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Abstract. High Angular Resolution Imaging (HARDI) can better explore the
complex micro-structure of white matter compared to Diffusion Tensor Imaging
(DTI). Orientation Distribution Function (ODF) in HARDI is used to describe
the probability of the fiber direction. There are two type definitions of the ODF,
which were respectively proposed in Q-Ball Imaging (QBI) and Diffusion Spec-
trum Imaging (DSI). Some analytical reconstructions methods have been pro-
posed to estimate these two type of ODFs from single shell HARDI data. How-
ever they all have some assumptions and intrinsic modeling errors. In this article,
we propose, almost without any assumption, a uniform analytical method to esti-
mate these two ODFs from DWI signals in q space, which is based on Spherical
Polar Fourier Expression (SPFE) of signals. The solution is analytical and is a lin-
ear transformation from the q-space signal to the ODF represented by Spherical
Harmonics (SH). It can naturally combines the DWI signals in different Q-shells.
Moreover It can avoid the intrinsic Funk-Radon Transform (FRT) blurring error
in QBI and it does not need any assumption of the signals, such as the multiple
tensor model and mono/multi-exponential decay. We validate our method using
synthetic data, phantom data and real data. Our method works well in all experi-
ments, especially for the data with low SNR, low anisotropy and non-exponential
decay.

1 Introduction

High Angular Resolution Diffusion Imaging (HARDI) is used to probe non-Gaussian
diffusion which represents more intricate micro-structure in the tissue. Orientation Dis-
tribution Function (ODF) [1, 2] was proposed to describe the fiber directions. There are
two type of ODFs. One is denoted as Φt, proposed using radial projection by Tuch in
QBI [1]. Another one is denoted as Φw, proposed as the marginal probability of the
Ensemble Average Propagator (EAP) P(Rr) by Wedeen in DSI [2]. Φt need to be nor-
malized and Z is the normalization factor. While Φw is naturally normalized.

Φt(r) =
1
Z

∫ ∞

0
P(Rr)dR Φw(r) =

∫ ∞

0
P(Rr)R2dR =

1
2

∫ ∞

−∞

P(Rr)R2dR (1)

where R = Rr is the displacement in 3D space. It has been shown that Φw is more
sharper than Φt [2–4], which means Φw is more discriminative for fiber detection.
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Historically, Funk-Radon Transform (FRT) was used in QBI to estimate Φt numeri-
cally [1] or analytically [5]. However, the intrinsic blurring effect of FRT can bring some
errors [1]. Φw was firstly proposed in DSI and was estimated from numerical radial in-
tegral after the numerical Fourier Transform of the signals [2]. Most recently, several
similar analytical reconstruction methods were proposed separately to estimateΦw from
single shell HARDI data [6, 3, 4]. Elegant analytical solutions were found [6, 3, 4] based
on the mono-exponential decay assumption [7] which gives the full information about
E(q) in the whole 3D q-space from the E(q0) only in a single shell. The approximated
EAP P̃(Rr) actually is the true EAP P(Rr) convolved by the Fourier transform of the
function E(q,u)q2/q2

0 E(q,u)−1 [7], where q = qu, q = ‖q‖. It was shown surprisingly
that the estimated P̃(Rr) and Φ̃w are sharper than the real P(Rr) and Φw [6, 3, 4] in the
synthetic data generated from mixture tensor model. However, since this surprising re-
sults come from the intrinsic modeling error from the unrealistic kernel smooth, it is
still not clear if the methods based on that assumption can work well in the complex
real data with non-exponential decay, low anisotropy and low SNR. Similarly with [7],
the authors in [3] extended mono-exponential model to multi-exponential model so that
it can reduce the modeling error and work for the data in multiple shells. However,
it is impractical because a nonlinear fitting is needed for every direction [7], suffering
from limited samples, local minima, computational complexity, and an analytic solution
exists only when three b values satisfy an arithmetic process.

