

Compressing Two-dimensional Routing Tables with Order

Frédéric Giroire, Frédéric Havet, Joanna Moulierac

COATI – I3S (CNRS-Université de Nice)/Inria Sophia Antipolis

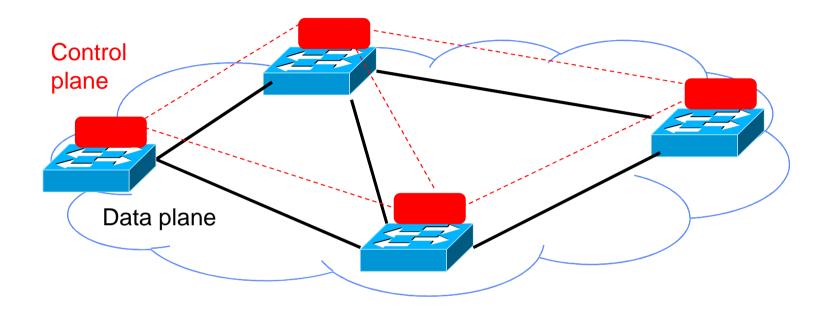
Compressing Two-dimensional Routing Tables with Order

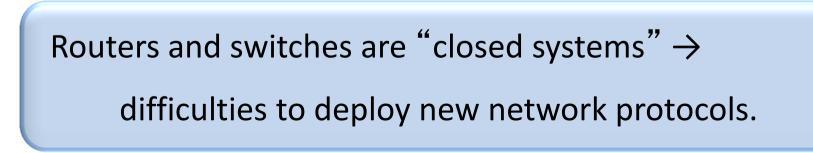
Frédéric Giroire, Frédéric Havet, Joanna Moulierac

rsité de Nice)/Inria polis

INOC 2015 7th International Network Optimization Conference May 18-20, 2015, Warsaw, Poland

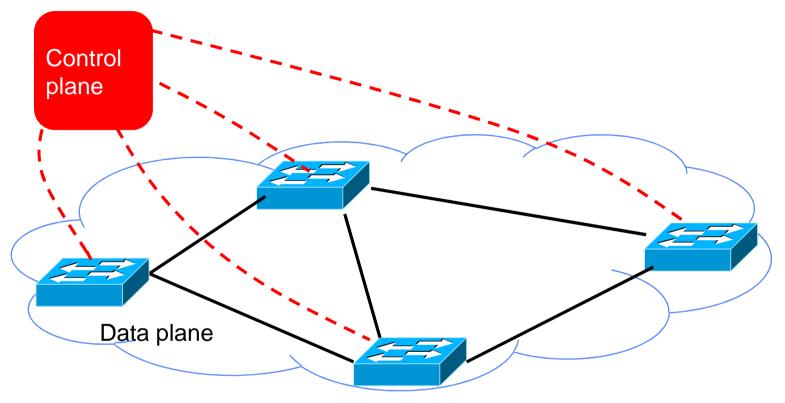
Traditional Network





Software Defined Networks (SDN)

Centralized Controller



Network elements are elementary switches, the intelligence is implemented by a logically centralized controller that manages the switches (i.e., install forwarding rules).

Software-Defined Networks

Networks are managed by configuration but

- each protocol has its own configuration set,
- each constructor has its own configuration language,
- it is hard to construct configurations that support all the possible cases.

SDN conceives the network as a **program**:

- Operators do not configure the network, they program it.
- Operators do not interact directly with devices.
- Network logic is implemented by humans but network elements are never touched by humans.

Forwarding/Routing Table

(Src, Dst)	Output port
(0, 2)	2
(0, 3)	2
(0, 4)	1
(1, 4)	1
(0, 5)	2
(2, 4)	3

Routing table

Forwarding/Routing Table

(Src, Dst)	Output port
(0, 2)	2
(0, 3)	2
(0, 4)	1
(1, 4)	1
(0, 5)	2
(2, 4)	3

Routing table

Problem: SDN routing tables are stored with TCAM memory which are expensive, power-hungry and with a limited size.

How do we deal with small rule tables?

