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Motivation : Modeling and Analysis of Biological Systems

Specialized logistic systems (temporal logics: Computation
Tree Logic CTL∗, CTL, LTL, Probabilistic CTL,...)

Modeling in dedicated languages (stochastic π-calculus,
biocham, kappa, brane, ...) or in differential equations
↪→ transition systems

Express properties in temporal logic

Verify properties against traces - external simulator
↪→ model checking.

↪→ Reasoning is not done directly on the models.
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Approach

An unified framework:

modeling systems of biochemical reactions as transition
systems: linear logic (ILL)

transitions with (temporal, stochastic, ...) constraints

modal extension of ILL: Hybrid Linear Logic (HyLL)

HyLL has a cut admitting sequent calculus, focused rules,...

induction and mechanized proofs: the Coq proof assistant

proofs: Coq λ-terms containing HyLL proof trees

↪→ A logical framework for constrained transition systems.
↪→ A logical framework for systems biology.
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Defined Modal Connectives - delay

Defined modal connectives:

�A
def
= ↓u. ∀w . (A at u.w) ♦A

def
= ↓u. ∃w . (A at u.w)

δv A
def
= ↓u. (A at u.v) †A

def
= ∀u. (A at u)

The connective δ represents a form of delay:
Derived right rule:

Γ ` A @ w .v

Γ ` δv A @ w
[δ R]
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Hybrid Logic

A form of modal logic that allows naming of worlds.

Very general idea. Can be applied for

Almost all known modal and temporal logics
Many substructural logics (eg. linear logic)

Ideas go back to Prior (1960s) and Allen (1980s)

— but still active and recently energized area
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Ordinary Logic

Start with ordinary first-order (intuitionistic) logic
t, ... ::= c | x | f (t1, ..., tn) Ex: gene(a)

A,B, ... ::= p(t1, ..., tk) | > | ⊥ | A ∧ B | A ∨ B | A⇒ B | ∀x .A | ∃x .A
Ex: pres(x) ∧ abs(y)

Judgements are of the form: A1, ...,An ` C
C is true assuming the hypotheses A1 · · ·An are true
Ex: pres(x), abs(y) ` pres(z)

Connectives specified as usual, in the Sequent Calculus style

Γ,A ` A [hyp]
Γ ` A Γ ` B

Γ ` A ∧ B
∧R

Γ,A ` C

Γ,A ∧ B ` C
∧L1

Γ,B ` C

Γ,A ∧ B ` C
∧L2

Γ,A ` B

Γ ` A⇒ B
[⇒R ]

Γ ` A Γ,B ` C

Γ,A⇒ B ` C
[⇒L]
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Hybrid Logic

Add a new metasyntactic class of worlds, written ”w”:

Definition

A constraint domain W is a monoid structure 〈W , ., ι〉.
The elements of W are called worlds, and
the partial order � : W ×W —defined as u � w if there exists
v ∈W such that u.v = w—is the reachability relation in W.

The identity world ι, �-initial, represents the lack of any
constraints: ILL ⊆ HyLL[ι] ⊂ HyLL[W].

Ex: Time: T = 〈IN,+, 0〉 or 〈R+,+, 0〉
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Hybrid Logic

Make all judgements situated at a world : A @ w
A is true at world w

A1 @ w1, ...,An @ wn ` C @ w

All ordinary rules continue essentially unchanged.

