⊢L"2I c1 ∶ l′′2 l1 ⊆ l′′2
It is possible to apply the induction hypothesis and conclude that: " 12

I ⊑"2I .
• if: if b then c1 else c2.
Suppose that there is a closure operator"2

I such that:

"2I ○$ ⊢L"2I if b then c1 else c2 ∶ l2 "0I ⊑"2I l1 ⊆ l2
Then, there must exist two sets of principals l ′2, l′′2 ⊆ P such that:

"2I ○$ ⊢L"2I c1 ∶ l′2 "2I ○$ ⊢L"2I c2 ∶ l′′2 "2I ($(b)) ⊆ l2 l2 = l′2∩ l′′2
It is clear that: "0I ($(b)∪ l1) ⊆ l′2 ∩ l′′2 . Thus, observing that:
"11I =F$[[c1]]("0I (l1∪$(b)),"0I) "0I ⊑"2I "2I ○$⊢L"2I c1 ∶ l′2 "0I (l1∪$(b))⊆ l′2
Applying the induction hypothesis, it follows that: "11

I ⊑"2I . Again, observing
that:

"12I =F$[[c1]]("0I (l1∪$(b)),"11I) "11I ⊑"2I "2I ○$⊢L"2I c2 ∶ l′′2 "0I (l1∪$(b))⊆ l′′2
Applying the induction hypothesis, it follows that: "12

I ⊑"2I .
• while: while b do c.
Suppose that there is a closure operator"2

I such that:

"2I ○$ ⊢L"2I while b do c ∶ l2 "0I ⊑"2I l1 ⊆ l2
Then, it must be the case that:

"2I ○$ ⊢L"2I c ∶ l2 "2I ($(b)) ⊆ l2
So it follows that: "0I ($(b)∪ l1) ⊆ l2. As such, one can apply the induction
hypothesis (as in the previous cases) and conclude that: " 1

I ⊑"2I .
25

Lemma 16. Given a program c, a security labelling $ ∶Var→ P(P), a security level
l ⊆ P and a closure operator"0

I on P(P) such that:
"0I ○$ ⊢L"0I c ∶ l0 l1 ⊆ l0

Then: F$[[c]](l1,"0I) ="0I
Proof. Observing that:

"1I = F$[[c]](l1,"0I)
"0I ○$ ⊢L"0I c ∶ l0
l1 ⊆ l0 "0I ⊑"0I

It is possible to apply theorem 1 and conclude that: " 1
I ⊑"0I . Applying lemma 14, it

follows that: "1I ="0I .
Lemma 17 (Idempotence of the analysis). Given a program c, a security labelling
$ ∶Var→P(P), a security level l ⊆P and a closure operator"0

I onP(P), the following
holds: F$[[c]](l,F$[[c]](l,"0I)) = F$[[c]](l,"0I)
Proof. This lemma is an immediate consequence of lemmas 16 and 15.

Lemma 18. Given a program c, a security labelling $ ∶Var → P(P) and a security
level l ⊆ P, the operator on closure operators defined by:

% ∶ (P(P)→P(P))→ (P(P)→P(P))
%(") = F$[[c]](l,")

is a closure operator.

Proof. This lemma is an immediate consequence of lemmas 17, 14 and 12.

4.2 Inferring the strictest integrity policy generated by a flow fun-
tion

This section aims to clarify that in many situations there may not exist a strictest flow
function (corresponding to an integrity policy) to which a program complies.

Section 4 clarifies how to compute the strictest closure operator (corresponding to
an integrity policy) to which a given program complies. Having inferred it (" I), the
problem of computing the strictest flow function corresponding to the same program
consists in finding the smallest additive closure operator (" ′I) such that:

"I ⊑"′I (14)

However,"′I may not exist, as shown in example 3.

26

Example 3. Consider a family composed by three elements: father (f), mother (m) and
son (s). The members of this family wish to implement an integrity policy such that the
father is allowed to change all information that both mother and son can change. This
integrity policy is expressed by the following lattice:

{∅}

{ f ,s} { f ,m}
{s} {m}{ f}

{ f ,m,s}
However there are two additive closure operators which are greater than the one which
the family members wish to enforce but are not related to each other.

{∅}

{ f ,s} { f ,m}
{s} { f}

{ f ,m,s}

{∅}

{ f ,s} { f ,m}
{ f} {m}

{ f ,m,s}
f → f m→ f ,m s→ s f → f m→m s→ f ,s

(1) (2)

Both the flow functions specified above generate closure operators which are less strict
than the original one. However, they are not comparable. As such, this example illus-
trates a situation in which it is not possible to compute the strictest flow function which
generates a closure operator that is less strict than the specified one.
Nevertheless, it is possible to compute an upper bound on the two flow functions spec-
ified above:

{∅}

{ f ,s} { f ,m}{ f}

{ f ,m,s}
27

f → f m→m, f s→ s, f

Example 3 suggests computing an upper bound on the set flow functions which
are generated by closure operators which are less strict than the specified one but not
comparable with each other. This upper bound can be directly computed from the
original closure operator as stated by lemma 19.

Lemma 19. Given a closure operator", define the following flow function:

!(p) ="(⋃{"(X)∩Xc∣p ∈ X}∪ p)
If there is a flow function !1 such that " ⊑ !∗1 and !1 ⊑ !, then there is also a flow
function !2 such that" ⊑ !∗2 , !2 ⊑ !, !1⊔!2 = ! and !1 ⋢ !2.
Proof. Suppose there is a flow function !1 such that: " ⊑ !∗1 and !1 ⊑ !. Then define
!2 in the following way:

!2(p) ="(⋃{"(X)∩Xc∩!1(p)∣p ∈ X}∪ p)

5 Dependency analysis
Amtoft et al [4] introduce a Hoare Logic to reason about input output independences
for simple WHILE programs. Ulteriorly, Hunt et al [13], study a family of flow-sensitive
type systems for tracking information flow in WHILE programs. “This family is indexed
by the choice of a flow lattice”. They further notice that if the flow lattice is chosen to
be the lattice P(Var), the corresponding flow-sensitive type system would match the
De Morgan dual of Amtoft et al Hoare style independence logic.

This section instantiates the analysis presented in section 4 for the lattice P(Var).
In a certain sense, this corresponds to inferring the strictest integrity policy to which a
program complies, takingVar as the set of principals.

5.1 Semantic Characterization
This section clarifies the notion of dependency used in this report. Informally, a pro-
gram is said to entail an independence between x and y (x does not depend on y), if
for any memories that only differ on y, the sequence of values assigned to x is the
same. Additionally, the definition of independence which we propose is termination
insensitive since it only considers converging configurations.

Definition 9. The X-projection of the trace t, written t ∣X , where X ⊆Var and:
t = ⟨c0,M0⟩ #0→ ⟨c1,M1⟩ #1→⋯⟨ci,Mi⟩ #i→⋯

is the sequence of memories:

m =M0∣X ,Mi1 ∣X ,Mi2 ∣X ,⋯
28

Such that: 0 < i1 < i2 <⋯; for every transition ⟨c j,Mj⟩ # j→ ⟨c j+1,Mj+1⟩ in t, if # j = x
for some x ∈ X, then j = ik for some k; and for every ik in m there is a transition⟨c j,Mj⟩ # j→ ⟨c j+1,Mj+1⟩ in t such that j = ik and # j = x for some x ∈ X.

The restriction of memoryM to the variable set X ⊆Var is defined as the restriction
of the original mapping corresponding to M to the variables in X . In order to simplify
the notation, this report uses the abbreviationM1 =X M2 to denote that:∀v∈X ⋅M1(v) =M2(v) (15)

Definition 10. A program c is said to entail an independence between the sets of vari-
ables X ,Y ⊆Var (X does not depend on Y), which is denoted by c⊩ [X ∝Y], if:
∀M1,M2 ⋅ M1 =Var−Y M2∧< c,M1 >⇓ ∧ < c,M2 >⇓ ⇒ Trace(< c,M1 >)∣X = Trace(< c,M2 >)∣X
Closure operators and flow functions, which were introduced for confidentiality and

integrity analysis may also be used for dependency analysis. In this case, flow functions
are particularly useful, since they can be understood as dependency functions, that is,
functions which map each variable to the set of variables on which it depends. Given a
program c and a dependency function &, definition 11 specifies in which conditions c
is said to entail &.

