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Abstract

Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the
complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the
probability of the fiber direction. Fisher information metric has been constructed for probability density family
in Information Geometry theory and it has been successfully applied for tensor computing in DTI [1,2,3]. In this
paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry
and sparse representation of orthonormal bases [4]. In this Riemannian framework, the exponential map,
logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this
manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the
Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be
computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so
that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed
based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared
with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters,
i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be
used for any probability density function (PDF) under an orthonormal basis representation.
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Contributions & 
Conclusions

 Only several coefficients are needed because ODFs are sparse enough

 Basis representation can represent all ODFs in brain.

 Parameter space is well studied in mathematics.

 Riemannian, Affine-Euclidean and Log-Eucliedan frameworks.

 Three frameworks guarantee a Positive ODF profile.

 Weighted Fréchet mean uniquely exists.

 Geometric Anisotropy & Renyi Entropy.

Riemannian framework for ODFs

I. Von Mises-Fisher Mixture model [5]:

 Model based (mixture model)

 Can not represent all ODFs since it
does not form a basis.

 Parameters are harder to estimate

 Metric is defined in a multiplicative
space

II. Orthonormal basis representation
of the square root of ODF

 Model free (basis representation)

 Can represent all ODFs

 Easy to estimate

 Metric is defined in a simple and well
defined manifold (a small part of Sk-1)

Affine-Euclidean and Log-
Euclidean frameworks

ODF could be seen as a PDF family. Riemannian framework is derived from the
PDF family based on Information Geometry theory.
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The intrinsic Riemannian framework for ODF computing

 Fisher metric [6]:

 Geodesic:

 Exponential map: , where

 Logarithmic map: , where
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Properties and results of the manifold (parameter space PS)

 PS is closed

 PS is convex

 PS is contained in a convex cone
with 900

 The projection of any on the
uniform ODF is more than

c
1
4π

 Geometric Anisotropy:

 Renyi Entropy:

 Affine-Euclidean framework and
Log-Euclidean framework

u

( ( | )) ( , ) arccos( )TGA p d= =x c c u c u

( )1

2
1/ 2 2 log ( | ) log(4 ( ) )

K

T

S
H p d π

−
= =∫ x c x c u

 Diffeomorphism: (AE) (LE)

 Geodesic:

 Exponential map:

 Logarithmic map:
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Weighted Fréchet Mean
 Definition: uniquely exists on the PS [7]

 No close form. Numerical algorithm [7]:

 There is a close form for AE and LE frameworks

 Interpolation in ODF field
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Experiments & Results
I. Interpolation on synthetic data (2 ODFs in 1D, 4 ODFs in 2D)

II. GA (not normalized) V.S. GFA [8] III. Weighted Fréchet mean
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