Γ,A @ w ` A @ w [hyp]

Γ ` A @ w Γ ` B @ w

Γ ` A ∧ B @ w
[∧R ]

Γ,A @ w ` C @ w

Γ,A ∧ B @ w ` C @ w
[∧L1]

Γ,B @ w ` C @ w

Γ,A ∧ B @ w ` C @ w
[∧L2]

Γ,A @ w ` B @ w

Γ ` A⇒ B @ w
[⇒R ]

Γ ` A @ w Γ,B @ w ` C @ w

Γ,A⇒ B @ w ` C @ w
[⇒L]
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Hybrid Connectives

Make the claim that “A is true at world w ”
a mobile proposition in terms of a satisfaction connective:

A,B, ... ::= . . . | A at w | ↓ u. A
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Satisfaction

To introduce the satisfaction proposition (A at u) (at any
world v), the proposition A must be true in the world u:

Γ; ∆ ` A @ u

Γ; ∆ ` (A at u) @ v
at R

The proposition (A at u) itself is then true at any world, not
just in the world u.

i.e. (A at u) carries with it the world at which it is true.
Therefore, suppose we know that (A at u) is true (at any
world v); then, we also know that A @ u:

Γ; ∆,A @ u ` C @ w

Γ; ∆, (A at u) @ v ` C @ w
at L
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Localisation

The other hybrid connective of localisation, ↓ u. A, is intended
to be able to name the current world:

If ↓ u. A is true at world w , then the variable u stands for w
in the body A:

Γ; ∆ ` [w/u]A @ w

Γ; ∆ `↓ u.A @ w
↓ R

Suppose we have a proof of ↓ u.A @ v for some world v ;
Then, we also know [v/u]A @ v :

Γ; ∆, [v/u]A @ v ` C @ w

Γ; ∆, ↓ u.A @ v ` C @ w
↓ L
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Linear Logic

Terms:

t ::= c | x | f (~t)
A,B, ... ::= p(~t) | A⊗ B | 1 | A→B | A & B | > | A⊕ B | 0

!A | ∀x . A | ∃x . A

Judgements are of the form: Γ; ∆ ` C , where
Γ is the unrestricted context

its hypotheses can be consumed any number of times.
∆ (a multiset) is a linear context

every hypothesis in it must be consumed singly in the proof.

Judgemental rules:

Γ, p(~t) ` p(~t) [init]
Γ,A; ∆,A ` C

Γ,A ` C
copy
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Sequent Calculus for Linear Logic [1]

Exponentials:

Γ; . ` A

Γ; . ` !A
!R

Γ,A; ∆ ` C

Γ; ∆, !A ` C
!L

Multiplicatives:

Γ; ∆,A ` B

Γ; ∆ ` A→ B
[→R ]

Γ; ∆ ` A Γ; ∆′,B ` C

Γ; ∆,∆′,A→ B ` C
[→L]

Γ; ∆ ` A Γ; ∆′ ` B

Γ; ∆,∆′ ` A⊗ B
⊗ R

Γ; ∆,A @ u,B ` C

Γ; ∆,A⊗ B ` C
⊗ L
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Sequent Calculus for Linear Logic [2]

Additives:

Γ; ∆ ` A Γ; ∆ ` B

Γ; ∆ ` A & B
& R

Γ; ∆,Ai ` C

Γ; ∆,A1 & A2 ` C
& Li

Γ; ∆ ` Ai

Γ; ∆ ` A1 ⊕ A2
⊕ Ri

Γ; ∆,A ` C Γ; ∆,B ` C @ w

Γ; ∆,A⊕ B @ u ` C
⊕ L
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Example

Activation:

Active(a, b)
def
= pres(a)→ δ1(pres(a) ⊗ pres(b)).

Inhibition

Inhib(V , a, b)
def
= pres(a)→ δ1(pres(a) ⊗ abs(b)).
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HyLL

Hybrid Linear Logic (HyLL)

Terms:

t ::= c | x | f (~t)
A,B, ... ::= . . . | A at w | ↓ u. A | ∀u. A | ∃u. A

Judgements are of the form: Γ; ∆ ` C @ w , where Γ and ∆
are sets of judgements of the form A @ w
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HyLL

Sequent Calculus for HyLL [1]

