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Abstract. Recently, new segmentation models based on local informa-
tion have emerged. They combine local statistics of the regions along the
contour (inside and outside) to drive the segmentation procedure. Since
they are based on local decisions, these models are more robust to lo-
cal variations of the regions of interest (contrast, noise, blur, . . . ). They
nonetheless also introduce some new difficulties which are inherent to the
fact of basing a global property (the segmentation) on pure local deci-
sions. This papers explores some of those difficulties and proposes some
possible corrections. Results on both 2D and 3D data are compared to
those obtained without these corrections.

1 Introduction

Image segmentation has been widely studied in the last decades, and still re-
mains a challenging task. Many approaches exist in the literature to segment
regions [16], [2], [10]. This paper focuses on those based on active contours [12],
[9], [18], [21], [7]. This choice is driven by two main reasons: first, a framework
for segmentation from local statistics has already been proposed [20], [3], [17],
and conveniently serves as basis for the work presented in this paper. Second, the
phenomenons that are presented in this paper are inherent to any segmentation
procedure that will be based on local decision. Consequently, other optimization
strategies such as graph-cuts or MRF will suffer from the same problems exposed
here, provided that they can be applied (which is not necessary true as those
methods tend to impose restrictions to the criterion so as to be applicable).

Active contours based strategies can be classified in two distinct categories:
edge-based models and region-based ones. Edge-based models consist in evolving
a contour in homogeneous areas, and locally stopping it when it reaches high
image gradients [4] [13], [26]. These models have several advantages like local co-
herence and robustness to region inhomogeneities, but they also have important
drawbacks that make them inefficient on noisy images [7], or when the contour
initialization is not completely inside or outside the region to segment. Moreover,
they are only able to segment regions with sharp edges, and this can result in
“leaks” when the region edges are smoother. In [26], the authors managed to
improve the initialization problem, by creating a vector flow driving the active
contour to high image gradients, but the sensitivity to noise still remains.



2 Piovano et al.

Region-based models consist in evolving a contour in order to separate signif-
icantly the statistics of the regions it delimits [5], [24], [23], [19], [7]. For example,
separating bright areas from dark ones, or extracting areas matching a certain
histogram [14]. These models take account of the whole region and are thus more
robust to noise and to initialization than edge-based models. However, they are
inefficient in handling image with regions whose statistics are spatially varying
across the domain.

The authors of [19] introduced a new model that is the addition of both
the edge-based model and the region-based model. This model combines the
advantages of the two previous ones by adding the two different evolution terms.
As a consequence, it requires some parameters that may be difficult to adjust.

One difficulty comes from the fact that segmentation models often relies on
global criteria 1, whereas images are most of the time subject to local variations
(in intensity, contrast, noise . . . ). In opposition, it is admitted that the human
visual system is more sensitive to local variations of the information [25], and
the Adelson illusion is one of the many example showing this property. This
explains why it is often difficult to create segmentation models that are able to
extract regions matching our perception. Moreover, medical images suffer from
some alterations such as locally diffuse contours, biases and trends across the
image, that makes usual segmentation models most of the time inefficients.

To overcome these problems, new segmentation models have recently emerged
to segment regions by computing their statistics locally, in the neighborhood of
the active contour [20], [3], [17]. These methods introduce a neighborhood param-
eter. Its effect on the segmentation is very interesting: when a large neighborhood
is chosen, the model is equivalent to the standard region-based model, whereas a
small neighborhood results in the model that behaves like a standard edge-based
one. Thus, these models can be seen as an elegant unification of edge-based and
region-based models. However, fixing the neighborhood parameter introduces
some new phenomenons, which are explored in this paper.

However, basing a segmentation on local decisions brings a whole new set
of difficulties: locally the information might be insufficient to make the contour
evolve, and it might need to be looked at different scales through a scale space
approach; local decisions in neighboring regions might be contradictory, and the
notions of inside and outside might be different depending on the initialization
and position of the active contour. The second part of this paper explores these
problems and describes two rules that help in defining a meaningful segmentation
procedure based on local contrast information.

This paper is organized as follows: first we recall the local statistics region
model, and explain in detail how to compute efficiently these statistics. Second,
we show some important drawbacks of this method and our solutions to overcome
them. Finally, we compare our model in 2D and 3D with standard models and
run experiments on synthetic and real data.

1 Either a contour strength or global distributions of pixel values inside regions.
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Fig. 1. Inside (yellow) and outside (blue) statistics : left computed in the whole region;
right computed at the neighborhood of the active contour.

2 Region segmentation using local statistics

2.1 The model

Let us recall the segmentation model introduced in [20]. Assume that the image
is covered by a set of regions Ωi, i = 1 . . . n. The model is based on modeling
these regions through local Gaussian statistics computed on a Gaussian windows.
Denoting respectively by µi(x) and σi(x)2, the local mean and local variance of
the region Ωi at point x, these quantities are defined by (Fig. 1):
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∫

Ωi

gρ(x − y)I(y)dy
∫
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∫
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(1)

where I is a given image and gρ a Gaussian kernel of standard deviation ρ.