Definition 11. A program c is said to entail a dependency function & (written c⊩ &)
if: ∀x ∈Var ∀Y ⊆Var ⋅ Y ⊆Var−&(x)⇒ c⊩ [x∝Y]

Clearly, in dependency analysis the security labelling which maps each variable x
to the corresponding sigleton set {x} plays a central role. Thus for all x ∈Var, $ 0(x) de f={x}.
Lemma 20. A program c satisfies trace noninterference with respect to the integrity
lattice generated by a given flow function & ∶Var→P(Var) and the security labelling
$0 ($0 ⊩L!∗ c) if and only, when taken as a dependency function, c entails & (c⊩ &).
Proof. For the direct side of the equivalence, suppose that: Y ⊆Var−&(x) for an arbi-
trary variable x and an arbitrary set of variables Y . Considering two memories,M 1,M2
such thatM1 =Var−Y M2:

M1 =Var−Y M2
M1 =&(x) M2 (since Y ⊆Var−&(x))
Trace(< c,M1 >)∣$0,L&∗&(x) = Trace(< c,M2 >)∣$0,L&∗&(x) (applying the hypothesis)
Trace(< c,M1 >)∣x = Trace(< c,M2 >)x

Both configurations are assumed to converge, otherwise they may not be considered.
For the converse side of the equivalence, suppose that program c entails a given de-
pendency function &, one has to prove that c verifies trace non-interference under the

29

integrity lattice generated by the closure operator &∗ and the security labelling $0. For
a given set of variables X ⊆ Var and two memories M1,M2 such that M1 =&∗(X) M2,< c,M1 >⇓ and < c,M2 >⇓:∀x∈&∗(X).&(x) ⊆ &∗(X)∀x∈&∗(X).Var−&∗(X) ⊆Var−&(x)∀x∈&∗(X).c⊩ [x∝Var−&∗(X)]∀x∈&∗(X).Trace < c,M1 > ∣x = Trace < c,M2 > ∣x

Trace < c,M1 > ∣&∗(X) = Trace < c,M2 > ∣&∗(X)
It is important to emphasize that lemma 11 requires & to be a flow function instead

of a general closure operator over P(Var) for the equivalence to hold. However, if,
instead of &, a general closure operator is considered, the direct side of the implication
still holds. As such, the integrity calculus introduced in definition 8 can be used to
infer the smallest set of trace dependencies entailed by a given program.

5.2 Integrity analysis as a calculus of dependencies
In spite of being possible to instantiate the integrity analysis presented in definition 8
directly as a calculus of dependencies, when the input of a dependency analysis is an
additive closure operator over P(P), Lemma 21 establishes that the output is also an
additive closure operator. Since the smallest closure operator that can be considered
corresponds to the identity closure operator (which is additive), one can conclude that
dependency analysis can be formulated directly on flow functions instead of arbirary
closure operators. Therefore, the general integrity analysis presented in definition 8
can be simplified when instantiated for dependency analysis. Definition 12 presents
the corresponding calculus of trace dependencies.

Lemma 21. Given a program c, an additive closure opterator &0 ∶P(Var)→P(Var)
and a set X ⊆Var such that:

F$0[[c]](X ,&0) = &
Then, & is also an additive closure operator.

Proof. Lemma 13 guarantees that & is a closure operator, as such for all Y ⊆Var:
⋃
y∈Y &({y}) ⊆ &(Y)

It remains to show the converse inclusion:

&(Y) ⊆ ⋃
y∈Y &({y})

The proof proceeds by induction on the structure of c.

30

• skip: skip.F$0[[c]](X ,&0) = &0
Since &0 is an additive closure operator, the result follows.

• assign: x ∶= e.F$0[[x ∶= e]](X ,&0) = &.
&(Y) = { &0(Y) if &0({x}) ⊈ &0(Y)

&0(Y ∪X ∪vars(e)) if &0({x}) ⊆ &0(Y)
There are two cases two consider:

– &0({x}) ⊈ &0(Y). It follows that:
&(Y) = &0(Y) =⋃

y∈Y &0(y)
Clearly, for all y ∈Y , &0({x}) ⊈ &0({y}), thus:

&(Y) =⋃
y∈Y &0(y) =⋃y∈Y &(y)

– &0({x}) ⊆ &0(Y). There is a variable yk ∈ Y such that &0({x}) ⊆ &({yk}).
Thus:

&({yk}) = &0({yk}∪X ∪vars(e))
&(Y) = &0(Y ∪X ∪vars(e)) = &0(Y −{yk})∪&0({yk}∪X ∪vars(e))
&(Y) = &0(Y −{yk})∪&(yk)

Observing that for all v ∈Var $0({v}) ⊆ $({v}). It follows that:
&(Y) = &0(Y −{yk})∪&(yk) = ⎛⎝ ⋃

y∈Y−{yk}&0(y)⎞⎠∪&(yk) ⊆ ⋃y∈Y &(y)
• seq: c1;c2.F$0[[c1;c2]](X ,&0) = F$0[[c2]](X ,F$0[[c1]](X ,&0)).
The result follows immediately from the induction hypothesis.

• if: if b then c1 else c2.F$0[[if b then c1 else c2]](X ,&0)=F$0[[c2]](Xb),F$[[c1]](&0(Xb),&0)).
Xb = &0(X ∪vars(b))
The result follows immediately from the induction hypothesis.

• while: while b do c.

F$0[[while b do c]](X ,&0) =⊔k∈N {Hk(<)}
H(&) = F$0[[c]](&(X ∪vars(b)),&)⊔&0

The proof proceeds by induction on k.

– k=0. H0(<) = <.
31

– k+1. Hk+1(<) =H(Hk(<)) = F$0[[c]](&(X ∪vars(b)),Hk(<))⊔&0.
The inner induction hypothesis ensures that H k(<) is additive. The outer
induction hypothesis ensures that F$0[[c]](&(X ∪vars(b)),Hk(<)) is ad-
ditive. Thus, the result follows by noting that &0 is also assumed to be
additive.

Definition 12 (A calculus for trace dependencies).

SKIP D[[skip]](l,&0) = &0
ASSIGN

D[[x ∶= e]](X ,&0) = &1
&1(y) = { &0(y) if x ∉ &0(y)

&0(y)∪&∗0 (X ∪vars(e)) if x ∈ &0(y)
SEQ D[[c1;c2]](X ,&0) = D[[c2]](X ,D[[c1]](X ,&0))
IF

D[[if b then c1 else c2]](X ,&0) = D[[c2]](Xb,D[[c1]](Xb,&0))
Xb = &∗0 (vars(b)∪X

WHILE
D[[while b do c]](X ,&0) = lfp(H)
Where:
H(&) = D(&∗(vars(b)∪X ,&)⊔&0

5.3 Dependencies as Types
Section 5.2 argues that when instantiating integrity analysis for the lattice P(Var), if
the closure operator corresponding to the dependencies given as input is additive then
so is the closure operator corresponding to the output. As such, a simplified depen-
dency calculus that deals with flow functions instead of closure operators is introduced
in definition 12. This calculus of dependencies evinces the fact that a dependency
function can be also interpreted as a security labelling rather than a security lattice.
Lemma 22 formalizes this dual interpretation.

Lemma 22. Given a program c, a flow function& ∶Var→P(Var) and a set of variables
X, then the following holds:

$0 ⊢L&∗ c ∶ X⇔ & ⊢P(Var) c ∶ X
Proof. We prove the direct implication, the converse one is obtained in the exact same
way. The proof proceeds by induction on the struture of c.

32

• skip: skip.
$0 ⊢L&∗ skip ∶Var
& ⊢P(Var) c ∶Var.

• assign: x ∶= e.
The hypothesis ensures that:

&∗(⊔v∈vars(e)$0(v)) ⊆ &∗($0(x))⊔v∈vars(e)&(v) ⊆ &(x)
It follows that: & ⊢P(Var) c ∶ &(x).

• seq: c1;c2.
The hypothesis ensures that there are two sets of variables X1,X2 ⊆Var such that:

$0 ⊢L&∗ c1 ∶ X1
$0 ⊢L&∗ c2 ∶ X2

Applying the induction hypothesis:

& ⊢P(Var) c1 ∶ X1
& ⊢P(Var) c2 ∶ X2

It follows that: & ⊢P(Var) c1;c2 ∶ X1∩X2.
• if: if b then c1 else c2.
The hypothesis ensures that there are two sets of variables X1,X2 ⊆Var such that:

&∗(⋃v∈vars(b)$0(v)) ⊆ X1∩X2
$0 ⊢L&∗ c1 ∶ X1
$0 ⊢L&∗ c2 ∶ X2

As such, one may conclude that: ⋃v∈vars(b)&(v) ⊆ X1∩X2. Applying the induc-
tion hypothesis:

& ⊢P(Var) c1 ∶ X1
& ⊢P(Var) c2 ∶ X2

It follows that: & ⊢P(Var) if b then c1 else c2 ∶ X1∩X2.
• while: while b do c.
The hypothesis ensures that there is a set of variables X ⊆Var such that:

&∗(⋃v∈vars(b)$0(v)) ⊆ X
$0 ⊢L&∗ c ∶ X

Applying the induction hypothesis: & ⊢P(Var) c ∶ X and noticing that:
&∗(⋃

v∈vars(b)$0(v)) ⊆ X⇔ ⋃
v∈vars(b)&(v) ⊆ X

the result follows.

33

6 Connecting the Analysis
Given a security lattice L = (L,⊑,⊔,⊓,⊺,<) and a security labelling $, define the fol-
lowing functions:

#$ ∶P(Var)→L #$(X) =⊔{$(x) ∣x ∈ X}
'$ ∶L→P(Var) '$(l) = {x ∣ $(x) ⊑ l} (16)

Adopting a confidentiality point of view, given a set of variables X ⊆Var and a confi-
dentiality level l ∈ L, #$(X) denotes the security level at which all variables in X are
visible, whereas '$(l) denotes the set that comprises all variables that are visible at
level l.