- Eviction (e.g., LRU) or remove the least interesting rule when a new rule must be added.
- Split and distribute the rules in network.
- Use a minimum number of paths
- Compressing [1]

[1] Compressing Two-Dimensional Routing Tables (2003), Subhash Suri , Tuomas Sandholm , Priyank Warkhede

Compressing a single routing table using wildcards on src and dest

(Src, Dst)	Output port
(0, 2)	2
(0, 3)	2
(0, 4)	1
(1, 4)	1
(0, 5)	2
(2, 4)	2
(2, 5)	1
(1, 5)	1

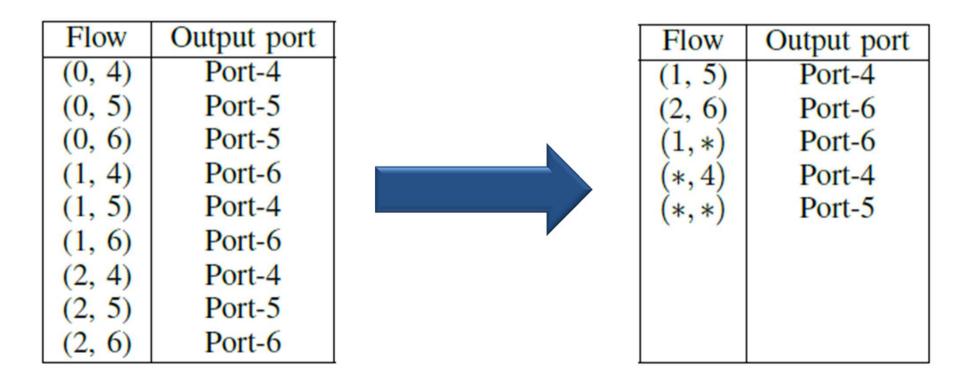
with wildcards

(Src, Dst)	Output port
(2, 4)	2
(*, 4)	1
(0, *)	2
(*, 5)	1

The order is important

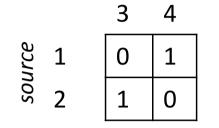
The **first matching rule** is applied

Example: If $(*, 4) \rightarrow 4$ is before $(1, *) \rightarrow 6$, then (1, 4) will be routed through 4, and not 6.



Cycles and inconsistencies

destination



The number of rules cannot be reduced in this case:

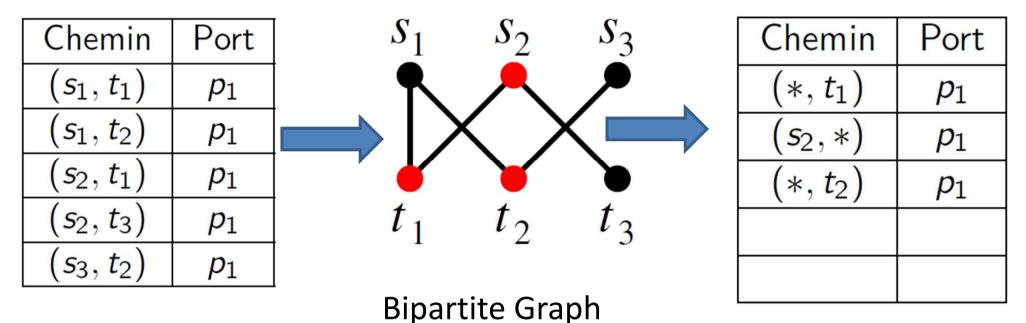
(Src, Dst)	Output port
(1, 3)	0
(1, 4)	1
(2, 3)	1
(2, 4)	0

(Src, Dst)	Output port
(1, 3)	0
(1, *)	1
(*, 4)	0
(*, 3)	1

Routing-List Problem

- Input: A routing table of a node with a set of triples (s,t,k)
- Output: an ordered compressed routing table with (s,t,k), (s,*,k), (*,t,k) and eventually the default (*,*,k) rules.
- **Objective:** Minimize the size of the routing table

Routing Table with 1 port is Polynomial



Find a set S in the associated bipartite graph such that each edge has one of its endpoints in S

With more than 2 ports

• For $k \ge 2$, the problem is NP-Complete

• Reduction to the Feedback Arc Set Problem

*A feedback arc set (FAS) is a set of edges which, when removed from the graph, leave a DAG.