E(q) =

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,mRn(‖q‖)Ym
l (u) Bn,l,m(q) = Rn(‖q‖)Ym

l (u) (2)

Rn(‖q‖) = κn(ζ) exp
(
−
‖q‖2

2ζ

)
L1/2

n (
‖q‖2

ζ
) κn(ζ) =

[
2
ζ3/2

n!
Γ(n + 3/2)

]1/2

(3)

In [8], the Spherical Polar Fourier Expression (SPFE) was proposed to sparsely rep-
resent E(q). See formulae (2),(3), where Ym

l (u) is the l order m degree Spherical Har-
monic (SH) basis and Rn(q) is the Gaussian-Laguerre polynomial basis. Since Bn,l,m(q)
is the orthonormal basis in R3, any type of E(q) could be represented by a linear com-
bination of {Bn,l,m}. After the coefficients {an,l,m} of the signal are estimated from a least
square fit or a nonlinear robust estimation [8], Φt could be calculated through an in-
ner product of the coefficients an,l,m and a kernel bn,l,m. The problem in [8] is that bn,l,m

needs to be calculated numerically from FFT for every direction or calculated for one
direction then rotated by Wigner rotation matrix for other directions. That is inefficient
and can bring some numerical error, especially for these kernels which have some delta
functions inside, e.g. the kernels for Φt and Φw. And it can not provide an elegant ana-
lytical parametrized result like analytical QBI [5].

In this paper, instead of adding strong assumptions for single shell data in [6, 3,
4] and numerical solution using FFT and Wigner matrix in [8], we propose a uniform
analytical estimation method for Φt and Φw based on SPFE, which includes two linear
transformations from the coefficients {an,l,m} of E(q) to the coefficients {ct

l,m} of Φt and
{cw

l,m} of Φw represented by SHs. First we deduce the transformations for Φt and Φw.
Next, we perform the method in some non-exponential synthetic data and a challenging
phantom data. At last we test our methods in a real monkey data with several b values.
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2 Analytical ODF Estimation Based On SPF

It has been shown that the line integral of P(Rr) in R-space in (1) is equivalent to the
integral in the plane in q-space which is orthogonal to the line in R-space [3, 4, 6]. See
formula (4), where 4b is the Laplace-Beltrami operator. Our contribution is to deduce
the elegant analytical solution for data in multiple shells based on these previous studies
in [3, 4, 6, 8]. Our analytical estimation methods almost do not need any assumption
about the signal. The only assumption we need is that the signal E(q) can be sparsely
represented by SPF in formula (2), which has been validated in [8].

Φt(r) =
1
Z

∫∫
Πr

E(q)qδ(rT u)dqdu Φw(r) =
1

4π
−

1
8π2

∫∫
Πr

4bE(q)
q

δ(rT u)dqdu (4)

2.1 Estimation of Φt

Put the formula (2) into (4), we can easily get the solution.

Φt(r) =
1
Z

∫∫
Πr

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,mRn(q)Ym
l (u)qδ(rT u)dqdu

=
1
Z

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,m

(∫ 2π

0
Ym

l (u)δ(rT u)du
) (∫ ∞

0
Rn(q)qdq

)

=
1
Z

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,m

(
2πPl(0)Ym

l (r)
) (κn(ζ)ζ

2

∫ ∞

0
exp(−

x
2

)L1/2
n (x)dx

)
(5)

=
2πζ
Z

∑L
l=0

∑l
m=−l

(∑N
n=0

∑n
i=0 κn(ζ)

(
i−0.5

i

)
(−1)n−iPl(0)an,l,m

)
Ym

l (r) (6)

where Pl(0) is the Legendre polynomial of order l at 0. We get (5) because SH is the
eigenfunction of the FRT [5]. From (5) to (6), we use the property of Laguerre polyno-
mial [9]. Thus here we have a linear transformation from the coefficients an,l,m of E(q)
to the coefficients ct

l,m =
∑N

n=0
∑n

i=0 κn(ζ)
(

i−0.5
i

)
(−1)n−iPl(0)an,l,m. Please note that the au-

thor in [10] gave a solution for Φt in page 122. Unfortunately, the integrand there was
wrong because of wrong volume element. Here we give the right analytical formulae.