Definition 13 (Galois Connection). Given two lattices L = (L,⊑L) andM= (M,⊑M)
and two functions # ∶ L→M and ' ∶M→ L, the tuple (L,#,(,M) is said to be a Galois
Connection between L andM if the following holds:

• # and ' are monotonic.

• ∀l∈L . l ⊑L '○#(l)
• ∀m∈M . #○ '(m) ⊑M m

Lemma 23 states that #$ and '$ form a Galois Connection [7] and Lemmas 24
and 25 state some useful properties of this particular Galois connection that will be
used in later sections.

Lemma 23. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<) and a security
labelling $ ∶Var→ L, (P(Var),#$,'$,L) where #$ and '$ are defined as above is a
Galois connection.

Proof.

• Monotonocity of #$ and '$. Consider two arbitrary sets X1,X2 ⊆Var and sup-
pose that X1 ⊆ X2, then it is clear that #$(X1) ⊑ #$(X2). Consider two arbitrary
security levels l1, l2 ∈ L and suppose l1 ⊑ l2, then it follows that '$(l1) ⊆ '$(l2).

• Consider an arbitrary set of variables X ⊆Var. '$ ○#$(X) can be rewritten in the
followin way:

'$ ○#$(X) = {x ∣ $(x) ⊑⊔{$(y) ∣ y ∈ X}}
Thus, X ⊆ '$ ○#$(X).

• Consider an arbitrary security level l ∈ L. #$ ○ '$(l) can be rewritten in the fol-
lowing way:

#$ ○'$(l) =⊔{$(x) ∣ x ∈ {y ∣ $(y) ⊑ l}}
Thus, #$ ○'$(l) ⊑ l.

34

Lemma 24. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<) and a labelling $ ∶Var→ L,
#$ ○ '$ ∶ L → L is a reduction operator and '$ ○#$ ∶ P(Var)→ P(Var) is a closure
operator, where #$ and '$ are defined as in equation 16.

Proof.

• '$ ○#$ is a closure operator. Lemma 23 guarantees that (P(Var),#$,'$,L) is a
Galois connection, so '$ ○#$ is clearly extensive. Moreover it is also monotonic
because it is the composition of monotonic functions. With respect to idempo-
tence, it suffices to notice that:

'$ ○#$('$ ○#$(l)) = '$(#$('$(#$(l))))
'$ ○#$('$ ○#$(l)) = '$ ○#$(l)

• #$ ○ '$ is a reduction operator. A reduction operator is a map from a set to
itself that is: monotonic, idempotent and reductive. Lemma 23 guarantees that(P(Var),#$,'$,L) is a Galois connection, so #$ ○'$ is clearly reductive. More-
over, it also monotonic because it is the composition of monotonic functions.
With respect to the third claim it suffices to note that for any Galois connection
#$ ○'$ ○#$ = #$, thus:

#$ ○'$(#$ ○ '$(l)) = #$('$(#$('$(l))))
#$ ○'$(#$ ○ '$(l)) = #$ ○'$(l)

Lemma 25. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<) and a labelling $ ∶Var→ L,
#$ is an additive functions ang '$ is a multiplicative function, , where #$ and '$ are
defined as in equation 16.

Proof.

• #$ is additive.

#$(X1∪X2) =⊔{$(y) ∣ y ∈ X1∪X2}
#$(X1∪X2) =⊔{$(y) ∣ y ∈ X1}⊔⊔{$(y) ∣ y ∈ X2}
#$(X1∪X2) = #$(X1)⊔#$(X2)

• '$ is multiplicative.

'$(l1⊓ l2) = {x ∣ $(x) ⊑ l1∩ l2}
'$(l1⊓ l2) = {x ∣ $(x) ⊑ l1}∩{x ∣ $(x) ⊑ l2}
'$(l1⊓ l2) = '$(l1)∩'$(l2)

35

6.1 Dependency Based Confidentiality Certification
Having explained that establishing a security labelling $ ∶ Var → L induces a Galois
connection between P(Var) and L, this section investigates how to make use of this
connection in order to obtain a necessary and sufficient condition for a program to be
deemed secure according to the Volpano et al type system.
Given a lattice L = (L,⊑,⊔,⊓,⊺,<) and a security labelling $, define the closure op-
erator "$ ∶ P(Var)→ P(Var), where "$ = '$ ○#$. Lemma 24 guarantees that "$ is
indeed a closure operator. Additionally, define the flow function &$ ∶ Var→ P(Var),
&$(x) = '$ ○#$({x}), for all x ∈Var. That is, for every variable x ∈Var:

&$(x) = '$(#$({x})) = {y ∈Var ∣ $(y) ⊑ $(x)} (17)

Naturally, since "$ is not necessarily additive, it follows that &∗$ ⊑ "$. &$ plays a
central role in certifying that a given program abides by a given confidentiality policy
as demonstrated in lemma 28, which states that a given a security labelling $ types a
program with respect to an arbitrary security lattice L if and only if the corresponding
dependency function &$ types the program with respect to the lattice P(Var).
Lemma 26. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a
security labelling $ ∶Var→ L and a security level l ∈ L such that $ ⊢L c ∶ l, then:

&$ ⊢P(Var) c ∶ '$(l)
Proof. The proof proceeds by induction on the derivation of $ ⊢L c ∶ l.

• skip: skip.
$ ⊢L skip ∶ ⊺.
&$ ⊢P(Var) skip ∶Var.
'$(⊺) = {y ∣ $(y) ⊑ ⊺} =Var.

• assign: x ∶= e.
Since $ ⊢L x:=e ∶ $(x), it follows that:

⊔v∈vars(e)$(v) ⊑ $(x)∀v∈vars(e) . #$(v) ⊑#$(x)∀v∈vars(e) . '$(#$(v)) ⊆ '$(#$(x))∀v∈vars(e) . &$(v) ⊆ &$(x))⋃v∈vars(e)&$(v) ⊆ &$(x)
As such: &$ ⊢P(Var) x ∶= e ∶ &$(x).
Additionally, the part of the claim which concerns the writing effect follows
since l = $(x), '$(l) = &$(x).

• seq: c1;c2.
The hypothesis ensures that there must be two security levels l1, l2 ∈ L such that:

$ ⊢L c1 ∶ l1 $ ⊢L c2 ∶ l2
36

Applying the induction hypothesis:

&$ ⊢P(Var) c1 ∶ '$(l1) &$ ⊢P(Var) c2 ∶ '$(l2)
Since '$ is multiplicative (lemma 25), it follows that '$(l1)∩'$(l2) = '$(l1⊓ l2).
Thus:

&$ ⊢P(Var) c1;c2 ∶ '$(l1⊓ l2)
• if: if b then c1 else c2.
The hypothesis ensures that there must be two security levels l1, l2 ∈ L such that:⊔v∈vars(b)$(v) ⊑ l1 ⊓ l2

$ ⊢L c1 ∶ l1
$ ⊢L c2 ∶ l2

Applying the induction hypothesis, it follows that:

&$ ⊢P(Var) c1 ∶ '$(l1) &$ ⊢P(Var) c2 ∶ '$(l2)
Noting that:

⊔v∈vars(b)$(v) ⊑ l1⊓ l2∀v∈vars(b) . $(v) ⊑ l1⊓ l2∀v∈vars(b) . #$(v) ⊑ l1 ⊓ l2∀v∈vars(b) . '$(#$(v)) ⊆ '$(l1⊓ l2)∀v∈vars(b) . &$(v) ⊆ '$(l1⊓ l2) = '$(l1)∩'$(l2)⋃v∈vars(b)&$(v) ⊆ '$(l1⊓ l2)
One may conclude: &$ ⊢P(Var) c1;c2 ∶ '$(l1⊓ l2)

• while: while b do c.
The hypothesis guarantees that there is a security level l ∈ L such that:⊔v∈vars(b)$(v) ⊑ l

$ ⊢L c ∶ l
Applying the induction hypothesis, it follows that: &$ ⊢P(Var) c ∶ '$(l). Observ-
ing that: ⊔v∈vars(b)$(v) ⊑ l∀v∈vars(b) . $(v) ⊑ l∀v∈vars(b) . #$(v) ⊑ l∀v∈vars(b) . &$(v) = '$(#$(v)) ⊆ '$(l)⋃v∈vars(b)&$(v) ⊆ '$(l)
It follows that: &$ ⊢P(Var) while b do c ∶ '$(l).

Lemma 27. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a
security labelling$ ∶Var→L and a set of variables X ⊆Var such that: &$ ⊢P(Var) c ∶X.
Then, there is a security level l ∈ L such that: $ ⊢L c ∶ l, where #$(X) ⊑ l.

37

Proof. The proof proceeds by induction on the derivation of & $ ⊢P(Var) c ∶ X .
• skip: skip.
&$ ⊢P(Var) skip ∶Var.
$ ⊢L skip ∶ ⊺.
It is always the case that #$(Var) ⊑ ⊺.

