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Abstract

HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have
been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both
frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof
systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth
judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear
logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels
defines the provability relation among resources in those locations. It is well known that SELL, as a logical
framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more
expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL’s logical rules into LL
with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an
encoding of HyLL into SELL� (SELL plus quantification over locations) that gives better insights about
the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of
encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole
set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully
encode the behavior of such temporal operators.

Keywords: Linear Logic, Hybrid Linear Logic, subexponentials, logical frameworks, Temporal Logic.

1 Introduction

Logical frameworks are adequate tools for specifying proof systems, since they sup-

port levels of abstraction that facilitate writing declarative specifications of object-

logic proof systems. Many frameworks have been used for the specification of proof

systems, and linear logic [13] (LL) is one of the most successful ones. This is mainly

because LL is resource conscious and, at the same time, it can internalize classical

and intuitionistic behaviors (see, for example, [6, 14]).
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However, since specifications of object-level systems into the logical framework

should be natural and direct, there are some features that cannot be adequately

captured in LL, in particular modalities different from the ones present in LL.

Extensions of LL have been proposed in order to fill this gap. The aim is to

propose stronger logical frameworks that preserve the elegant properties of linear

logic as the underlying logic. Two of such extensions are HyLL (Hybrid Linear

Logic) 3 [8] and SELL (Subexponential Linear Logic) [9,19]. These logics have been

extensively used for specifying systems that exhibit modalities such as temporal or

spatial ones. The difference between HyLL and SELL relies on the way modalities

are handled.

In HyLL, truth judgments are labeled by worlds and two hybrid connectives

relate worlds with formulas: the satisfaction at which states that a proposition is

true at a given world, and the localization ↓ which binds a name for the (current)

world the proposition is true at. These constructors allow for the specification of

modal connectives such as �A (A is true in all the accessible worlds) and �A (there

exists an accessible world where A holds). The underlying structure on worlds

allows for the modeling of transitions systems and the specification of temporal

formulas [8, 10].

In SELL, the LL exponentials (!, ?) are decorated with labels: the formula ?aA

can be interpreted as A holds in a location, modality, or world a. Moreover, A can

be deduced in a location b related to a (b � a). On the other side, the formula

?a!aA means that A is confined into the location a, that is, the information A is not

propagated to other worlds/locations related to a. While linear logic has only seven

logically distinct prefixes of bangs and question-marks (none, !, ?, !?, ?!, !?!, ?!?),

SELL allows for an unbounded number of such prefixes (e.g., !a?c?d). Hence SELL

enhances the expressive power of LL as a logical framework.

Up to now, it was not clear how HyLL is related to LL and/or SELL. In this

paper we answer that question by showing a direct encoding of the HyLL’s logical

rules into LL with the highest level of adequacy. Hence, we show that HyLL is

actually as expressive as LL.

We also propose an encoding of HyLL into SELL� (SELL with quantification

over locations) that gives better insights about the meaning of worlds in HyLL.

More precisely, we represent HyLL formulas as formulas in SELL and encode the

logical rules as formulas in SELL�. We show that a flat subexponential structure

is sufficient for representing any world structure in HyLL. This explains better why

the worlds in HyLL do not add any expressive power to LL: they cannot control the

logical context as the subexponentials do with the promotion rule.

HyLL has been shown to be a flexible framework for the specification of biological

systems [10] where both the system and its properties are specified using the same

logic. More precisely, the properties of interest are first written in Computational

Tree Logic (CTL) and later encoded as HyLL formulas. However, there was no

a formal statement about the CTL fragments that can be adequately captured

3 Actually, HyLL is an extension of intuitionistic linear logic (ILL), while SELL can be viewed as an
extension of both ILL or LL.
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in HyLL. Hence, the last contribution of this paper is to continue our study of

HyLL theory and to push forward previous attempts of using this logic for the

specification of transition systems and formulas in CTL. We show that it is not

possible to adequately encode, in HyLL, the universal path quantifier A (for all

paths), nor the temporal formula EGQ (there exists a path where Q always holds).

The definition of such formulas is recursive, hence one needs to use induction, at the

meta-level, to accurately capture their behavior. Instead of using meta-reasoning,

as done in [10], we use a logical framework featuring fixed point constructs. More

precisely, we use additive multiplicative LL with fixed point operators (μMALL) [3]

for the encoding of CTL. We show that the well known fixed point characterization

of CTL [4] can be matched by the fixed point operators of μMALL.

The rest of the paper is organized as follows. We briefly recall LL in Section

2.1, HyLL in Section 2.2 and SELL in Section 2.3. The encoding of HyLL logical

rules into LL is discussed in Section 3.1. Section 3.2 presents the encoding of HyLL

into SELL�. We also prove that information confinement, a feature in SELL that

is needed to specify spatial systems, cannot be captured in HyLL. Section 4 shows

how to encode CTL into μMALL. Section 5 concludes the paper. The companion

technical report [11] contains the detailed proofs of the results as well as the complete

set of rules of the sequent calculi used in this paper.

2 Preliminaries

Although we assume that the reader is familiar with linear logic [13] (LL), we review

some of its basic proof theory in the following sections.

2.1 Linear Logic and Focusing

Literals are either atomic formulas (p) or their negations (p⊥). The connectives ⊗
and

.................................................
............
.................................. and their units 1 and ⊥ are multiplicative; the connectives ⊕ and & and their

units 0 and � are additive; ∀ and ∃ are (first-order) quantifiers; and ! and ? are the

exponentials (called bang and question-mark, respectively).