- For each source s,
 - a rule (s, *, k) is put where k is the most frequent port for this source
 - The others rules are kept as (s,t,k') and put before
- Do the same for each destination t
- Choose the table of minimum size

- For each source s,
 - a rule (s, *, k) is put where k is the most frequent port for this source
 - The others rules are kept as (s,t,k') and put before
- Do the same for each destination t

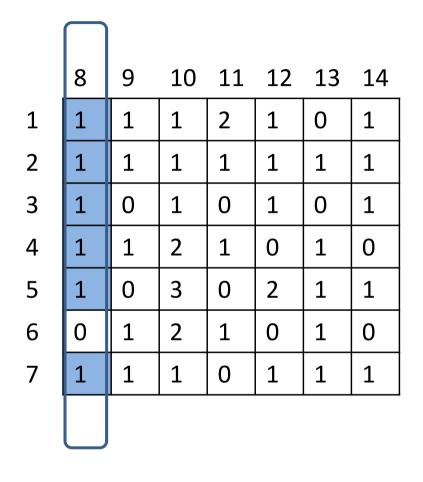
This gives a **2-Approximation** if (*,*,k) is not used for the List-Reduction problem: Input: A set *C* of communication triples and an integer *z* Output: sav(*C*) $\geq z$ where sav(*C*) is the number of saved triples

	8	9	10	11	12	13	14
1	1	1	1	2	1	0	1
2	1	1	1	1	1	1	1
3	1	0	1	0	1	0	1
4	1	1	2	1	0	1	0
5	1	0	3	0	2	1	1
6	0	1	2	1	0	1	0
7	1	1	1	0	1	1	1

	8	9	10	11	12	13	14	(1,11)→2	(Src, Dst)	Output
1	1	1	1	2	1	0	1	(1,13)→0	(1, 11)	2
2	1	1	1	1	1	1	1	(1,*)→1	(1, 13)	0
3	1	0	1	0	1	0	1		(1, *)	1
4	1	1	2	1	0	1	0			
5	1	0	3	0	2	1	1			
6	0	1	2	1	0	1	0			
7	1	1	1	0	1	1	1			

	8	9	10	11	12	13	14		(Src, Dst)	Output
1	1	1	1	2	1	0	1		(1, 11)	2
2	1	1	1	1	1	1	1	(2,*)→1	(1, 13)	0
3	1	0	1	0	1	0	1		(1, *)	1
4	1	1	2	1	0	1	0			1
5	1	0	3	0	2	1	1		(2, *)	I
6	0	1	2	1	0	1	0			
7	1	1	1	0	1	1	1			

	8	9	10	11	12	13	14		(Src, Dst)	Output
1	1	1	1	2	1	0	1		(1, 11)	2
2	1	1	1	1	1	1	1	(3,9)→0	(1, 13)	0
3	1	0	1	0	1	0	1	$(3,11) \rightarrow 0$ $(3 \rightarrow 13) \rightarrow 0$	(1, *)	1
4	1	1	2	1	0	1	0	(3,*)→1	(2, *)	1
5	1	0	3	0	2	1	1			-
6	0	1	2	1	0	1	0		(3,9)	0
7	1	1	1	0	1	1	1		(3,11)	0
									(3,13)	0
									(3,*)	1



The heuristic does the same for the destinations, and and chooses the smallest of the two tables

3-Approximation with (*,*) rule

 If (*,*) rule is used, a third table is considered, the minimum of the three tables is chosen

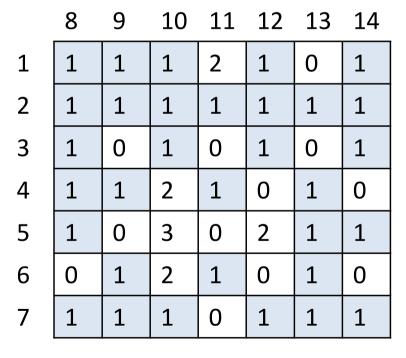


Table : Specific triples and the default rule $(*,*) \rightarrow 1$

Example - checkerboard

	7	8	9	10	11	12
1	1	0	1	0	1	0
2	0	1	0	1	0	1
3	1	0	1	0	1	0
4	0	1	0	1	0	1
5	1	0	1	0	1	0
6	0	1	0	1	0	1