Judgement: Γ; ∆ ` A @ w

Judgemental rules

Γ, p(~t) @ w ` p(~t) @ w [init]
Γ,A @ w ; ∆,A @ w ` C @ w

Γ,A @ w ` C @ w
copy

Exponentials rules

Γ; . ` A @ w

Γ; . ` !A @ w
!R

Γ,A @ u; ∆ ` C @ w

Γ; ∆, !A @ u ` C @ w
!L
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HyLL

Sequent Calculus for HyLL [2]

Multiplicatives
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HyLL

Sequent Calculus for HyLL [3]

Hybrid connectives

Γ; ∆ ` A @ u

Γ; ∆ ` (A at u) @ v
at R

Γ; ∆,A @ u ` C @ w

Γ; ∆, (A at u) @ v ` C @ w
at L

Γ; ∆ ` [w/u]A @ w

Γ; ∆ `↓ u.A @ w
↓ R

Γ; ∆, [v/u]A @ v ` C @ w

Γ; ∆, ↓ u.A @ v ` C @ w
↓ L
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HyLL

Properties of the Sequent Calculus System [1]

Theorem

1 If Γ; ∆ ` C @ w, then Γ, Γ′; ∆ ` C @ w (weakening)

2 If Γ,A @ u,A @ u; ∆ ` C @ w, then Γ,A @ u; ∆ ` C @ w
(contraction)

3 Γ; A @ w ` A @ w (identity)

Theorem (cut)

1 If Γ; ∆ ` A @ u and Γ; ∆′,A @ u ` C @ w, then
Γ; ∆,∆′ ` C @ w.

2 If Γ; . ` A @ u and Γ,A @ u; ∆ ` C @ w, then Γ; ∆ ` C @ w.
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HyLL

Properties of the Sequent Calculus System [2]

Theorem (invertibility)

On the right: &R, >R, → R, ∀R, ↓ R and at R;

On the left: ⊗L, 1L, ⊕L, 0L, ∃L, !L, ↓ L and at L

Theorem

1 (consistency) There is no proof of .; . ` 0 @ w.

2 (conservativity) For “pure” contexts Γ and ∆ and “pure”
proposition A: Γ; ∆ `ILL A.

Theorem (HyLL is -at least as powerful as- S5)

.;♦A @ w ` �♦A @ w.
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Definitions for Biology

Defined Modal Connectives - delay
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Definitions for Biology

Oscillation

A ∧ EF(B ∧ EFA)

Definition (one oscillation)

oscillate1 (A,B, u, v)
def
= A & δu(B & δv A) & (A & B → 0).

Definition (oscillation - object)

oscillateh (A,B, u, v)
def
= †[(A→ δu B) & (B → δv A)] & (A & B → 0).

Definition (oscillation - meta)

oscillate (A,B, u, v)
def
= for any w , (A @ w ` B @ w .u), (B @ w .u ` A @ w .u.v),

and (` A & B → 0 @ w).
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Definitions for Biology

Activation/Inhibition Rules (Boolean Model) [1]

Without consumption:

w active(a, b)
def
= pres(a)→ δ1(pres(a) ⊗ pres(b)).

More precise:

s active(a, b)
def
= pres(a)⊗ abs(b)→ δ1(pres(a)⊗ pres(b)).

Looping:

u active(a, b)
def
= pres(a)⊗ pres(b)→ δ1(pres(a)⊗ pres(b)).

General:

active(a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))⊕ (pres(a)⊗ abs(b)))
→ δ1 (pres(a)⊗ pres(b)).
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Definitions for Biology

Activation/Inhibition Rules [2]

With consumption:

s activec(a, b)
def
= pres(a)⊗ abs(b)→ δ1(abs(a)⊗ pres(b)).

Strong activation:

s actives(a, b)
def
= abs(a)⊗ pres(b)→ δ1(abs(a)⊗ abs(b)).

Inhibition

w inhib(V , a, b)
def
= pres(a)→ δ1(pres(a) ⊗ abs(b)).

...
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Example

Example - Definition (Boolean Model)

The P53/Mdm2 DNA-damage repair mechanism.