• assign: x ∶= e.
The hypothesis ensures that &$ ⊢P(Var) x ∶= e ∶ &$(x). Thus, it follows that:

∀v∈vars(e) . &$(v) ⊆ &$(x)∀v∈vars(e) . $(v) ⊑ $(x)⊔v∈vars(e) . $(v) ⊑ $(x)
With respect to the writing effect it suffices to note that:

#$(&$(x)) = #$('$(#$(x)))= #$(x)= $(x)
• seq: c1;c2.
The hypothesis ensures that there are two sets of variables X1,X2 ⊆Var such that:

&$ ⊢P(Var) c1 ∶ X1 &$ ⊢P(Var) c2 ∶ X2
Applying the induction hypothesis, one may conclude that there are two security
levels l1, l2 ∈ L such that:

#$(X1) ⊑ l1 $ ⊢L c1 ∶ l1
#$(X2) ⊑ l2 $ ⊢L c2 ∶ l2

It follows that: $ ⊢L c1 ∶ l1⊓ l2.
Since #$ is monotonic (lemma 23), #$(X1 ∩X2) ⊑ #$(X1)⊓#$(X2) and thus
#$(X1∩X2) ⊑ l1⊓ l2.

• if: if b then c1 else c2.
The hypothesis ensures that there are two sets of variables X1,X2 ⊆Var such that:

⋃v∈vars(b)&$(v) ⊆ X1∩X2
&$ ⊢P(Var) c1 ∶ X1
&$ ⊢P(Var) c2 ∶ X2

Apllying the induction hypothesis, one may conclude that there are two security
levels l1, l2 ∈ L such that:

#$(X1) ⊑ l1 $ ⊢L c1 ∶ l1
#$(X2) ⊑ l2 $ ⊢L c2 ∶ l2

38

Thus: ⋃v∈vars(b)&$(v) ⊆ X1∩X2∀v∈vars(b) . &$(v) = '$(#$({v})) ⊆ X1∩X2∀v∈vars(b) . $(v) = #$({v}) ⊑#$(X1∩X2)∀v∈vars(b) . $(v) ⊑ #$(X1)⊓#$(X2)∀v∈vars(b) . $(v) ⊑ l1⊓ l2⊔v∈vars(b)$(v) ⊑ l1⊓ l2
One may therefore conclude that: $ ⊢L if b then c1 else c2 ∶ l1 ⊓ l2. With
respect to the claim regrading the writing effect, it suffices to apply the same
reasoning as in [seq].

• while: while b do c.
The hypothesis ensures that there are a set of variables X ⊆Var such that:

⋃v∈vars(b)&$(v) ⊆ X
&$ ⊢P(Var) c ∶ X

The induction hypothesis guarantees that there is a security level l ∈ L such that:
#$(X) ⊑ l $ ⊢L c ∶ l

Thus: ⋃v∈vars(b)&$(v) ⊆ X∀v∈vars(b) . &$(v) ⊆ X∀v∈vars(b) . $(v) ⊑ #$(X)⊔v∈vars(b)$(v) ⊑ l
As such it follows that: $ ⊢L while b do c ∶ l.

Lemma 28. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a
security labelling $ ∶Var→ L, then the following equivalence holds:

∃l∈L . $ ⊢L c ∶ l⇔∃X⊆Var . &$ ⊢P(Var) c ∶ X
Proof. This lemma is an immediate consequence of lemmas 26 and 27.

Theorem 2 establishes a sufficient and necessary condition for a program to be
deemed secure. Informally, this condition states that a program is typable if and only
high variables do not depend on low variables.

Theorem 2. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a
security labelling $ ∶Var→ L then the following equivalence holds:

∃l∈L . $ ⊢L c ∶ l⇔∀x∈Var . $(x) =⊔{$(y) ∣ y ∈ &opt(x)}
Where &opt = D[[c]](∅,$0).

39

Proof. First, note that for any given flow function & the following equivalence holds:

∃X⊆Var . & ⊢P(Var) c ∶ X⇔ &opt = D[[c]](∅,$0) ⊑ &
For the direct side of this implication, suppose that there is a set of variables X ⊆Var
such that & ⊢P(Var) c ∶ X , then lemma 22 guarantees that $0 ⊢L&∗ c ∶ X . Thus, applying
theorem 1, it follows that &opt ⊑ &. Conversely, lemma 15 guarantees that there is a
set of variables X ′ ⊆Var such that $0 ⊢L&opt c ∶ X ′. Applying lemma 10, it follows that
there is a set of principals X ′′ ⊆ P such that X ′ ⊆ X ′′ and $0 ⊢L& c ∶ X ′′. Thus, applying
lemma 22 it follows that & ⊢P(P) c ∶ X ′′.
Lemma 28 states that:

∃l∈L . $ ⊢L c ∶ l⇔∃X⊆Var . &$ ⊢P(Var) c ∶ X
which, considering the equivalence established above entails the following:

∃l∈L . $ ⊢L c ∶ l⇔ &opt =D[[c]](∅,$0) ⊑ &$
Clearly:

&opt ⊑ &$⇔∀x∈X . &opt(x) ⊆ &$(x)
&opt ⊑ &$⇔∀x∈X . &opt(x) ⊆ {y ∣ $(y) ⊑ $(x)}
&opt ⊑ &$⇔∀x∈X . $(x) =⊔{$(y) ∣ y ∈ &opt(x)}

7 Inferring security labellings
This section considers the problem of, given a security lattice L = (L,⊑,⊔,⊓,⊺,<), a
security labelling $i ∶Var→ L and a program c, computing the lowest security labelling
$ such that:

$i ⊑ $⇔∀v∈Var . $i(v) ⊑ $(v)∃l ∈ L. $ ⊢L c ∶ l
Note that for any $i and program c, the security labelling which assigns every

variable to the highest security level verifies the two conditions stated above. Naturally,
the goal is to find the smallest one. Observe that when equipped with pointwise subset
inclusion as its partial order, the set of security labellings that map a given finite set of
variables to a given security lattice is a complete lattice.

This problem was already approached by Hunt et al in [13] using flow sensitive
type systems, where a fixed labelling is computed, but the program is modified in such
a way that each variable is assigned only once.

7.1 A calculus of fixed types
Given any two security labellings $1,$2 ∶Var→ L, definition 14 establishes a condition
that, when verified, guarantees that all programs typed under $ 1 are also typed under
$2.

40

Definition 14 (Type Subsumption). Given two security labellings $1,$2 ∶Var→ L, $1
is said to subsume $2 if the following holds:∀u,v∈Var . $1(u) ⊑ $1(v)⇒ $2(u) ⊑ $2(v)
Lemma 29. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, two security
labellings $1,$2 ∶ Var → L and a security level l1 ∈ L such that $1 ⊢L c ∶ l1 and $1
subsumes $2, then there is a security level l2 ∈ L such that l1 ⊑ l2, $2 ⊢L c ∶ l2 and∀v∈Var . $1(v) ⊑ l1⇒ $2(v) ⊑ l2.
Proof. The proof proceeds by induction on the structure of c.

• skip: skip.
$2 ⊢ skip ∶ ⊺.⊺ ⊑ ⊺.∀v∈Var . $(v) ⊑ ⊺⇒∀v∈Var . $(v) ⊑ ⊺.

• assign: x ∶= e.
The hypothesis guarantees that $1 ⊢ x ∶= e ∶ l1, so:

⊔v∈vars(e)$1(v) ⊑ $1(x)∀v∈vars(e)$1(v) ⊑ $1(x)∀v∈vars(e)$2(v) ⊑ $2(x)⊔v∈vars(e)$2(v) ⊑ $2(x)
Thus: $2 ⊢ x ∶= e ∶ $2(x). Clearly l1 ⊑ l2, since $1(x) ⊑ $2(x). Additionally,
suppose that for a variable v ∈Var, $(v)⊑ l1, the hypothesis ensures that $(v)⊑ l2
(since $1 subsumes $2).