First proposed by Andreoli [2] for linear logic, focused proof systems provide

normal form proofs for cut-free proofs. The connectives of linear logic can be divided

into two classes. The negative connectives have invertible introduction rules: these

connectives are
.................................................
............
.................................. , ⊥, &, �, ∀, and ?. The positive connectives ⊗, 1, ⊕, 0, ∃, and !

are the de Morgan duals of the negative connectives. A formula is positive if it is a

negated atom or its top-level logical connective is positive. Similarly, a formula is

negative if it is an atom or its top-level logical connective is negative.

Focused proofs are organized into two phases. In the negative phase, all the

invertible inference rules are eagerly applied. The positive phase begins by choosing

a positive formula F on which to focus. Positive rules are applied to F until either

1 or a negated atom is encountered (and the proof must end by applying the initial

rules) or the promotion rule (!) is applied or a negative subformula is encountered,

when the proof switches to the negative phase.
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This change of phases on proof search is particularly interesting when the focused

formula is a bipole [2].

Definition 2.1 We call a monopole a linear logic formula that is built up from

atoms and occurrences of the negative connectives, with the restriction that ? has

atomic scope. Bipoles, on the other hand, are positive formulas built from monopoles

and negated atoms using only positive connectives, with the additional restriction

that ! can only be applied to a monopole.

Focusing on a bipole will produce a single positive and a single negative phase.

This two-phase decomposition enables us to adequately capture the application

of object-level inference rules by the meta-level linear logic, as will be shown in

Section 3.

The focused system LLF for classical linear logic can be found in [11].

2.2 Hybrid Linear Logic

Hybrid Linear Logic (HyLL) is a conservative extension of intuitionistic first-order

linear logic (ILL) [13] where the truth judgments are labeled by worlds representing

constraints on states and state transitions. Judgments of HyLL are of the form “A

is true at world w”, abbreviated as A @ w. Particular choices of worlds produce

particular instances of HyLL. Typical examples are “A is true at time t”, or “A is

true with probability p”. HyLL was first proposed in [8] and it has been used as a

logical framework for specifying biological systems [10].

Formally, worlds are defined as follows.

Definition 2.2 [HyLL worlds] A constraint domain W is a monoid structure

〈W, ., ι〉. The elements ofW are called worlds and its reachability relation � : W×W

is defined as u � w if there exists v ∈ W such that u.v = w.

The identity world ι is �-initial and it is intended to represent the lack of any con-

straints. Thus, the ordinary first-order linear logic is embeddable into any instance

of HyLL by setting all world labels to the identity. A typical, simple example of

constraint domain is T = 〈IN,+, 0〉, representing instants of time.

Atomic propositions (p, q, . . .) are applied to a sequence of terms (s, t, . . .), which

are drawn from an untyped term language containing constants (c, d, . . .), term

variables (x, y, . . .) and function symbols (f, g, . . .) applied to a list of terms (t). Non-

atomic propositions are constructed from the connectives of first-order intuitionistic

linear logic and the two hybrid connectives. Namely, satisfaction (at), which states

that a proposition is true at a given world (w, ι, u.v, . . .), and localization (↓), which
binds a name for the (current) world the proposition is true at. The following

grammar summarizes the syntax of HyLL.

t ::= c | x | f(t)

A,B ::= p(t) | A⊗B | 1 | A → B | A&B | � | A⊕B | 0 | !A |

∀x. A | ∃x. A | (A at w) | ↓ u. A | ∀u. A | ∃u. A

J. Despeyroux et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 95–11198



Note that world u is bounded in the propositions ↓ u. A, ∀u. A and ∃u. A. World

variables cannot be used in terms, and neither can term variables occur in worlds.

This restriction is important for the modular design of HyLL because it keeps purely

logical truth separate from constraint truth. We note that ↓ and at commute freely

with all non-hybrid connectives [8].

The sequent calculus [12] presentation of HyLL uses sequents of the form Γ;Δ �
C @ w where Γ (unbounded context) is a set and Δ (linear context) is a multiset of

judgments of the form A @ w. Note that in a judgment A @ w (as in a proposition

A at w), w can be any expression in W, not only a variable.

The inference rules dealing with the new hybrid connectives are depicted below

(the complete set of rules can be found in [11]).

Γ;Δ � A@u

Γ;Δ � (A at u)@w
atR

Γ;Δ, A@u � C@w

Γ;Δ, (A at u)@v � C@w
atL

Γ;Δ � A[w/u]@w

Γ;Δ �↓ u.A@w
↓ R

Γ;Δ, A[v/u]@v � C@w

Γ;Δ, ↓ u.A@v � C@w
↓ L

Note that (A at u) is a mobile proposition: it carries with it the world at which it

is true. Weakening and contraction are admissible rules for the unbounded context.

The most important structural properties are the admissibility of the general

identity (i.e. over any formulas, not only atomic propositions) and cut theorems.

While the first provides a syntactic completeness theorem for the logic, the latter

guarantees consistency (i.e. that there is no proof of .; . � 0 @ w).

Theorem 2.3 (Identity/Cut)

1. Γ;A @ w � A @ w

2. If Γ;Δ � A @ u and Γ;Δ′, A @ u � C @ w, then Γ;Δ,Δ′ � C @ w

3. If Γ; . � A @ u and Γ, A @ u; Δ � C @ w, then Γ;Δ � C @ w.

HyLL is conservative with respect to intuitionistic linear logic: as long as no

hybrid connectives are used, the proofs in HyLL are identical to those in ILL.