We also give the result of the integral in a given disk Π(r,C) whose radius is C. In the
formula (4), the integral Φt(r) gives the same weight for E(q) with large q and for E(q)
with small q. However, if we just have several b values, the error of estimated signal
Ẽ(q) will be small if q is between these b values and will be large if q is large than all
b values. Thus if an approximate C is given, the disk integral Φt(r,C) may have better
angular resolution than Φt(r) [4]. Considering L1/2

n (x) =
∑n

i=0 linxi, lin = (−1)i
(

n+0.5
n−i

)
1
i! ,

and the lower incomplete gamma function γ(i, x) =
∫ x

0 ti−1 exp(−t)dt, we have

Φt(r,C) =
2πζ
Z

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,m

(
Pl(0)Ym

l (r)
) κn(ζ)

2

∫ C2/ζ

0
exp(−

x
2

)L1/2
n (x)dx

 (7)

=
2πζ
Z

∑L
l=0

∑l
m=−l

(∑N
n=0

∑n
i=0 κn(ζ)

(
n+0.5
n−i

)
(−2)i

i! γ(i + 1, 0.5C2/ζ)Pl(0)an,l,m

)
Ym

l (r)
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2.2 Estimation of Φw

Similarly, put the formula (2) into (4) we can get the analytical expression for Φw.

Φw(r) =
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,m

(∫ 2π

0
4bYm

l (u)δ(rT u)du
) (∫ ∞

0

Rn(q)
q

dq
)

(8)

However, we can not solve it just like what we did for Φt, because the division
by q introduces a pole. It is a little hard to find the analytical solution for Φw. And the
author in [10, 8] did not give any solution for that. We solve this problem by considering
E(0) = 1, which is a true fact for any DWI data. That means, for our basis, the identity
E(0) =

∑
n,l,m an,l,mRn(0)Ym

l (u) =
∑

n,l,m an,l,mκn(ζ)Ym
l (u) = 1 holds for any u ∈ S 2. Also

keep in mind that a constant addition inside 4b does not change the final result. First we
consider the integral inside a given disk Π(r,C), then we have

Φw(r,C) =
1

4π
−

1
8π2

∫∫
Π(r,C)

4b(E(q) − E(0))
q

δ(rT u)dqdu (9)

=
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,m

(∫ 2π

0
4b

(∫ C

0

Rn(q) − Rn(0)
q

dq
)

Ym
l (u)δ(rT u)

)
du

=
1

4π
−

1
8π2

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,mκn(ζ)
(∫ 2π

0
4bIn(C)Ym

l (r)δ(rT u)du
)

(10)

Now there is no pole! For In(C) we have

In(C) =

∫ C

0

Rn(q) − Rn(0)
κn(ζ)q

dq (11)

=
1
2

∫ C2/ζ

0

exp(−x/2) − 1
x

+

n∑
i=1

linxi−1 exp(−
x
2

)

 dx (12)

= 0.5(−γ − E1(0.5C2/ζ) − log(0.5C2/ζ))︸                                             ︷︷                                             ︸
I1
n (C)

+ 0.5
n∑

i=1

lin2iγ(i, 0.5C2/ζ)︸                        ︷︷                        ︸
I2
n (C)

(13)

where γ ' 0.5772 is the Euler–Mascheroni constant, E1(x) =
∫ ∞

x
exp(−t)

t dt is the expo-
nential integral. Although there are two parts in In(C) and I1

n (C) tends to infinity, it actu-
ally has no contribution for Φw(r,C), because

∑
n,l,m an,l,mκn(ζ)Ym

l (u)I1
n (C) = I1

n (C) is a
constant inside 4b. Then considering Ym

l (u) is the eigenfunction of FRT and 4b, we have
the analytical result for Φw(r,C) and Φw(r) = limC→∞Φw(r,C), cw

l,m = limC→∞ cw
l,m(C)

Φw(r,C) =
1

4π
−

1
8π

∑
n,l,m

an,l,mκn(ζ)
n∑

i=1

lin2iγ(i, 0.5C2/ζ)Pl(0)(−l)(l + 1)Ym
l (r) (14)

cw
l,m(C) = 1

√
4π
δ(l)δ(m) − 1

8π
∑N

n=1
∑n

i=1(−1)iκn(ζ)
(

n+0.5
n−i

)
2i

i! γ(i, 0.5C2/ζ)Pl(0)(−l)(l + 1)an,l,m

(15)
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cw
l,m = 1

√
4π
δ(l)δ(m) − 1

8π
∑N

n=1
∑n

i=1(−1)iκn(ζ)
(

n+0.5
n−i

)
2i

i Pl(0)(−l)(l + 1)an,l,m (16)