• seq: c1;c2.
The hypothesis ensures that there are two security levels l1, l2 ∈ L such that $1 ⊢
x ∶=e ∶ l1 and $2 ⊢ x ∶=e ∶ l2. Thus applying the induction hypothesis, we conclude
that there must be two security levels l ′1, l′2 ∈ L such that:

l1 ⊑ l′1 $2 ⊢ c1 ∶ l′1 ∀v∈Var . $1(v) ⊑ l1⇒ $2(v) ⊑ l′1
l2 ⊑ l′2 $2 ⊢ c2 ∶ l′2 ∀v∈Var . $1(v) ⊑ l2⇒ $2(v) ⊑ l′2

It thus follows that:

l1⊓ l2 ⊑ l′1 ⊓ l′2 $2 ⊢ c1;c2 ∶ l′1⊓ l′2 ∀v∈Var . $1(v) ⊑ l1⊓ l2⇒ $2(v) ⊑ l′1⊓ l′2
• if: if b then c1 else c2.
The hypothesis ensures that there are two security levels l1, l2 ∈ L such that
$1 ⊢ c1 ∶ l1, $1 ⊢ c2 ∶ l2 and ⊔v∈vars(b)$1(v) ⊑ l1 ⊓ l2. Applying the induction
hypothesis:

l1 ⊑ l′1 $2 ⊢ c1 ∶ l′1 ∀v∈Var . $1(v) ⊑ l1⇒ $2(v) ⊑ l′1
l2 ⊑ l′2 $2 ⊢ c2 ∶ l′2 ∀v∈Var . $1(v) ⊑ l2⇒ $2(v) ⊑ l′2

41

Observing that:

⊔v∈vars(b)$1(v) ⊑ l1 ⊓ l2∀v∈vars(b) . $1(v) ⊑ l1∧$1(v) ⊑ l2∀v∈vars(b) . $2(v) ⊑ l′1∧$2(v) ⊑ l′2⊔v∈vars(b)$2(v) ⊑ l′1⊓ l′2
As such: $2 ⊢ if b then c1 else c2 ∶ l′1⊓ l′2. The remaining two claims follow
in the same way as in [seq].

• while: while b do c.
The hypothesis guarantees that there is a security level l1 ∈ L such that: $1 ⊢ c ∶ l1
and ⊔v∈vars(b)$(v) ⊑ l1. Applying the induction hypothesis, one may conclude
that there is a security level l2 ∈ L such that:

l1 ⊑ l2 $2 ⊢ c ∶ l2 ∀v∈Var . $1(v) ⊑ l1⇒ $2(v) ⊑ l2
Noting that: ⊔v∈vars(b)$1(v) ⊑ l1∀v∈vars(b) . $1(v) ⊑ l1∀v∈vars(b) . $2(v) ⊑ l2⊔v∈vars(b)$2(v) ⊑ l2
It follows that $2 ⊢ while b do c ∶ l2. The other two claims are immediately
implied by the induction hypothesis.

When presented the problem specified in the begining of this section, lemma 29
can be easily used to conceive an analysis in order to find a security labelling which
is both greater than the one given as input and also types the targeted program. This
analysis is presented in definition 15.

42

Definition 15 (A calculus of fixed types).

SKIP T [[skip]](l,$) = $
ASSIGN

T [[x ∶= e]](l,$) = $′
$′(y) = { $(y) if $(x) ⋢ $(y)

$(y)⊔ l⊔(⊔v∈vars(e)$(v)) if $(x) ⊑ $(y)
SEQ T [[c1;c2]](l,$) = D[[c2]](l,T [[c1]](l,$))
IF

T [[if b then c1 else c2]](l,$) = T [[c2]](lb,T [[c1]](lb,$))
lb =⊔v∈vars(b)$(v)⊔ l

WHILE
T [[while b do c]](l,$) =⊔{Hk(<) ∣ 0 ≤ k}
Where:
H($′′) = D(⊔v∈vars(b)$(′′v)⊔ l,$′′)⊔$

It is important to note that the calculus of fixed types presented in Definition 15
does not use the usual least fixed point operator for the [WHILE] rule. Instead, it
declares explicitly how to construct the intended fixed point. The reason for doing this
is that this calculus of fixed types is not monotone (which is illustrated in example
4). As such, constructing a fixed point à Kleene may not yield the least fixed point.
Nevertheless, it surely yields a fixed point (since the analysis is extensive Lemma 30).

Example 4 (The analysis is not monotone). This example considers a program x ∶= z, a
security lattice over the set L = {l1, l2, l3, l4} (which is depicted below) and two security
labellings:

$1 = [x↦ l1,y↦ l1,z↦ l2] $2 = [x↦ l2,y↦ l3,z↦ l2]
Clearly $1 ⊑ $2. Applying the proposed calculus of fixed types to these security la-
bellings yields the following results:

$′1 = [x↦ l2,y↦ l2,z↦ l2] $′2 = [x↦ l2,y↦ l3,z↦ l2]
However, $′1 ⋢ $′2.

43

l1

$1(x),$1(y)

l2$2(x),$2(z)$1(z) l3 $2(y)
l4

Despite not being monotone this analysis is well-defined because it is extensive
and the lattice of security labellings considered is finite. The existence of the analysis
proved in Lemma 30.

Lemma 30 (Existence and Extensiveness). Given a program c and an arbitrary secu-
rity lattice L = (L,⊑,⊔,⊓,⊺,<), the corresponding calculus of fixed typed T [[c]] then:

• T [[c]] is extensive in its second argument. That is, for any security level l ∈ L
and security labelling $ ∶Var→ L, $ ⊑ T [[c]](l,$).

• For any security labelling $ ∶ Var → L and security level l ∈ L, T [[c]] is well-
defined.

Proof. The proof proceeds by induction on the structure of c.

• skip: skip.T [[skip]](l,$) = $. The three claims hold.
• assign: x ∶= e.T [[x ∶= e]](l,$) = $′. It is clear that $′ is uniquely defined and that for every
variable x ∈Var, $(x) ⊑ $′(x).

• seq: c1;c2.T [[c1;c2]](l,$) = T [[c2]](l,T [[c1]](l,$)). Applying the induction hypothe-
sis, it follows that T [[c1]](l,$) is uniquely defined and that $ ⊑ T [[c1]](l,$).
Applying the induction hypothesis again yiels:

T [[c1]](l,$) ⊑ T [[c2]](l,T [[c1]](l,$))
Moreover, the induction hypothesis guarantees the uniqueness of $ ′. Thus, by
transitivity it follows that $ ⊑ $′.

• if: if b then c1 else c2.
Consider a given security level l and a given security labelling $, applying the
induction hypothesis yields:

$ ⊑ $′ = T [[c1]](l⊔(⊔
v∈vars(b)$(v)),$)

44

Addtionally it guarantees that $′ is well defined. Applying the induction hypoth-
esis yet again:

$′ ⊑ $′′ = T [[c2]](l⊔(⊔
v∈vars(b)$(v)),$′)

And $′′ is well defined.
• while: while b do c.
Consider an arbitrary security labelling $ and a security level l ∈ L, one must
prove that for all k ≥ 1, $ ⊑Hk(<), where H($) = F[[c]](l⊔⊔v∈vars(b)$(b),$).
The proof proceeds by induction on k:

– k = 1. Applying the outer induction hypothesis the result follows immedi-
ately.

– k+ 1. Hk+1(<) = H(Hk(<)). Applying the inner induction hypothesis it
follows that Hk(<) is extensive. Thus, applying the outer induction hy-
pothesis, the result follows.

As such, {Hk(<) ∣ k ≥ 0} is an ascending chain, since the lattice of security
labellings is finite, one may also conclude that this chain is finite.

Lemma 31. For every security labelling $, every security level l and program c ifT [[c]](l,$) = $′, then $ subsumes $′.
Proof. The proof proceeds by induction on the struture of c.

• skip: skip.T [[skip]](l,$) = $. Naturally, $ subsumes itself.
• assign: x ∶= e.T [[x ∶= e]](l,$) = $′. Consider two variables u,v ∈Var such that $(u) ⊆ $(v).
There are two cases two consider:

– $(x) ⊈ $(u). It follows that $′(u) = $(u). Lemma 30 ensures that $(v) ⊑
$′(v), so: $′(u) ⊑ $′(v).

– $(x) ⊆ $(u). The hypothesis ensures that $(x) ⊆ $(v). Thus:
$′(u) = $(u)⊔ l⊔⎛⎝ ⊔

v∈vars(e)$(v)⎞⎠ ⊑ $(v)⊔ l⊔⎛⎝ ⊔
v∈vars(e)$(v)⎞⎠ = $′(v)

• seq: c1;c2.T [[c1]](l,$) =$′ and T [[c2]](l,$′) =$′′. Applying the induction hypothesis, it
follows that $ subsumes $′ and $′ subsumes $′′, which implies that $ subsumes
$′′:

$(u) ⊑ $(v)⇒ $′(u) ⊑ $′(v) (Since $ subsumes $′)
$′(u) ⊑ $′(v)⇒ $′′(u) ⊑ $′′(v) (Since $′ subsumes $′′)
$(u) ⊑ $(v)⇒ $′′(u) ⊑ $′′(v) (By transitivity)

45

• if: if b then c1 else c2.
$′ =T [[c1]](l⊔(⊔v∈vars(b)$(v)),$) and$′′ =T [[c2]](l⊔(⊔v∈vars(b)$(v)),$′).
Applying the induction hypothesis, it follows that $ subsumes $ ′ and $′ sub-
sumes $′′, which implies that $ subsumes $′′.

• while:while b do c.
One has to prove that for all k ≥ 0, $ subsumesH k(<), where: H($) =F[[c]](l⊔⊔v∈vars(b)$(b),$). The proof proceeds by induction on k:
– k=0. Clearly, $ subsumes itself.
– k+1. The interior induction hypothesis guarantees that $ subsumes H k(<).
The outer induction hypothesis guarantess that H k(<) subsumes Hk+1(<),
which implies that $ subsumes Hk+1(<).