Moreover, HyLL is more expressive than S5, as it allows direct manipulation of the

worlds using the hybrid connectives, while HyLL’s δ connective (see Section 4) is

not definable in S5. We also note that HyLL admits a complete focused [2] proof

system. The interested reader can find proofs and further meta-theoretical theorems

about HyLL in [8].

2.3 Subexponentials in Linear Logic

Linear logic with subexponentials 4 (SELL) shares with LL all its connectives except

the exponentials: instead of having a single pair of exponentials ! and ?, SELL may

contain as many subexponentials [9, 15, 19], written !a and ?a, as one needs. The

4 We note that intuitionistic and classical SELL are equally expressive, as shown in [5]. Hence, although
we will introduce here the classical version of SELL (needed in Section 3.2), we could also present SELL as
an extension of ILL.
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grammar of formulas in SELL is as follows:

F ::= 0 | 1 | � |⊥| p(t) | F1 ⊗ F2 | F1 ⊕ F2 | F1
.................................................
............
.................................. F2 | F1 & F2 |

∃x.F | ∀x.F | !aF | ?aF

The proof system for SELL is specified by a subexponential signature Σ = 〈I,�, U〉,
where I is a set of labels, U ⊆ I is a set specifying which subexponentials allow

weakening and contraction, and � is a pre-order among the elements of I. We shall

use a, b, . . . to range over elements in I and we will assume that � is upwardly closed

with respect to U , i.e., if a ∈ U and a � b, then b ∈ U .

The system SELL is constructed by adding all the rules for the linear logic

connectives except those for the exponentials.

The rules for subexponentials are dereliction and promotion of the subexponen-

tial labeled with a ∈ I

� ?a1F1, . . . ?
anFn, G

� ?a1F1, . . . ?
anFn, !

aG
!a

� Γ, G

� Γ, ?aG
?a

Here, the rule !a has the side condition that a � ai for all i. That is, one can only

introduce a !a if all other formulas in the sequent are marked with indices that are

greater than or equal to a. Moreover, for all indices a ∈ U , we add the usual rules

of weakening and contraction to ?a.

We can enhance the expressiveness of SELL with the subexponential quantifiers

� and � ( [16, 19]) given by the rules (omitting the subexponential signature)

� Γ, G[le/lx]

� Γ,�lx : a.G
�

� Γ, G[l/lx]

� Γ,�lx : a.G
�

where le is fresh. Intuitively, subexponential variables play a similar role as eigen-

variables. The generic variable lx : a represents any subexponential, constant or

variable in the ideal of a. Hence lx can be substituted by any subexponential l of

type b (i.e., l : b) if b � a. We call the resulting system SELL�.

As shown in [16, 19], SELL� admits a cut-free, complete focused proof system

(presented in [11]). That will be the system used throughout this text.

Theorem 2.4 SELL� admits cut-elimination for any subexponential signature Σ.

3 Relative Expressiveness Power of HyLL and SELL

We observe that, while linear logic has only seven logically distinct prefixes of bangs

and question-marks, SELL allows for an unbounded number of such prefixes, e.g.,

!i, or !i?j . Hence, by using different prefixes, we allow for the specification of richer

systems where subexponentials are used to mark different modalities/states. For

instance, subexponentials can be used to represent contexts of proof systems [17];
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to specify systems with temporal, epistemic and spatial modalities [16,19] and soft-

constraints or preferences [20]; to specify Bigraphs [7]; and to specify and verify

biological [18] and multimedia interacting systems [1].

One may wonder whether the use of worlds in HyLL increases also the expres-

siveness of LL. In this section we prove that this is not the case by showing that

HyLL rules can be directly encoded into LL by using the methods proposed in [14].

3.1 HyLL and Linear Logic

In [14] classical linear logic (LL) was used as the logical framework for specifying a

number of logical and computational systems. The idea is simple: use two meta-

level predicates �·� and �·� for identifying objects that appear on the left or on

the right side of the sequents in the object logic, respectively. Hence, object-level

sequents of the form B1, . . . , Bn � C1, . . . , Cm (where n,m ≥ 0) are specified as

the multiset �B1�, . . . , �Bn�, �C1�, . . . , �Cm�. If an object-formula B is in a (object-

level) classical context, it will be specified in LL as ?�B� or ?�B� (depending on

the side of B in the original sequent). Hence HyLL sequents of the form Δ;Γ � C

will be encoded in LL as ?�Δ� .................................................
............
.................................. �Γ� .................................................

............
.................................. �C� where, if Ψ = {F1, ..., Fn}, then

�Ψ� = �F1� .................................................
............
.................................. ...

.................................................
............
.................................. �Fn� and ?�Ψ� = ?�F1� .................................................

............
.................................. ...

.................................................
............
.................................. ?�Fn� (similarly for �·�).

Inference rules are specified by a rewriting clause that replaces the active formula

in the conclusion by the active formulas in the premises. The linear logic connectives

indicate how these object level formulas are connected: contexts are copied (&) or

split (⊗), in different inference rules (⊕) or in the same sequent (
.................................................
............
.................................. ). As a matter of

example, the additive version of the inference rules for conjunction in classical logic

Δ, A −→ Γ

Δ, A ∧B −→ Γ
∧L1

Δ, B −→ Γ

Δ, A ∧B −→ Γ
∧L2

Δ −→ Γ, A Δ −→ Γ, B

Δ −→ Γ, A ∧B
∧R

can be specified as

∧L : ∃A,B.(�A ∧B�⊥ ⊗ (�A� ⊕ �B�)) ∧R : ∃A,B.(�A ∧B�⊥ ⊗ (�A�& �B�))

The following definition shows how to encode HyLL inference rules into LL.