P53 is a tumor suppressor protein that is activated in reply to DNA
damage. C(p53) is controlled by another protein, Mdm2.

DNA damage increases the degradation rate of Mdm2 so that the
control of this protein on P53 becomes weaker and (after ev.
oscillations) the concentration of p53 can increase. P53 can thus
either repair DNA damage or provoke apoptosis.

Boolean Model:

Initial states: P53 is absent and Mdm2 is present.

1) Dnadam⇒ ¬Mdm2 4) Mdm2⇒ ¬P53
2) ¬Mdm2⇒ P53 5) P53⇒C ¬Dnadam
3) P53⇒ Mdm2 6) ¬Dnadam⇒ Mdm2
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Example

Specification in HyLL [1]

In HyLL[〈IN,+, 0〉]

unchanged(x ,w)
def
= ! [(pres(x) at w → pres(x) at w .1) &

(abs(x) at w → abs(x) at w .1)].

unchanged(V ,w)
def
= ⊗x∈V unchanged(x ,w).

active(V , a, b)
def
= (pres(a)⊕ (pres(a)⊗ pres(b))

⊕ (pres(a)⊗ abs(b)))
→ δ1 (pres(a)⊗ pres(b))
⊗ ↓ u. unchanged(V \ {a, b}, u)).

activec(V , a, b)
def
= ...

...
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Example

Specification in HyLL [2]

well defined0(V )
def
= ∀a ∈ V . [pres(a)⊗ abs(a)→ 0].

well defined1(V )
def
= ∀a ∈ V . [pres(a)⊕ abs(a)].

well defined(V )
def
= well defined0(V ), well defined1(V ).
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Example

Specification in HyLL [3]

The system:

vars
def
= {p53, Mdm2, DNAdam}.

rule(1)
def
= inhib(vars, DNAdam, Mdm2).

rule(2)
def
= inhibs(vars, Mdm2, p53).

rule(3)
def
= active(vars, p53, Mdm2).

rule(4)
def
= inhib(vars, Mdm2, p53).

rule(5)
def
= inhibc(vars, p53, DNAdam).

rule(6)
def
= inhibs(vars, DNAdam, Mdm2).

system
def
= vars, rule(1), rule(2), rule(3),

rule(4), rule(5), rule(6), well defined(vars).

Initial state:

initial state
def
= abs(p53)⊗ pres(Mdm2), initial state at 0.
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Informal Proofs

Informal Proofs

Linear Logic ↪→ we sometimes need, in the theorems:

dont care(x)
def
= pres(x)⊕ abs(x)

dont care(V )
def
= ⊗x∈V dont care(x).

In the proofs:

Case analysis on the possible values of variables
(using well defined1).

Definitions:

state0
def
= abs(p53)⊗ pres(Mdm2)

state1
def
= pres(p53)⊗ abs(Mdm2).
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Informal Proofs

Property 1

As long as there is DNA damage, the system can oscillate (with a
short period) from state0 to state1 and back again.

Proposition (Property 1, Version 1)

For any world w, there exists two worlds u and v such that both u
and v are less than 3 and the following holds:
† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
` δu [(state1 ⊗ dont care(DNAdam)) &

(δv (state0 ⊗ dont care(DNAdam)))] @ w

Proposition (Property 1, Version 2)

† system @ 0 ; state0 ⊗ pres(DNAdam) @ w
` state1 ⊗ dont care(DNAdam) @ w .u and

† system @ 0 ; state1 @ w .u ` state0 @ w .u.v
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Informal Proofs

Property 2

DNA damage can be quickly recovered.