Now we have two estimations for the true Φw. One is the integral in the whole
plane, which is similar with [3], and another one is the integral in a given disk, which
is similar with [4]. However, the mono-exponential decay model was assumed during
the disk in [4], and in the whole plane in [3], so that the integral for the radial integral
could be approximated just using the data in the q-circle. While our method does not
need any assumption on the data and it can handle the data in different q-shells. Also
please note three important points in the formulae above. First, we get the the E1(x) in
the derivation process, but it is negligible. While in [4], it is indispensable. Second, the
formulae (15),(16) tell us that at least order 1 of Rn is needed to represent an anisotropic
ODF. That is true because if we just use the radial basis of order zero, it is easily seen
that the estimated signal is just an isotropic one, which means the estimated ODF is
isotropic. Thus we need to use at least two shells to get a reasonable results, although
our methods can be performed in single shell data. Third, since in (4) 1/q gives small
weight for E(q) with large q and large weight for E(q) with small q, that means the
error in large q may be negligible! Thus Φw is more robust to estimation error of E(q).
How to choose an approximate C for Φw(r,C) and Φt(r,C) is still an open question out
of the scope of this paper. And since the improvement of Φw(C) in [4] over Φw in [3] is
very subtle [4], here we just consider the Φw and Φt, not Φw(C), Φt(C).

2.3 Implementation of methods

The Implementation includes two steps. The first step is to estimate coefficients {an,l,m}

from the observed signals {E(qi)}. The second step is the uniform linear analytical solu-
tion proposed above from {an,l,m} to {ct

l,m} and {cw
l,m}, which is actually independent of the

first step. The whole estimation error is just from the first step, since the second step is
analytical and compact. The authors in [8] suggested two methods to estimate {an,l,m},
a linear least square (LS) fitting with regularization in the radial and spherical parts,
and a non-linear PDE based optimization process, which considers the Rician noise.
Here we choose the LS method in the first step since it is more faster. We suggest that
the Rician correction could be performed directly on the DWI data as a pre-processing
step [11, 12], although in our experiments to perform an appropriate comparison of
methods we did not do any Rician correction. For LS estimation, let’s denote the sig-
nal vector by E = [E(qi)]S×1, the coefficient vector by A = [an,l,m]0.5(L+1)(L+2)(N+1)×1,
the basis matrix by M = [Rn(q)Ym

l (u)]S×0.5(L+1)(L+2)(N+1), and the spherical and radial
regularization diagonal matrices respectively by L = [l(l + 1)] and N = [n(n + 1)],
where λl and λn are the regularization terms for spherical and radial parts. Then A =

(MT M + λlLT L + λnNT N)MT E. For the second step, the linear transformations in (6),
(7), (15), (16) could be also implemented as a matrix multiplication. Thus the whole
process is just a linear matrix multiplication on the data vector E. Similarly with an-
alytical Q-ball in [5], the matrix is independent of E and needs to be calculated only
once for the whole data set. It makes our method extremely fast.

There are two important points to consider in the implementation. The first one is
about E(0). If we have a data set with several b values, b1, b2..., bN , we actually use
N + 1 b values, considering E(0) = 1 for any u ∈ S 2, which makes our estimation
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more reasonable and accurate. Otherwise, there is no warranty for the estimated signal
Ẽ(0) = 1. For the single shell HARDI data, considering b = 0 can let us have 2 shells,
which will improve the results. The second one is how to determine the parameter ζ
in (3). The authors in [8] proposed a strategy for it, which is dependent on the radial
truncation order N. However, we think the parameter should be just dependent on the
signal, not on the basis order. Considering E(q) = exp(−4π2τq2D), b = 4π2τq2, and a
typical diffusion coefficient of D = 0.7×10−3mm2/s, a typical b-value b = 3000s/mm2,
we set ζ = 1

8π2τ×0.7×10−3 . If 4π2τ = 1, then ζ is about 700. In our experiments we always
set ζ = 700.

3 Results on synthetic, phantom and real data

Synthetic data. Gaussian mixture model S (qs) =
∑M

i=1 piGi(qs), Gi(qs) = exp(−q2
suT

s Dius)
has been used widely to generate synthetic data [1, 5, 6, 3, 4]. However, that could bias
the results in favor of those methods assuming a model based on Gaussian mixture
or mono/multi-exponential decay. Here we choose both Gaussian mixture and non-
Gaussian mixture to validate our methods. We set S (q) =