Definition 3.1 [HyLL rules into LL] Let w, d, h and o denote, respectively, the

types for worlds, (first-order) objects, HyLL judgments and LL formulas. Let �·�
and �·� be predicates of the type h → o and A, B, C have, respectively, types w → h,

d → h and h. The encoding of HyLL inference rules into LL is depicted in Figure

1 (we omit the encoding of most of the linear logic connectives that can be found

in [14]).

Observe that left and right inference rules for the hybrid connectives (at and ↓)
are the same (see Section 2.2). This is reflected in the duality of the encoding where

we only replace �·� with �·�. Observe also that the inference rules for the quantifiers

(first-order and worlds) look the same. The difference is on the type of the variables

involved. Since A has type w → h, the encoding clause ∀R(W ) guarantees that the
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⊗ R : ∃C,C ′, w.(�(C ⊗ C ′)@w�⊥ ⊗ �C@w� ⊗ �C ′@w�) ⊗ L : ∃C,C ′, w.(�(C ⊗ C ′)@w�⊥ ⊗ (�C@w� .................................................
............
.................................. �C ′@w�))

at R : ∃C, u,w.(�(C at u)@w�⊥ ⊗ �C@u�) at L : ∃C, u,w.(�(C at u)@w�⊥ ⊗ �C@u�)

↓ R : ∃A, u,w.(�↓ u.A@w�⊥ ⊗ �(A w)@w�) ↓ L : ∃A, u,w.(�↓ u.A@w�⊥ ⊗ �(A w)@w�)

∀R(F ) : ∃B, u.(�∀x.B@u�⊥ ⊗ ∀x.�(B x)@u�) ∀L(F ) : ∃B, u.(�∀x.B@u�⊥ ⊗ ∃x.�(B x)@u�)

∀R(W ) : ∃A, u.(�∀v.A@u�⊥ ⊗ ∀v.�(A v)@u�) ∀L(W ) : ∃A, u.(�∀v.A@u�⊥ ⊗ ∃v.�(A v)@u�)

!L : ∃C,w.(�!C@w�⊥ ⊗ ?�C@w�) Init : ∃C,w.(�C@w�⊥ ⊗ �C@w�⊥)

Fig. 1. HyLL rules into LL. (Definition 3.1)

variable v has type w. Analogously, since B has type d → h, then x has type d in

the clause ∀R(F ). This neat way of controlling the behavior of objects by using

types is also inherited by the encoding of the other object level inference rules.

The following theorem shows that, in fact, the encoding of HyLL into LL is ade-

quate in the sense that a focused step in FLL corresponds exactly to the application

of one inference rule in HyLL.

Theorem 3.2 (Adequacy) Let Υ be the set of clauses in Figure 1. The sequent

Γ;Δ � F@w is provable in HyLL iff Υ, �Γ�; �Δ�, �F@w� ⇑ · is provable in FLL.

Moreover, the adequacy of the encodings is on the level of derivations meaning that,

when focusing on a specification clause, the bipole derivation corresponds exactly to

applying the introduction rule at the object level.

Proof. We will illustrate here the case for rule atL, the other cases are similar.

Applying the object level rule

Γ;Δ, A@u � C@v

Γ;Δ, (A at u)@w � C@v
atL

corresponds to deciding on the LL formula given by the encoding of the rule atL
(stored in Υ). Due to focusing, the derivation in LL has necessarily the shape

Υ, �Γ�; �(A at u)@w� ⇓ �(A at u)@w�⊥
I1

Υ, �Γ�; �Δ�, �C@v�, �A@u� ⇑ ·
Υ, �Γ�; �Δ�, �C@v� ⇓ �A@u� R ⇓, R ⇑

Υ, �Γ�; �Δ�, �(A at u)@w�, �C@v� ⇓ �(A at u)@w�⊥ ⊗ �A@u�
⊗

Υ, �Γ�; �Δ�, �(A at u)@w�, �C@v� ⇓ ∃C, u,w.(�(C at u)@w�⊥ ⊗ �C@u�)
3× ∃

Υ, �Γ�; �Δ�, �(A at u)@w�, �C@v� ⇑ · D2

That is, the LL formula corresponding to (A at u)@w is consumed and, in the end

of the focused phase, the encoding of A@u is stored into the linear context. This

mimics exactly the application of the Rule atL in HyLL. �

3.2 HyLL and SELL

Linear logic allows for the specification of two kinds of context maintenance: both

weakening and contraction are available (classical context) or neither is available

(linear context). That is, when we encode (linear) judgments in HyLL belonging

to different worlds, the resulting meta-level atomic formulas will be stored in the

same (linear) LL context. The same happens with classical HyLL judgments and
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⊗ R : ∃C,C ′. � w : ∞.(!w�(C ⊗ C ′)@w�⊥ ⊗ ?w�C@w� ⊗ ?w�C ′@w�)

at R : ∃A. � u : ∞, w : ∞.(!w�(A at u)@w�⊥ ⊗ ?u�A@u�)

at L : ∃A. � u : ∞, w : ∞.(!w�(A at u)@w�⊥ ⊗ ?u�A@u�)

↓ R : ∃A. � u : ∞, w : ∞.(!w�↓ u.A@w�⊥ ⊗ ?w�(A w)@w�)

↓ L : ∃A. � u : ∞, w : ∞.(!w�↓ u.A@w�⊥ ⊗ ?w�(A w)@w�)

∀R(F ) : ∃A,�w : ∞.(!w�∀x.B@w�⊥ ⊗ ∀x.?w�(B x)@w�)

∀R(W ) : ∃A,�w : ∞.(!w�∀v.A@w�⊥ ⊗ �v : ∞.?w�(A v)@w�)

!L : ∃C,�w : ∞.(!w�!C@w�⊥ ⊗ ?c?w�C@w�)

Fig. 2. HyLL rules into SELL�. (Definition 3.3)

the classical LL context.