Proposition (Property 2)

For any world w, there exists a world u such that u is less than 5
and the following holds:
† system @ 0; state0 ⊗ pres(DNAdam) @ w
` state0 ⊗ abs(DNAdam) @ w .u
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Informal Proofs

Induction/Case Analysis

Case analysis on the set of fireable rules:

fireables(1)
def
= pres(DNAdam)⊗ pres(Mdm2)⊗ dont care(p53)

not fireables(1)
def
=

((abs(DNAdam)⊗ pres(Mdm2)) ⊕ (pres(DNAdam)⊗ abs(Mdm2)) ⊕
(abs(DNAdam)⊗ abs(Mdm2))) ⊗ dont care(p53)

fireable(1)
def
=

(pres(DNAdam)⊕ (pres(DNAdam)⊗ pres(Mdm2))⊕
(pres(DNAdam)⊗ abs(Mdm2))) ⊗ dont care(p53)

not fireable(1)
def
= abs(DNAdam) ⊗ dont care({Mdm2, p53})

“for any fireable rule r ,P”
for any rule r in [1..6], (fireable(r) & P)⊕ not fireable(r)
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Informal Proofs

Property 3

If there is no DNA damage, the system remains in the initial state.

A first attempt at formalizing this property might be:

For any world w , the following holds:
† system @ 0, abs(DNAdam) @ 0 ` state0 ⊗ abs(DNAdam) @ w .

We want to prove that if abs(DNAdam) @ 0 then
state0 ⊗ abs(DNAdam) @ w holds, for all worlds w , no matter
which rule is fired to get to w .

Thus our property requires a case analysis on the rules of the
biological system.
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Informal Proofs

Property 3 (con’t)

Proposition (Property 3)

Let P denote the formula state0 ⊗ abs(DNAdam). For any world
w, the following holds: † system @ 0, P @ 0 ` P at 0 @ w ;
and for any world w, for any rule r in the interval [1..6], the
following holds:
† system @ 0 ` P → (fireable(r) & δ1 P) ⊕ not fireable(r) @ w
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Informal Proofs

Property 4

There is no path with two consecutive states where p53 and Mdm2

are both present or both absent.
In other words: from any state where p53 and Mdm2 are both
present or both absent, we can only go to a state where either p53
is present and Mdm2 is absent or p53 is absent and Mdm2 is present.

This requires a stronger (natural) hypothesis: we need the property
that each rule modifies at least one entity in the system.

↪→ strong inhibition and activation rules:

s active(V , a, b)
def
= pres(a)⊗ abs(b)→

δ1(pres(a)⊗ pres(b))⊗ ↓ u. unchanged(V \ {a, b}, u)).
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Informal Proofs

Property 4 (con’t)

L := (pres(p53) ⊗ pres(Mdm2)) ⊕ (abs(p53) ⊗ abs(Mdm2))
R := ((pres(p53) ⊗ abs(Mdm2)) ⊕

(abs(p53) ⊗ pres(Mdm2)))⊗ dont care(DNAdam)

from L we can only go to R, no matter which rule is fired.
↪→ case analysis on the set of fireable rules:

Proposition (Property 4)

For any world w, for any rule r in the interval [1..6], the following
holds:
† system @ 0; .
` L → (s fireable(r) & δ1R)⊕ s not fireable(r) @ w
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Formal Proofs [1]

Proofs fully formalized in Coq,
using a λProlog prover to help with partial automation of the proofs.

The λProlog prover is
a (generic) tactic-style interactive theorem prover,
instantiated with tactics implementing HyLL’s inference rules.

↪→ Both prove meta-level properties of HyLL (ex: weakening)
and reason at the object-level (i.e. prove HyLL sequents).

Two-level style of reasoning, with HyLL as the specification logic.
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Formal Proofs [2]

HyLL is implemented as an inductive predicate in Coq.

Γ; ∆,A @ u,B @ u ` C @ w

Γ; ∆,A⊗ B @ u ` C @ w
⊗ L

Coq’s apply tactic requires arguments to be given explicitly for
the instantiation of A, B, ∆, etc.

λProlog’s tactics use unification to infer these arguments.

↪→ The λProlog prover
(interactively) applies the HyLL inference rules, and then
automatically generates proof scripts for Coq.
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Formal Proofs [3]

Let Gamma and PP be the Coq encodings of (resp.)
† system @ 0 and (state0 ⊗ abs(DNAdam)).