Since {Hk(<) ∣ k ≥ 0} is an ascending chain, it follows that $ subsumes its upper
bound.

Lemma 32 (Soundness). Given a program c, a security lattice L = (L,⊑,⊔,⊓,⊺,<), a
security labelling $ ∶Var→ L, and a security level l ∈ L, if T [[c]](l,$) = $′, then there
is a security level l′ ∈ L such that: l ⊑ l′, $′ ⊢ c ∶ l′ and ∀v∈Var . $(v) ⊑ l⇒ $′(v) ⊑ l′
Proof.
skip: skip.T [[skip]](l,$) = $. It is always the case that $ ⊢ skip ∶ ⊺ and l ⊑ ⊺. With respect to
the third claim it is easy to see that it holds, since ∀v∈Var . $(v) ⊑ ⊺.
assign: x ∶= e.T [[x ∶= e]](l,$) = $′. Since $(x) ⊑ $(x) it follows that: $′(x) = $(x)⊔ l⊔$(e). Ad-
ditionally, for every variable v ∈ vars(e), $ ′(v) ⊑ $(e)⊔ l. Thus:

⊔
v∈vars(e)$′(v) ⊑ $′(x)

So, $′ ⊢ c ∶ $(x). Moreover, l ⊑ $′(x). Suppose that for an arbitrary variable v ∈Var
$(v) ⊑ l. There are two cases two consider:

• $(x) ⋢ $(v). In this case, $′(v) = $(v). Additionally, since l ⊑ $′(x), it follows
that:

$′(v) ⊑ l ⊑ $′(x)
• $(x) ⊑ $(v). It follows that: $(x)⊔ l = $(v)⊔ l = l. As such:

$′(x) = $′(v) = l⊔ ⊔
y∈vars(e)$(y)

46

seq: c1;c2.T [[c1]](l,$) = $′ and T [[c2]](l,$′) = $′′. Applying the induction hypothesis, there
must exist two security levels l1, l2 ∈ L such that:

l ⊑ l1 $′ ⊢ c1 ∶ l1 ∀v∈vars(b) . $(v) ⊑ l⇒ $′(v) ⊑ l1
l ⊑ l2 $′′ ⊢ c2 ∶ l2 ∀v∈vars(b) . $′(v) ⊑ l⇒ $′′(v) ⊑ l2

Applying lemma 31, one may conclude that $ ′′ subsumes $′. So, lemma 29 guarantees
that there is a security level l ′1 ∈ L such that:

l1 ⊑ l′1 $′′ ⊢ c1 ∶ l′1 ∀v∈Var . $′(v) ⊑ l1⇒ $′′(v) ⊑ l′1
which means that:

l ⊑ l′1⊓ l2 $′′ ⊢ c1;c2 ∶ l′1⊓ l2 ∀v∈Var . $(v) ⊑ l⇒ $′′(v) ⊑ l′1⊓ l2
if: if b then c1 else c2.
$′ = T [[c1]](l ⊔(⊔v∈vars(b)$(v)),$) and $′′ = T [[c2]](l⊔(⊔v∈vars(b)$(v)),$′). Ap-
plying the induction hypothesis it follows that there are two security levels l 1, l2 ∈ L
such that:

l⊔(⊔v∈vars(b)$(v)) ⊑ l1 $′ ⊢ c1 ∶ l1 ∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v))⇒ $′(v) ⊑ l1
l⊔(⊔v∈vars(b)$(v)) ⊑ l2 $′′ ⊢ c2 ∶ l2 ∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v))⇒ $′′(v) ⊑ l2
Applying lemma 31, one may conclude that $ ′′ subsumes $′. So, lemma 29 guarantees
that there is a security level l ′1 ∈ L such that:

l1 ⊑ l′1 $′′ ⊢ c1 ∶ l′1 ∀v∈Var . $′(v) ⊑ l1⇒ $′′(v) ⊑ l′1
As such:

l⊔(⊔v∈vars(b)$(v)) ⊑ l′1⊓ l2∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v))⇒ $′′(v) ⊑ l′1⊔ l2 $′′ ⊢ c1 ∶ l′1
$′′ ⊢ c1 ∶ l′2

Observing that ∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v)), it follows that:
⊔

v∈vars(b)$′(v) ⊑ l′1⊓ l2
which entails the result.
while: while b do c.
$ = T [[c]](l ⊔⊔v∈vars(b)$(v),$). So, applying the induction hypothesis yields:
l⊔⊔v∈vars(b)$(v) ⊑ l′ $′ ⊢ c1 ∶ l′ ∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v))⇒ $′(v) ⊑ l′
Observing that ∀v∈vars(b) . $(v) ⊑ l⊔(⊔v∈vars(b)$(v)), it follows that: $′(b) ⊑ l′, which
implies the result.

47

The preceding lemmas (31 and 32) precisely illustrate the way this analysis work: it
systematically raises the security labelling $ so that the new security labelling, $ ′, is
consistent with the current command being analysed and it ensures that $ ′ is consistent
with all the commands previously analysed by choosing $ ′ in such a way that $ sub-
sumes $′. This fact suggests a new ordering on the security labellings and a possible
candidate for an optimality result:

• $1 ≤ $2 iff $1 ⊑ $2 and ∀x,y ∈Var.$1(x) ⊑ $1(y)⇒ $2(x) ⊑ $2(y)
• If T [[c]](l,$) = $′ and there is a security labelling, $′′, such that:

– ∃l′.$′′ ⊢ c ∶ l′
– $ ≤ $′′

Then: $′ ≤ $′′
However, this optimality result does not generally hold, since the set of security la-
bellings equipped with the ordering relation defined above is not generally a lattice,
which is shown in example 5.

Example 5. This example illustrates four security labellings over the set of variables{x,y}. The corresponding Hasse diagram (which orders the security labellings accord-
ing to the partial order introduced above) is depicted below.

x
y

x
y

x,y x
y

In the picture each variable is depicted next to the lattice element to which it is mapped.
In this example there is no least upper bound, as such it clearly illustrates that the set
of security labellings ordered in this way is not generally a lattice.

7.2 A dependency based approach to fixed types computation
Section 7.1 presents a calculus of fixed types and argues that such calculus does not
generally finds an optimum solution (with respect to the order of security labellings
established). Therefore, before trying to compute the optimal fixed labelling (that is,
the lowest one that types the program), one has to discuss its existence, since it is not
clear that among all labellings that type a program there is one that is lower than all the

48

others. This subsection focuses on this problem and establishes a constructive result
that proves its existence.

Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a labelling $ ∶Var→ L and
a program c, theorem 2 states that c is typable with respect to L and $ if and only if:

∀x∈Var . $(x) =⊔{$(y) ∣ y ∈ &(x)}
where & = D[[c]](∅,&0) and &0 ∶Var→P(Var) is the map which maps each variable
to the singular set that contains it. Therefore, given an arbitrary security labelling
$i, the goal is to find the smallest security labelling greater than $ i that satisfies the
condition expressed above. Consider the operator on security labellings H ∶ (Var →
L)→ (Var→ L) defined in the following way:

H($) =⊔{$(y) ∣ y ∈ &(x)}⊔$i
Clearly, the goal is to find the least fixed point of this operator. Since the set of security
labellings equipped with pointwise subset inclusion as its partial order is a complete
lattice, in order to prove that the least fixed point exists, it is only necessary to prove
thatH is monotonic. As such, consider two arbitrary security labellings $ 1,$2 ∶Var→L
such that $1 ⊑ $2. For every variable x ∈Var, H($1)x ⊑H($2)x. Therefore, given an
arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a security labelling $0 ∶ Var → L and a
program c, the least security labelling greater than $ i which types the program is:

$opt =⊔{Hk(<) ∣ k ≥ 0}
Theorem 3. Given an arbitrary security lattice L = (L,⊑,⊔,⊓,⊺,<), a security la-
belling $i ∶Var→ L and a program c, the smallest security labelling greater than $ i for
which there is a security level l ∈ L such that $ ⊢L c ∶ l is given by:

$ =⊔{Hk(<) ∣ k ≥ 0}
Where H ∶ (Var→ L)→ (Var→ L) is an operator defined as follows:

H($) =⊔{$(y) ∣ y ∈ &(x)}⊔$i
Where &(x) =D[[c]](∅,&0) and &0 ∶Var→P(Var) is the map which maps each vari-
able to the singular set that contains it.

8 Computing the strictest confidentiality policy
Given a program c and a security labelling $ ∶ Var → L (where L is an unstructured
set of security levels), the goal of this section is to find the strictest security policy
that renders c secure with respect to the Volpano et al type system (and hence to trace
non-interference). In order to do this, we shall consider that there is always an initial
lattice which is known a priori and which relates all security levels. This initial lattice
corresponds to the strictest security policy which can possibly be enforced and shall
be referred to as the original security lattice. For instance, when considering security

49

policies generated by closure operators over a given set of principals, the original lattice
corresponds to P(P). However, this section shall consider arbitrary original lattices, in
order to keep the results as general as possible.