Although this is perfectly fine, encoding HyLL into SELL� allows for a better

understanding of worlds in HyLL as we shall see. We use subexponentials to repre-

sent worlds, where each world has its own linear context. More precisely, a HyLL

judgment of the shape F@w in the (left) linear context is encoded as the SELL�

formula ?w�F@w�. Hence, HyLL judgments that hold at world w are stored at the

w linear context of SELL�. A judgment of the form G@w in the classical HyLL

context is encoded as the SELL� formula ?c?w�G@w�. That is, the encoding of

G@w is stored in the unbounded (classical) subexponential context c.

The next definition introduces the encoding of HyLL inference rules into SELL�.
Observe that, surprisingly, the subexponential structure needed is flat and it does

not reflect the order on worlds. This is explained by the fact that worlds in HyLL

do not control the context on rules as the promotion rule in SELL does. This also

explains why HyLL does not add any expressive power to LL.

Definition 3.3 Let w, d, h, �·�, �·�, A,B,C be as in Definition 3.1 and o be the type

for SELL� formulas. Given a HyLL constraint domainW, consider a subexponential

signature Σ = 〈I,�, U〉 such that I = W ∪ {∞, c}, w � ∞ for any w ∈ I and, for

any u,w ∈ W ∪ {c}, u �� w. Moreover, U = {c,∞}. The encoding of HyLL

inference rules into SELL� is depicted in Figure 2 (we omit the encodings of the

other connectives, that follow similarly).

Note that w : ∞ represents any subexponential in the ideal of ∞. This means

that, in �w : ∞.F , the subexponential variable w could be substituted, in principle,

by any element of I. But note that, since world symbols are restricted to W,

substituting w by c or ∞ would not match any encoded formula in the context.

That is, the proposed subexponential signature correctly specifies the role of worlds

in HyLL.

The following theorem shows that our encoding is indeed adequate.

Theorem 3.4 (Adequacy) Let Υ be the set of formulas resulting from the en-

coding in Definition 3.3. The sequent Γ;Δ � F@w is provable in HyLL iff c :
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{Υ, �Γ�}, wi : �Δ�, ?w�F@w�; · ⇑ is provable in SELL�. 5 Moreover, the adequacy

of the encodings is on the level of derivations.

Proof. Again, we will consider the rule atL, as the other cases are similar. If we

decide to focus on the SELL� formula corresponding to the encoding of atL (stored

in ?cΥ), we obtain

w : �(A at u)@w�; · ⇑ �(A at u)@w�⊥
D, I

c : {Υ, �Γ�}, w : �(A at u)@w�; · ⇓ !w�(A at u)@w�⊥ !s
c : {Υ, �Γ�}, wi : �Δ�, v : �C@v�, u : �A@u�; · ⇑ ·
c : {Υ, �Γ�}, wi : �Δ�, v : �C@v�; · ⇓ ?u�A@u� R ⇑, ?s

c : {Υ, �Γ�}, wi : �Δ�, w : �(A at u)@w�, v : �C@v�; · ⇓ !w�(A at u)@w�⊥ ⊗ ?u�A@u�
⊗

c : {Υ, �Γ�}, wi : �Δ�, w : �(A at u)@w�, v : �C@v�; · ⇓ ∃C,�u,w.(!w�(C at u)@w�⊥?u ⊗ �C@u�)
∃,�

c : {Υ, �Γ�}, wi : �Δ�, w : �(A at u)@w�, v : �C@v�; · ⇑ D

Observe that, in a (focused) derivation proving !wF , the only contexts that can

be present are w and the ∞ contexts due to the promotion rule and the ordering in

Σ. Since the encoding does not store any formula into the context ∞, the formula

!wF must necessarily be proved from the formulas stored in w. Thus, unlike the

LL derivation after Theorem 3.2, the context c is weakened in the left-hand side

derivation since c �� w. Hence �(A at u)@w� stored initially in the location w is

substituted by �A@u� in the location u in one focused step. �

3.3 Information Confinement

One of the features needed to specify spatial modalities is information confinement :

a space/world can be inconsistent and this does not imply the inconsistency of the

whole system. We finish this section by showing that information confinement, a

feature that can be specified in SELL, cannot be modeled in HyLL.

In [16] the combination of subexponentials of the form !w?w was used in order

to specify information confinement in SELL. More precisely, since the sequents (in

a 2-sided sequent presentation) !w?w0 � 0 and !w?w0 � !v?v0 are not provable in

SELL, it is possible to specify systems where inconsistency is local to a given space

and does not propagate to the other locations.