Source-based	\rightarrow	entries
Destination-based	\rightarrow	entries
With Global rule	\rightarrow	entries
Optimal (with default rule)	\rightarrow	entries

Example - checkerboard

	/	8	9	10	11	12
1	1	0	1	0	1	0
2	0	1	0	1	0	1
3	1	0	1	0	1	0
4	0	1	0	1	0	1
5	1	0	1	0	1	0
6	0	1	0	1	0	1

^

10

11

17

7

0

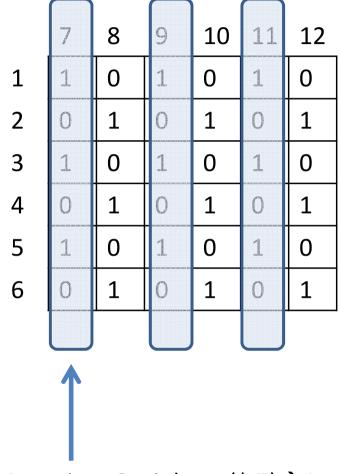
Source-based **Destination-based** With Global rule Optimal (with default rule)

 \rightarrow 24 entries \rightarrow 24 entries \rightarrow 19 entries \rightarrow 16 entries

Joanna Moulierac

Compressing 2-dimensional Routing Tables

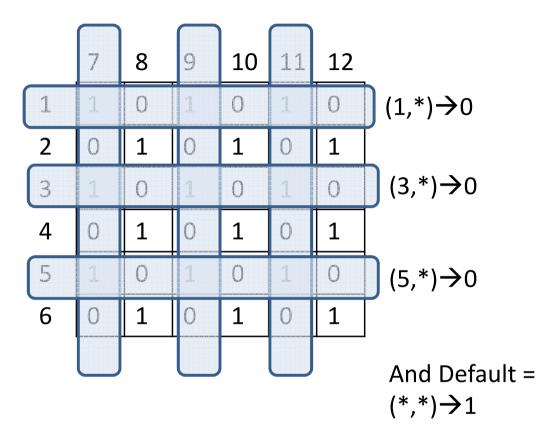
Example – checkerboard - OPT



OPT = 3*4+

4 entries : 3 triples + $(*,7) \rightarrow 1$

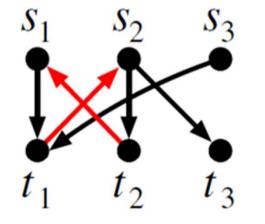
Example – checkerboard - OPT



OPT = 12+3+1 = 16

With two ports

Chemin	Port		
(s_1, t_1)	p_1		
(s_1, t_2)	<i>p</i> ₂		
(s_2, t_1)	<i>p</i> ₂		
(s_2, t_2)	p_1		
(s_2, t_3)	p_1		
(s_3, t_1)	p_1		



Associate Bipartite graph

Chemin	Port		
(s_1, t_2)	<i>p</i> ₂		
(s_2, t_1)	<i>p</i> 2		
$(*, t_1)$	p_1		
$(s_2, *)$	p_1		

There exists a 4-approximation for Feedback Arc Set for Bipartite Tournament [Van Zuylen, 2009]

ILP for acyclic

Minimize

$$\sum_{\forall s,t,k} r(s,t,k) + g(*,t,k) + g(s,*,k)$$

Subject to:

$$\begin{split} \sum_{\forall k} g(s,*,k) &\leq 1\\ \sum_{\forall k} g(*,t,k) &\leq 1\\ \forall (s,t,k),\\ r(s,t,k) + g(*,t,k) + g(s,*,k) &\geq 1 \end{split}$$