Having fixed an original lattice, it is possible to restate the goal of this section in
the following way: given an arbitrary original lattice L= (L,⊑,⊔,⊓,⊺,<) and a security
labelling $ ∶Var→ L, the goal is to find the lowest closure operator" over L such that
the Smith et al type system types c with respect to $ and "(L).
8.1 Confidentiality policies induced by security labellings
As noted in [17], “typically only a small subset of the subset lattice of a certain alphabet
is used in applications”. This happens, because establishing a given security labelling
means selecting the security levels which will be really used. This section formalizes
this argument and presents an illustrative example.

Lemma 33. Given a lattice L = (L,⊑,⊔,⊓,⊺,<) and a reduction operator " over L,
"(L) = {"(l) ∣ l ∈ L} is a sublattice of the original lattice L.
Proof. It suffices to prove that "(L) is closed to the upper bound in L. Consider two
arbitrary security levels l1, l2 ∈ L:
"("(l1)⊔"(l2)) ⊑"(l1)⊔"(l2) (" is reductive)
"(l1) ⊑"(l1)⊔"(l2)⇒"(l1) ⊑"("(l1)∪"(l2)) (By monotonocity and extensivity)
"(l2) ⊑"(l1)⊔"(l2)⇒"(l1) ⊑"("(l1)∪"(l2)) (By monotonocity and extensivity)
"(l1)⊔"(l2) ⊑"("(l1)∪"(l2))
Thus, it follows that: "("(l1)∪"(l2)) ="(l1)⊔"(l2). Given two arbitrary security
levels the greatest lower bound is given by: "("(l1)⊓"(l2)). One can easily check
that the proposed lower bound is both closed for " and a lower bound. To prove
that it is indeed the greatest lower bound consider a security level l 3 ∈ L such that
"(l3) = l3 and l3 ⊑"(l1)⊓"(l2), applying monotonocity and idempotence it follows
that: l3 ⊑"("(l1)⊓"(l2)).

Lemma 24 states that #$ ○ '$ is a reduction operator on L and lemma 33 recalls
that the range of a reduction operator on a lattice is a sublattice of the original lattice.
As such, when establishing a security labelling $ ∶ Var → L, one is in fact establish-
ing a reduction operator on L (henceforth denoted by) $) and thereby restricting the
information flows that can take place to the lattice #$ ○ '$(L), which is illustrated in
example 6.

Example 6. This example illustrates a security labelling $ which maps the set of vari-
ables {u,v,x,w,y} to the lattice represented bellow. Each variable is depicted next to
the security level to which it is mapped.

50

l1

l2

l7

l4

l5

l3

l6

l8

u,v x,y

w

The reduction operator that corresponds to this security labelling yields the following
sublattice of the original lattice:

l1

l2 l4

l6

u,v x,y

w

8.2 Computing the strictest confidentiality policy
Section 8.1 argues that when establishing a security labelling $ ∶Var→ L, one is in fact
establishing a reduction operator over L and thus selecting the possible information
flows that can take place within any program which is executed under this security
labelling. As such, the strictest security policy corresponds to a closure operator over
)$(L), rather than a closure operator over L.

Making use of theorem 2, the goal of this section can be restated yet again as
follows: given an original lattice L = (L,⊑,⊔,⊓,⊺,<), a security labelling $ ∶Var→ L
and a program c, the goal is to find the smallest closure operator " over)$(L) such
that: ∀x∈Var . "()$($(x))) ="(⊔{)$($(y)) ∣ y ∈ &(x)})
Where & =D[[c]](∅,&0) and &0 ∶Var→P(P) is the flow function which assings each
variable to the singular set which contains it. It is important to emphasize that the upper
bound which is present in the condition is in fact the original upper bound on L which
coincides with the upper bound on)$(L). Furhtermore, since (P(Var),#$,'$,L) is a
Galois connection, it follows that for every variable x ∈Var,)$($(x)) = $(x). As such
the condition stated above can be restated as:

∀x∈Var . "($(x)) ="(⊔{$(y) ∣ y ∈ &(x)}) ="(#$(&(x)))
Lemmas 34 and 35 establish an equivalent of this condition for security levels in-

stead of variables, which allow computing the strictest closure operator that types the
program in question.

51

Lemma 34. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a security la-
belling $ ∶Var → L and a flow function & over P(Var), the least closure operator "
over L such that:

∀x∈Var . "($(x)) ="(⊔{$(y) ∣ y ∈ &(x)}) ="(#$(&(x)))
also verifies: ∀X⊆Var . "(#$(X)) ="(#$(&∗(X)))
Proof. Recalling that lemma 24 guarantees that #$ is additive, it follows that:

"(#$(X)) ="(⊔
x∈X#$(x))

As such, usingmonotonocity one can establish the following lower bound on"(# $(X)):
⊔
x∈X"(#$(x)) ⊑"(#$(X))

Applying the hypothesis:

⊔
x∈X"(#$(&(x))) ⊑"(#$(X))

Using monotonocity and idempotence:

"(⊔
x∈X#$(&(x))) ⊑"(#$(X))

Recalling that both #$ and &∗ are additive (lemmas 25 and 25) it follows that:
"(#$(&∗(X))) ⊑"(#$(X))

Since the original goal is to obtain the smallest closure operator which verifies the first
condition, one can just demand that: "(#$(&∗(X))) ="(#$(X)).
Lemma 35. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a security la-
belling $ ∶Var→ L, a flow function & over P(Var), and a closure operator " over L
such that: ∀l∈L . "(l) ="()$(l)) ="(#$('$(l)))
Then, the following equivalence holds:

∀l∈L . "(l) ="(#$(&∗('$(l))))⇔∀X⊆Var . "(#$(X)) ="(#$(&∗(X)))
Proof.

• Direct Implication. Assume: ∀l∈L . "(l) ="(#$(&∗('$(l)))).
52

– To prove: ∀X⊆Var . "(#$(X)) ⊑ "(#$(&∗(X))). Consider an arbitrary
set X ⊆ Var. Since &∗ and " are both closure operators, they are both
monotonic. Lemma 23 also guarantees that #$ is monotonic. Thus:

X ⊆ &∗(X)
"(#$(X)) ⊑"(#$(&∗(X)))

– To prove: ∀X⊆Var . "(#$(&∗(X))) ⊑"(#$(X)). Consider an arbitrary set
X ⊆Var. Considering the assumption, it follows that:

"(#$(X)) ="(#$(&∗('$(#$(X)))))
Lemma 24 ensures that '$ ○#$ is a closure operator, which means that
X ⊆ '$(#$(X)). since ", #$ and &∗ are monotonic, their composition is
also monotonic. Thus following:

"(#$(&∗(X))) ⊑"(#$(&∗('$(#$(X))))) ="(#$(X))
• Converse Implication. Assume ∀X⊆Var . "(#$(X)) ="(#$(&∗(X))). Consider
an arbitrary l ∈ L:

"(l) ="(#$('$(l))) (" is a closure operator over"$(L))
"(l) ="(#$(&∗('$(l)))) (Applying the assumption)

Theorem 4 guarantees that given a program c, an arbitrary security lattice L and
a security labelling $, it is always possible to compute the smallest closure operator
over L, ", such that c is typable with respect to "(L) and to the security mapping
$. Furthermore, a constructive method for computing this closure operator is also
provided.

Theorem 4. Given a security lattice L = (L,⊑,⊔,⊓,⊺,<), a program c, a security la-
belling $ ∶Var→ L, and a closure operator &∗ over P(Var) the smallest closure oper-
ator " over)(L) such that:

∀l∈)(L) . "(l) ="(#$(&∗('$(l))))
is given by ⊔{Hk(#$ ○&∗ ○'$) ∣ k ≥ 0}, where H ∶ ()(L)→)(L))→ ()(L)→)(L)) is
an operator on monotonic and extensive functions over)(L) defined in the following
way:

H(") ="○#$ ○&∗ ○'$
Proof. First note that the set of extensive and monotonic operators over a given lattice
is a lattice when equipped with pointwise subset inclusion. It suffices to note that it is
closed to the usual upper bound. As such, condider any two extensive and monotonic
operators"1 and"2:

53

• Suppose l1 ⊑ l2. Since "1 and "2 are assumed to be monotonic, it follows that
"1(l1) ⊑"1(l2) and"2(l1) ⊑"2(l2). Thus concluding that:

"1⊔"2(l1) ⊑"1⊔"2(l2)
• For any security level l ∈ L, l ⊑"1(l) and l ⊑"2(l), which means that l ⊑"1 ⊔
"2(l).

H is closed for extensive and monotonic functions over)(L):
• ∀l∈L . H(")(l) =H(")()(l)). Given a security level l ∈ L:

H(")()(l)) ="(#$(&∗('$()(l))))) ="(#$(&∗('$(#$('$(l))))))
Observing that (P(Var),#$,'$,L) is a Galois connection (lemma 23, it follows
that '$ ○#$ ○'$ = '$ and thus:

H(")()(l)) =H(")(l)
• ∀l∈)(L) . H(")(l) =)(H(")(l)). Assume that ∀l∈)(L) ."(l) ∈)(L). Applying
lemma 23:

)(#$ ○&∗ ○'$) = #$ ○'$ ○#$ ○&∗ ○'$
)(#$ ○&∗ ○'$) = #$ ○&∗ ○'$

Thus, applying the assumption, it follows that ∀ l∈)(L) . H(")(l) ∈)(L).
• Consider a monotonic function over)(L), ", since ", #$, &∗ and '$ are mono-
tonic, their composition is also monotonic.