∑M
i=1 pi fi(q), f (q) = G(q) for

a Gaussian mixture model and f (q) = 0.5G(q)+0.5T (q), T (q) = exp(−
√

2q2uT Du) for
a non-Gaussian mixture model. It could be proved that the Φt and Φw of T (q) are the
same as the ODFs of G(q), although they have different EAPs [9]. Thus we have the ana-
lytical ground truth of ODFs. We set the eigenvalues of D as [0.3, 0.3, 1.7]×10−3mm2/s.
and use the same way in [5] to add Rician noise with S NR = 1/σ, which is defined as
the ratio of maximal signal intensity of S (0) = 1 to the standard deviation σ of complex
Gaussian noise. We test the methods with S NR = 10 in four configurations of ODF: one
fiber or two orthogonal fibers with Gaussian model or non-Gaussian model. For each
configuration, data in 4 shells (b=500,1000,2000,3000s/mm2) were generated. For the
single shell methods, e.g. Φt estimation in [5] and Φw estimation in [3], 4 order SH with
λ = 0.006 was chosen. For the proposed methods, we use all data from four shells and
chose N = 2, L = 4, λn = 5e − 8, λl = 1e − 7, ζ = 700. We recorded the percentage
of correct number of detected ODF maximum and the mean of angular error over 1000
trails [5]. See table 1. The experiments showed: 1) Normally, the Φt is more robust to
Rician noise than Φw, although Φw is more sharper and has better angular resolution.
It is the similar conclusion in [4]. 2) our methods for Φt and Φt both got better per-
formance than the methods for single shell data in [5, 3]. 3) the method in [3] will get
worse results for the data with non-exponential decay or much noise.
Phantom data. We performed our methods in a public phantom data with 3 shells,
where b-value is 650,1500,2000s/mm2 respectively. This data has been used in the fiber
cup contest in MICCAI 2009 to evaluate tracking methods [13]. The anisotropy of
this data is very low, which makes it hard to detect the fibers. We believe that it is
complex enough to evaluate different reconstruction methods and tracking methods.
We compare our reconstruction method using 3 shells with the method in [3] using
one shell (b=2000), since the result of b=2000 is better than the results of b = 650
and 1500 for the method in [3]. For our method, we choose L = 4, λl = 5e − 8 in the
spherical part and N = 1,λn = 1e−9 in the radial part [8]. To perform a fair comparison,
we choose L = 4 and tune the Laplacian regularization term λ from 0.006 (suggested
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Table 1. Each column shows the percentage of correct number of detected ODF maximum and
the mean of angular errors under an given ODF configuration. The left part and the right part
in each column are respectively for the estimation methods for Φt and Φw. The first four rows
recorded the performance of previous works on single shell data in [5] and in [3] with 81 gradient
directions on the hemisphere. The last row shows the results of our methods using 4 shells.

Fig. 1. First row: phantom data, from left to right: whole view of Φw from our method, Φw in
region A and B from our method, method in [3] with λ = 0.006, 0.02, 0.03, 0.04; Second row:
real data result from our method, from left to right: whole view of Φw, Φw and Φt in region C.

in [5, 3]) to 0.02, 0.03 and 0.04 for the method in [3]. Two crossing areas were chosen
for visualization using min-max normalization [1]. The results were shown in Fig. 1.
It shows that the method using 3 shells is better. The bad performance of the method
in [3] probably comes from the error of the mono-exponential assumption.
Real data. We perform our method in a real monkey data with 3 shells (b = 500, 1500,
3000 s/mm2), 30 directions at each b value, TE/TR/matrix=120ms/6000ms/128×128.
We set L = 4, N = 2, λl = 5e − 8, λn = 1e − 9 and show, in Fig. 1, the results of Φt

with min-max normalization and Φw without normalization, since Φw is sharper than
Φt. The glyphs were colored by GFA calculated from ODF [1].

4 Conclusion

We proposed a uniform model-free fast robust analytical ODF reconstruction method
based on Spherical Polar Fourier (SPF) expression of the signal in q-space. The coeffi-
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cients of the two kinds of ODF under SH could be linearly and analytically calculated
from the coefficients of the signal under SPF. It is a linear transformation that is inde-
pendent of the data. This transformation matrix is just calculated only once for a whole
data set, which makes the method very fast. Our method can avoid the error from unre-
alistic assumptions and can naturally combine data from different Q-shells. The results
in synthetic data phantom data and real data show that our method can get better results
compared with previous single shell HARDI methods in [5] and in [3], especially for
the data with low anisotropy, low SNR and non-exponential decay.
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