In HyLL, however, it is not possible to confine inconsistency: the HyLL rule

Γ;Δ,0@u � F@w
0L

shows that any formula F in any world w is derivable from 0 appearing in any world

u. Observe that, even if we exchange the rule 0L for a weaker version

Γ;Δ,0@w � F@w
0′L

5 Clarifying some notation: if Δ = {F1@w1, . . . , Fn@wn}, then ?wi�Δ� = ?w1�F1@w1�, . . . , ?wn�Fn@wn�.
Observe that, in the negative phase, such formulas will be stored at their respective contexts, that will be
represented by wi : �Δ�.
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the rule 0L would still be admissible

Γ;Δ,0@w � (0 at v)@w
0′L

Γ;Δ,0@v � F@v
0′L

Γ;Δ, (0 at v)@w � F@v
atL

Γ;Δ,0@w � F@v
cut

4 Computation Tree Logic (CTL) in Linear Logic.

Hybrid linear logic is expressive enough to encode some forms of modal operators,

thus allowing for the specification of properties of transition systems. As mentioned

in [10], it is possible to encode CTL temporal operators into HyLL considering

existential (E) and bounded universal (A) path quantifiers. We show in this section

the limitation of such encodings and how to fully capture E and A CTL quantifiers

in linear logic with fixed points. For that, we shall use the system μMALL [3] that

extends MALL (multiplicative, additive linear logic) with fixed point operators.

CTL connectives and path quantifiers

Let us recall the meaning of the temporal operators in CTL. X (Next) means “at

the next state”. F (Future) means “in some future” while G (Globally) means “in

all futures”. ϕUψ (ϕ until ψ) means “from now, ϕ will be true in every steps until

some future point (possibly including now) where ψ holds (and from that point on,

ϕ can be true or false)”.

The CTL quantifier E (Exists) means “for some path” while A (All) means “for

all paths”. Formulas in CTL are built from propositional variables a, b, c, ..., the

usual propositional logic connectives and the temporal connectives preceded by a

path quantifier:

F ::= p | F ∧ F | F ∨ F | QXF | QFF | QGF | Q[FUF ] Q ∈ {A,E} (1)

where p is a state formula.

Transition Systems

Consider a set of propositional CTL variables V = {a1, ..., an}. A state s is a

valuation from V into the set {true, false}. We shall use pres(ai) (resp. abs(ai))

to denote that s(ai) = true (resp. s(ai) = false). Hence, a state s on the set V

can be seen as a conjunction of the form p1(a1)∧ ...∧pn(an) where pi ∈ {pres, abs}.
We consider transition systems defined by states as above and transition rules

of the form r : s → s′. For instance, if V = {a, b}, the transition rule r : pres(a) ∧
abs(b) → abs(a) ∧ pres(b) enables a transition from a state s = {a �→ true, b �→
false} to the state s′ = {a �→ false, b �→ true}. We shall use s

r
==⇒ s′ to denote

such transitions.

J. Despeyroux et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 95–111 105



4.1 Transition Systems and HyLL

In order to specify reachability properties in transition systems, some modal con-

nectives are defined in HyLL [8]:

�A
def
= ↓u. ∀w. (A at u.w) �A

def
= ↓u. ∃w. (A at u.w)

δv A
def
= ↓u. (A at u.v) A U B

def
= ↓ u. ∃v. (B at u.v & ∀w ≺ v. A at u.w)

�A (resp. �A) represents all (resp. some) state(s) satisfying A and reachable in

some path from now. The connective δ represents a form of delay: δv A stands for

an intermediate state in a transition to A. Informally it can be thought to be “v

before A”. AUB represents that A holds in all the steps until B holds.

We may use such modal operators in order to encode some features of transition

systems as HyLL formulas as follows. Consider a set V = {a1, ..., an} of propositional
variables, let s = p1(a1)∧ · · · ∧ pn(an) represent a state where pi ∈ {pres, abs} and

r : s → s′ be a rule specifying a state transition. We define the encoding [[·]] from
CTL states and state transitions to HyLL as

[[pres(ai)]] = pres(ai) [[abs(ai)]] = abs(ai)

[[s]] =
⊗

i∈1..n
[[pi(ai)]] [[r : s → s′]] = ∀w. (([[s]] at w)−◦ δ1([[s′]]) at w)

Moreover, let F,G be CTL formulas built from states and the connectives

∧,∨,U,EX,EF. We can define C[[F ]] as

C[[s]] = [[s]] C[[F ∧G]] = C[[F ]] & C[[G]]

C[[F ∨G]] = C[[F ]]⊕ C[[G]] C[[E[FUG]]] = C[[F ]]U C[[G]]

C[[EXF ]] = δ1 C[[F ]] C[[EFF ]] = �C[[F ]]

It is easy to see that such encodings are faithful, that is, a (CTL) formula F

holds at state s in the system defined by the transition rules R if and only if the

sequent [[R]]@0; [[s]]@w � C[[F ]]@w is provable in HyLL (see [11]). In fact, since

the left linear context is always constituted by atoms, the only action that can be

performed is to apply transition rules up to reaching the state satisfying F , which

is reachable in a finite number of steps for this CTL’s limited grammar.

However, the above encodings cannot be extended to consider formulas of the

shape EGF . In fact, the natural choice would be C[[EGF ]] = �C[[F ]], but this en-

coding would not be adequate. Consider, for instance, a system with only one rule

R = {r : s → s} that loops on the same state. Clearly, in CTL, s satisfies the

formula EGs. Now, consider the HyLL sequent [[R]]@0; [[s]]@w � �C[[s]]@w. If we

decide to introduce the connectives on the right, we obtain a derivation of the shape

[[R]]@0; [[s]]@w � [[s]]@w.v

[[R]]@0; [[s]]@w � �C[[s]]@w
↓R, ∀R, atR
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where v is fresh. Furthermore, if we use the implication in [[R]]@0, we obtain a

derivation of the shape:

[[R]]@0; [[s]]@(w + 1) � G

[[R]]@0; [[s]]@w � G
copy, ∀L,−◦L

Therefore, the left and right states in the sequent [[R]]@0; [[s]]@(k+n) � [[s]]v@w.v

will never match, and this sequent is not provable. Saying this in other way, the

resources in the context are enough for proving the property for a (bounded) n but

not for all natural numbers. For proving this, one necessarily needs (meta-level)

induction which is the same as using fixed points. The next section shows how to

do that with linear logic with fixed point operators.