ILP with order

Minimize

$$\sum_{\forall s,t,k} r(s,t,k) + g(*,t,k) + g(s,*,k)$$

Subject to:

$$\begin{split} \sum_{\forall k} g(s,*,k) &\leq 1 \ ; \sum_{\forall k} g(*,t,k) \leq 1 \\ \forall (s,t,k), \qquad r(s,t,k) + g(*,t,k) + g(s,*,k) \geq 1 \end{split}$$

$$r(s,t,k) + \operatorname{order}(g(s,*,k), g(*,t,k')) \ge g(*,t,k')$$

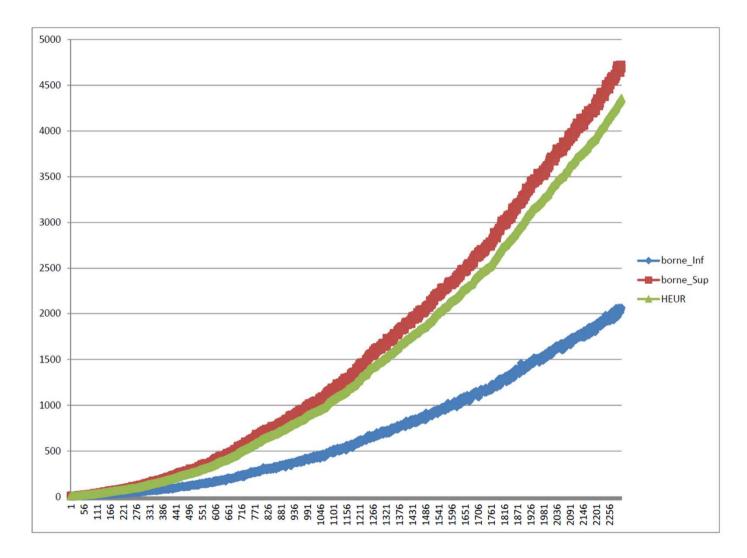
$$r(s,t,k) + g(s,*,k) \ge g(*,t,k')$$

$$r(s,t,k) + \operatorname{order}(g(*,t,k),g(s,*,k')) \ge g(s,*,k')$$

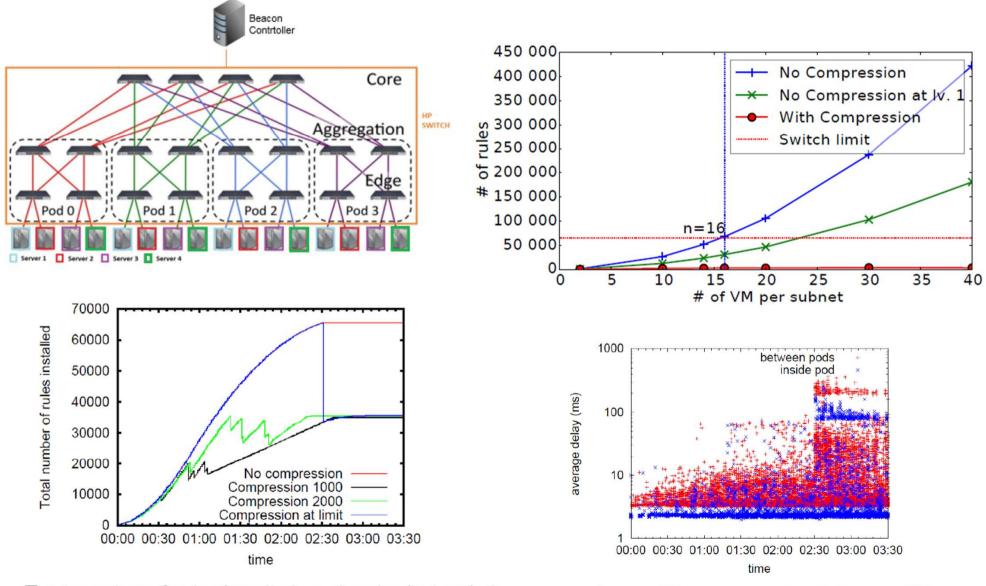
$$r(s,t,k) + g(*,t,k) \ge g(s,*,k')$$

 $1 \leq order(g1, g2) + order(g2, g3) + order(g3, g1) \leq 2$

Number of rules – Upper and Lower Bounds



Experimentation on a fat-tree



Total number of rules installed on the physical switch

Conclusion

- Fixed-Parameter Tractability
- Lower and Upper Bounds for the number of rules
- Best Approximation Ratio for List-Reduction?
- Routing-List Problem is APX-Complete?

Find more: *https://hal.inria.fr/hal-01097910*