• Consider an extensive function over)(L), " and a security level l ∈)(l):
#$ ○'$(l) = l⇒ l ⊑ #$ ○'$(l)
'$(l) ⊑ &∗ ○'$(l) (Since &∗ is extensive)
#$ ○'$(l) ⊑#$ ○&∗ ○'$(l) (Since #$ is monotone)
l ⊑#$ ○&∗ ○'$(l) ⊑"○#$ ○&∗ ○'$(l) (Since " is assumed extensive)

It is important to emphasize that the extensivity claim does only refer to the
elements of)(L).

Given any two functions over)(L), "1,"2, such that "1 ⊑"2, it follows immediately
that H("1) ⊑ H("2). Thus concluding that H is monotonic. Clearly, any function
which satisfies the condition of the lemma must be greater that #$ ○&∗ ○ '$. Since it
is extensive and monotonic, it can be used as the initial function in the construction of
the fixed point. As such, invoking Kleen’s theorem, one can claim that the least fixed
point of H does exist and can be computed as specified in the lemma.

54

9 Related Work
Distributed flow policies Almeida-Matos [2] addresses the problem of dealing with
distributed flow policies in a mobile code setting. At a technical level, the flow policies
that are encoded in a program are captured as “declassification effects” in the form
of flow policies that are deduced from a program by means of a primitive (and rather
coarse) type system. The technical emphasis is on the dynamic usage of that infor-
mation in controlling migration. Here we focus on the representation of flow policies
aiming at optimality results. Flow policies can be seen as declassification policies,
in the sense of the “acts for” relation of the Decentralized Label Model [16] and of
Non-disclosure [3].

Dependencies Amtoft et al. introduce a Hoare logic to reason about input output
independencies [4]. Ulteriorly, Hunt et al. introduce a family of flow sensitive type
systems parametrizes in an arbitrary security lattice [13]. They remark that when the
chosen security lattice correspond to P(Var), the corresponding flow sensitive type
system is the De Morgan dual of Amtoft et al. independence logic. Again, flow sensi-
tive type systems reason about input output dependencies and not trace dependencies
as discussed in this report. Abadi et al. [1] propose a more general dependency calcu-
lus which aims to provide a common approach to several different analysis that arise
in many different settings, such as: security, partial evaluation, program slicing and
call-tracking.

Inference In the context of informationflow, the type inference problem can be stated
in the following way: when presented a partial security labeling, the problem consists
in finding the lowest total security labeling without changing the specified labels [8].
Generally, this kind of inference mechanism extracts from the program a set of con-
straints which are ulteriorly passed to a constraint solver. The inference mechanism
presented in Section 7 does not correspond to this problem, since it allows increasing
the security level of the specified labels.

Combining static and dynamic analysis of information flow Le Guernic et al. [11]
propose a combination of static and dynamic analysis, in the form of a semantics based
monitor that communicates with an automaton that analyzes abstractions of program
events at runtime. Sharing the idea of tracking dependencies encoded in a program
in order to prevent information leaks during execution, Shroff et al.[20] use a runtime
system that is augmented with a statically computed fixed point of dependencies.

10 Conclusion and Future Work
Management of complex security policies and integration with existing infrastruc-
ture have been pointed out [24] as important challenges for information flow security.
This report addresses some significant obstacles, namely by relaxing the setting where
“Language-based information-flow techniques require that the annotations in the pro-
gram faithfully describe the desired policy”:

55

• Desired security policies need not be formalized by means of annotations, as
policies can be managed directly over the principals from which labels are built.

• Programs do not have to be fully annotated, as the weakest labelings can be
inferred from partial annotations.

• An error reporting mechanism can assist the development process, by pointing
out how existing annotations might conflict with the desired policy.

Furthermore, inter-operation between operating systems and information flow systems
is eased:

• By working with security lattices that are constructed from sets of principals,
which have concrete representation in usual operating systems.

• By offering a solution to the runtime problem of deciding access control permis-
sions to executing programs.

As future work, we plan to generalize our results to more expressive languages and
more sensitive information flow properties, in particular in order to handle programs in
concurrent languages. Given that most of the theory is founded on syntactic principles,
we believe that this extension should not pose a significant problem. We also envisage
to use the strictest flow policy of a program as a means to deal with runtime updates
[12] to the allowed flow policy where the program is running. A greater challenge on
which we are currently working is to generalize our results in order to handle runtime
principals [22]. Our long term aim is to study the applicability of our framework in
increasing the precision and ease of use of existing implementations of programming
languages with built-in information flow controls (namely JIF [15] and Flow Caml
[21]).

References
[1] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core cal-

culus of dependency. In In Proc. 26th ACM Symp. on Principles of Programming
Languages (POPL, pages 147–160. ACM Press, 1999.

[2] Ana Almeida Matos. Flow-policy awareness for distributed mobile code. In Pro-
ceedings of CONCUR 2009 - Concurrency Theory, volume to appear of Lecture
Notes in Computer Science. Springer, 2009.

[3] Ana Almeida Matos and Gérard Boudol. On declassification and the non-
disclosure policy. Journal of Computer Security, 17(5):549–597, 2009.

[4] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form.
In In SAS, 3148, volume 3148 of Lecture Notes in Computer Science, pages 100–
115. Springer-Verlag, 2004.

[5] K. J. Biba. Integrity considerations for secure computer systems. Technical re-
port, The MITRE Corporation, 04 1977.

56

[6] N. Broberg and David Sands. Flow locks: Towards a core calculus for dynamic
flow policies. In Programming Languages and Systems. 15th European Sympo-
sium on Programming, ESOP 2006, volume 3924 of Lecture Notes in Computer
Science. Springer Verlag, 2006.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In POPL, pages 238–252, 1977.

[8] Zhenyue Deng and Geoffrey Smith. Type inference and informative error report-
ing for secure information flow. In Proceedings of the 44th annual Southeast
regional conference, ACM-SE 44, pages 543–548, New York, NY, USA, 2006.
ACM.

[9] Dorothy E. Denning. A lattice model of secure information flow. Communica-
tions of the ACM, 19(5):236–243, 1976.

[10] Joseph A. Goguen and José Meseguer. Security policies and security models. In
Proceedings of the 1982 IEEE Symposium on Security and Privacy, pages 11–20.
IEEE Computer Society, 1982.

[11] Gurvan Le Guernic. Automaton-based confidentiality monitoring of concurrent
programs. In 20th IEEE Computer Security Foundations Symposium, pages 218–
232, 2007.

[12] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-
flow policies. InWorkshop on Foundations of Comp. Security, pages 7–18, 2005.

[13] Sebastian Hunt andDavid Sands. On flow-sensitive security types. InPOPL: 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 79–90. ACM Press, 2006.

[14] P. Li, Y. Mao, and S. Zdancewic. Information integrity policies. In IN PRO-
CEEDINGS OF THEWORKSHOPON FORMAL ASPECTS IN SECURITY AND
TRUST - FAST, 2003.

[15] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 228–241. ACM Press, 1999.

[16] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentral-
ized label model. ACM Transactions on Software Engineering and Methodology,
9(4):410–442, 2000.

[17] Sergei A. Obiedkov, Derrick G. Kourie, and Jan H. P. Eloff. On lattices in ac-
cess control models. In Henrik Schärfe, Pascal Hitzler, and Peter Øhrstrøm, edi-
tors, Proceedings of the 14th International Conference on Conceptual Structures
(ICCS 2006), volume 4068 of Lecture Notes in Computer Science, pages 374–
387. Springer, 2006.

57

[18] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[19] Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
J. Comput. Secur., 17:517–548, October 2009.

[20] Paritosh Shroff, Scott F. Smith, and Mark Thober. Securing information flow via
dynamic capture of dependencies. Journal of Computer Security, 16:637–688,
December 2008.

[21] V. Simonet. The Flow Caml System: documentation and user’s manual. Technical
Report 0282, Institut National de Recherche en Informatique et en Automatique
(INRIA), 2003.

[22] Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type
systems. ACM Transactions on Programming Languages and Systems, 30(1):6,
2007.

[23] Dennis M. Volpano, Geoffrey Smith, and Cynthia E. Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2–3):167–188, 1996.

[24] S. Zdancewic. Challenges for information-flow security. In 1st Interna-
tional Workshop on the Programming Language Interference and Dependence
(PLID’04), 2004.

[25] Steve Zdancewic and AndrewMyers. Robust declassification. In Computer Secu-
rity Foundations Workshop, IEEE, volume 0, page 15, Los Alamitos, CA, USA,
2001. IEEE Computer Society.

58