4.2 Encoding E and A quantifiers in linear logic with fixed points

In order to prove (in CTL) the formula AFF at state s, we have to check if s satisfies

F . If this is not the case, we have to check that AFF holds for all the successors of

s (i.e., for all s′ s.t. s r
==⇒ s′ for some transition rule r). Hence, the definition of

AF is recursive and it is usually characterized as a (least) fixed point.

One way to capture this behavior would by adding fixed point operators to

HyLL. But it is simpler to rely on existing systems for linear logic with fixed points.

In the following, we show that it is possible to characterize the CTL formulas built

from the syntax (1) into the system μMALL [3] that adds to linear logic (without

exponentials) least and greatest fixed points.

μMALL shares with linear logic all the proof rules for the additive and multi-

plicative connectives plus the following two rules 6

� Δ, St x � B Sx, (Sx)⊥

� Δ, νBt
ν

� Δ, B(μB)t

� Δ, μBt
μ

where S is the (co)inductive invariant. The μ rule corresponds to unfolding while

ν allows for (co)induction.

Path quantifiers as fixpoints

The usual interpretation of the CTL quantifiers as fixed points (see e.g., [4]) is

EFF = μY.F ∨ EXY EGF = νY.F ∧ EXY E[F U G] = μY.G ∨ (F ∧ EXY )

AFF = μY.F ∨ AXY AGF = νY.F ∧ AXY A[F U G] = μY.G ∨ (F ∧ AXY )

In CTL, the considered transition system is assumed to be serial, i.e. every state

has at least one successor. This means that, in every state, there is at least one

fireable rule.

The next definition shows how to encode CTL formulas into μMALL.

6 μMALL also consider rules for equality and inequality but we do not need them in our developments.
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C[[AXF ]]R = &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]................................................................
............................... φ))

C[[EXF ]]R =
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]................................................................

............................... φ))

C[[AFF ]]R = μY. φ⊕ &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]................................................................
............................... Y ))

C[[EFF ]]R = μY. φ⊕
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]................................................................

............................... Y ))

C[[AGF ]]R = νY. φ& &
s→s′∈R

(neg(s)⊕ (pos(s)⊗ ([[s′]]................................................................
............................... Y ))

C[[EGF ]]R = νY. φ&
⊕

s→s′∈R
(pos(s)⊗ ([[s′]]................................................................

............................... Y ))

C[[A[F U G]]]R = μY.ψ ⊕
(
φ& &

s→s′∈R
(neg(s)⊕ (pos(s)⊗ ([[s′]]................................................................

............................... Y )))

)

C[[E[F U G]]]R = μY.ψ ⊕
(
φ&

⊕
s→s′∈R

(pos(s)⊗ ([[s′]]................................................................
............................... Y ))

)

Fig. 3. Encoding of CTL temporal operators into μMALL. Here, φ = C[[F ]]R and ψ = C[[G]]R.

Definition 4.1 [CTL into μMALL] LetR be a set of transition rules. The encoding

of QX, QF and QG, for Q ∈ {A,E} is in Figure 3. Given a state s = p1(a1) ∧ · · · ∧
pn(an) (as in Section 4.1), we define

[[pres(ai)]] = ai [[abs(ai)]] = a⊥i

[[s]] = [[p1(a1)]]
⊥.................................................

............
.................................. · · · ............................................................................................... [[pn(an)]]

⊥ [[p]] = pos(p)

pos(s) = [[p1(a1)]]⊗ · · · ⊗ [[pn(an)]] = [[s]]⊥

neg(s) = ([[p1(a1)]]
⊥ ⊗�)⊕ · · · ⊕ ([[pn(an)]]

⊥ ⊗�)

where p is a state formula. 7 Finally, we map the CTL connectives ∧ and ∨ into &

and ⊕, respectively.

Let us give some intuition. Consider the rule r : s → s′. The formula pos(s)

(resp. neg(s)) tests if r can (resp. cannot) be fired at the current state. The

encoding of the temporal quantifiers relies on the following principles. For each

transition rule, we test if the rule can be fired or not. If it can be fired, then the

current state is transformed into the new state. The encoding of A (resp. E) test

all (resp. one) of the fireable rules. This explains the use of & (resp.
⊕

).

Example 4.2 Consider the temporal formula AFF . We first check if F holds in

the current state. If this is not the case, for each of the fireable rules, we consume

[[s]] (using pos(s)) and release [[s′]], thus updating the current state. For instance,

consider the sequent � [[s]], C[[AFF ]]R and assume that the formula F does not

hold at state s. If we decide to focus on C[[AFF ]]R we obtain a derivation of the shape

7 It is useful to allow the state property to mention only a subset of the propositional variables in V. In
that case, we can define [[pi(ai)]] as above if ai occurs in p and � otherwise.
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� [[s]], neg(s1)⊕ (pos(s1)⊗ ([[s′1]]
.................................................
............
.................................. μB) ... � [[s]], neg(sm)⊕ (pos(sm)⊗ ([[s′m]]

.................................................
............
.................................. μB)

� [[s]], μB
μ,⊕,&

The premises correspond to proving if the rule ri is fireable or not. If ri : si → s′i
is fireable, we observe a derivation of the shape:

� [[s′i]], μB
� [[s]], pos(si)⊗ ([[s′i]]

.................................................
............
.................................. μB)

⊗,
.................................................
............
..................................