Theorem Property3 : forall w:world,
seq Gamma ((PP @ 0)::nil) ((PP at 0) @ w) and
forall (n:nat) (A B:oo ), fireable n A → not fireable n B →
seq Gamma nil ((PP →o ((A &a step PP) +o B)) @ w).

The Coq proof of the 2nd conjunct proceeds by case analysis on n,
then inversion on (fireable n A) and (not fireable n B),
which provides instantiations for A and B

(the conditions that express whether the rule is fireable or not).

The resulting 6 subgoals are sent to the λProlog prover, whose
output is imported back into Coq.
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Comparison with Model Checking

Model checking:

- encode the biological system as a finite transition system,

- specify properties in propositional temporal logic, and

- verify properties by exhaustive enumeration of all reachable S

+ efficient tools

CCind-λProlog-HyLL:

+ HyLL has a very traditional proof theoretic pedigree: sequent
calculus, cut-elimination and focusing;

+ unified framework to encode both transition rules and (both
statements and proofs of) temporal properties;

+ all the models containing the rules satisfy a (∃) property.

- theorem proving can be time consuming and needs expert.
Can however provide partial, and sometimes complete,
automation of the proofs.
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Temporal Operators

Encoding of temporal logic operators in HyLL[T ], where
T = 〈IN,+, 0〉, representing instants of time:

State quantifiers
F ⇔ ♦, G⇔ � and XP ⇔ δ1P

P1UP2 ⇔↓ u. ∃v . P2 at u.v ⊗ ∀w < v . P1 at u.w

Path quantifiers
E corresponds to the existence of a proof: EF⇔ ♦, EG⇔ �
A: consider all the possible rules to be applied at each step.
Let R be the set of rules of our transition system.

AXP is encoded as ∀r ∈ R δ1P. More precisely:
AXP ⇔ ∀r ∈ R (fireable(r) & δ1P)⊕ not fireable(r)
AGP ↔ P ∧ AG(P → AX(P)).
AGP ⇔ P ⊗ ∀n(P at n)→ ∀r ∈ R(P at n + 1).



Motivation Approach Hybrid Linear Logic Example Formal Proofs Comparison with Model Checking Future Work

Temporal Operators (con’t)

AFP ↔ P ∨ AX(AFP).
If we have a bound k on the number of steps needed:
P ∨ AX(P ∨ AX(. . .AXP)), with k nested occurrences of AX.
AFP ⇔ P ⊕ ∀r ∈ R(δ1P ⊕ (∀r ∈ R(. . . δkP))).

A(P1UP2)↔ P2 ∨ (P1 ∧ AX(P1UP2).
If we have a bound k on the number of steps needed:
P2 ∨ (P1 ∧ AX(P2 ∨ (P1 ∧ AX(. . .AXP2)))), with k nested
occurrences of AX.
A(P1UP2)
⇔ P2 ⊕ (P1 ⊗ ∀r ∈ R(δ1P2 ⊕ (δ1P1 ⊗ ∀r ∈ R(. . . δkP2))))

O P
def
=↓ u.∃w .(P at u − w) H P

def
=↓ u.∀w .(P at u − w)
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Further Advantages w.r.t Model Checking

We do not need to blindly try all possible rules at each step
but we can guide the proof.

Proof of a property of the system which is not desirable:
we can look for the rules to be removed/modified among
those that have been used in the proof.

“P is true at every even state of an infinite path”:
∀n = 2k. P at n.

Couple our models with other models sharing some variables.
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Future Work

Other examples.

Multivalued biological models: C(A, x).

Continuous / stochastic constraints.

Automate the choice between fireable rules - Gillespie.

Axioms for external events.

...

A resource-aware stochastic or probabilistic λ-calculus
that has HyLL propositions as (behavioral) types.
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Thanks for your attention
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