� [[s]], neg(si)⊕ (pos(si)⊗ ([[s′i]]
.................................................
............
.................................. μB))

⊕

where s becomes s′i and, from that state, μB must be proved.

Remark 4.3 Observe that, in all the clauses in Figure 3, the formula pos(s) ⊗
([[s′]]................................................................

............................... B), is present. We could have written instead [[r]]−◦B, which reads closer to

what we expect: “assuming that r is fired, B holds”. The formulas (L −◦ R) −◦ B
and L ⊗ (R −◦ B) are not equivalent. In fact, the first formula is equivalent to

(L ⊗ R⊥)................................................................
............................... B while the second is equivalent to L ⊗ (R⊥.................................................

............
.................................. B). The first is stronger

than the second in the sense that B can choose the branch to move up with (L or

R), while the second forces B to stick with R. Since the desired behavior is the

second, offering an extra possibility is not good for proof search.

Theorem 4.4 Let V = {a1, ..., an} be a set of propositional variables, R be a set

of transition rules on V, F be a CTL formula and s |=R
CTL F denote that F holds

at state s in the transition system defined by R. Then, s |=R
CTL F iff the sequent

� [[s]], C[[F ]]R is provable in μMALL.

Proof. [Proof sketch] In the case of the least fixed point, the result comes easily

since unfolding will always substitute s by a reachable state s′ (see derivation in

Example 4.2). For the greatest fixed point, we show that we can always provide the

needed invariant. For example, assume that the states in S = {s1, ..., sn} satisfy the

formula AGF . We can show that I = [[s1]]
⊥ ⊕ · · · ⊕ [[sn]]

⊥ is the greatest invariant

for proving the sequent � [[s]], C[[AGF ]]R. See [11] for the detailed proof. �

Our encodings assume that each rule “uses” all the variables (either present or

absent). This greatly simplifies the encodings and the adequacy proofs. In [10],

this restriction is not imposed, giving rise to more compact rules. Note that our

restrictions on the use of variables are without loss of generality: if a rule does not

use all the variables, we can preprocess the input and generate accordingly a set of

rules satisfying our requirements.

It it worth noticing that, in Definition 4.1, we do not encode the transition rules

as a theory (as we did in Section 4.1). The reason in the following. On one hand, the

presence of a formula [[R]] in the context, encoding the rules, may allow us to move

from the current state to a successor one. On the other hand, fixed points operators

must be applied in order to go through paths, checking properties on them. These

two actions should be coordinated, otherwise one would lose adequacy in the encod-

ings. More precisely, by focusing on [[R]], we may “jump” a state without checking
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the needed property in that state. Therefore, the use of fixed points excludes the

use of theories for encoding the transition system and we must internalize the tran-

sition rules in the definition of the path quantifiers (see Definition 4.1). This seems

to be the accurate way of controlling the use of rules in CTL.

Finally, note that the encoding of the CTL operators does not use the exponen-

tials. That is, only the multiplicative/additive part of the logic is enough.

5 Concluding Remarks and Future Work

We compared the expressiveness, as logical frameworks, of two extensions of linear

logic (LL). We show that it is possible to encode the logical rules of HyLL into

LL. In order to better analyze the meaning of worlds in HyLL, we show that a flat

subexponential structure suffices to encode HyLL into SELL�. We also show that

information confinement cannot be specified in HyLL. Finally, with better insights

about the meaning of HyLL’s words, we pushed forward previous attempts of using

HyLL to encode Computational Tree Logic (CTL). We showed that only by using

meta-level induction (or fixed points inside the logic) it is possible to faithfully

encode CTL path quantifiers. There are some other logical frameworks that are

extensions of LL, for example, HLF [21]. Being a logic in the LF family, HLF is

based on natural deduction, hence having a complex notion of (βη) normal forms as

well as lacking a focused system. Thus adequacy (of encodings of systems in HLF)

results are often much harder to prove in HLF than in HyLL or in SELL.

While logical frameworks should be general enough for specifying and verifying

properties of a large number of systems, some logical frameworks may be more

suitable for dealing with specific applications than others. Hence, it makes little

sense to search for “the universal logical framework”. However, it is often salutary

to establish connections between frameworks, specially when they are meant to

reason about the same set of systems.

In this context, both HyLL and SELL have been used for formalizing and an-

alyzing biological systems [10, 18]. This work indicates that SELL is a broader

framework for handling such systems, since it can encode HyLL’s rules naturally

and directly. However, the simplicity of HyLL may be of interest for specific pur-

poses, such as building tools for diagnosis in biomedicine. And we can use the

encoding of HyLL into LL in order to perform automatic proofs of properties of

systems encoded in HyLL, for example.

Formal proofs in HyLL were implemented in [10], in the Coq proof assistant. It

would be interesting to extend the implementations of HyLL given there to SELL.

Such an interactive proof environment would enable both formal studies of encoded

systems in SELL and formal meta-theoretical study of SELL itself.

We may pursue the goal of using HyLL/SELL for further applications. That

might include neuroscience, a young and promising science where many hypotheses

are provided and need to be verified.
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