The model is actually a spatially localized version of the maximum a poste-
riori segmentation for the Gaussian distribution [7], and results in the minimiza-
tion of the following energy:

E(Ω1, · · · , ΩN ) =
∑

i

∫

Ωi

− log pi(I(x)|x, ρ)dx + ν|C| , (2)

with

− log pi(I(x)|x, ρ) =
(I(x) − µi(x))2

2σi(x)2
+

1

2
log(2πσi(x)2) , (3)

where pi is the probability for a point x with intensity I(x) to belong to the local
region characterized by the local mean µi(x) and local variance σi(x)2; and |C|
the total length of the interface between regions, which stand for a regularization
term.



4 Piovano et al.

Following [20], the evolution speed is obtained by differentiating Eq. (2) in
the level-set notation [21], using the shape gradient method [1]. For the bi-
partitioning case, this lead to the following gradient descent:

∂Φ

∂t
(x) =

(I(x) − µin(x))2

2σin(x)2
−

(I(x) − µout(x))2

2σout(x)2
+ log

σin(x)2

σout(x)2
+ ν∇

(

∇Φ

|∇Φ|

)

,

where µin, σ2

in and µout, σ2

out are respectively the local mean and local variance
in the inside and outside regions.

2.2 An efficient implementation

All the local statistics used in the model are Gaussian convolutions, and can
be computed very efficiently using the recursive filter implementation proposed
in [8]. The complexity of all these convolutions remains in O(n).

(d) (d)

(b)

(c)

(e) (f)

(a)

Fig. 2. Local statistics computation: The local statistics are computed thanks to a
succession of convolutions (see text).
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Figure 2 depicts a framework for computing these local statistics:

1. The regions delineated by the yellow contour (Fig. 2(a)) are first separated
(Fig. 2(b)).

2. The local means (Fig. 2(e)) are then computed by blurring each region sep-
arately (Fig. 2(c)), and then normalized by a blurred characteristic function
of the regions (Fig. 2(d)).

3. The local variances (Fig. 2(f)) are then computed similarly, using the local
means thanks to the relation V (X) = E(X2) − E(X)2.

2.3 Advantages of local models

By estimating region statistics locally, the robustness of the standard global
model is improved with respect to region inhomogeneities (Fig. 6). Indeed, re-
gion inhomogeneities are alterations of low frequencies that can be overcame by
restricting the locality of the estimation of the region statistics. Furthermore,
these models will favor significant local separation of regions: the neighborhood
parameter is a term that will influence the sharpness of region edges.

3 Problems with local models

Unfortunately, the local models presented in the previous section introduce new
sets of problems summarized in Fig. 3. some new drawbacks that were not present
in global region-based models are also introduced.

3.1 Global coherence problem

Since only a small neighborhood in the regions defines the contour evolution,
various parts of the contour may evolve independently, selecting their own no-
tions of interior and exterior regions. Later in the evolution, these incoherence
lead to the creation of singularities corresponding to unwanted local stable min-
ima. When a singularity is formed, no topological change is possible, and the
segmentation cannot be turned into something coherent anymore. This is illus-
trated in Fig. 3(c): the red circle segments the interior of the object, while the
green circles segment its exterior according to their initializations. No topologi-
cal change are possible between these two growing regions, and a singularity is
indeed created. Other circles collapse under the effect of regularization, because
of the absence of contribution due to the data attachment term in homogeneous
areas. Note that this problem might also occur with simpler initializations, as
soon as the contour crosses the edges of the object to segment.

3.2 Homogeneous areas problem

It is easy to understand that there is no data term contribution in homogeneous
areas, as the local statistics in the region inside and outside are the same.
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(c) (d)

(a) (b)

Fig. 3. (a) Initialization of the segmentation; (b) Convergence of the segmentation; (c)
Evolution which leads to a problem of coherence in the segmentation; (d) Absence of
evolution in homogeneous areas, leading to the creation of “layers”.

At convergence, the small circles in homogeneous areas collapse because of
the regularization term, which leads to some kind of phantom contour, resulting
in “segmentation layers” that are of course not desired (Fig. 3(d)). These lay-
ers come from the fact that the only contribution of the data attachment term
is close to image edges, where the difference of local region statistics make the
contour evolve. However, it can be observed that the “thickness” of these seg-
mentation layers depends on the neighborhood parameter of the model. With a
small neighborhood, the layers will be thin, whereas a large neighborhood will
result in a wider layer. Unfortunately, increasing the neighborhood makes the
model behave like global models, and thus loosing its good locality properties.

In Fig. 3(d), the left blue circles collapse because they are too far from an
image edge. This edge proximity is linked to the neighborhood parameter of the
model, and a larger neighborhood would have indeed made these circles evolve.
Note that the right circles are collapsing under the effect of the data attachment
term, as the “middle layer” influence their local interior mean.

4 Global coherence solution

Several works have been done to avoid the kind of local minima in Fig. 3(c).
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In [11], the authors added some noise in the evolution to perturb the active
contour, and thus prevent it from being stuck in local minima. Unfortunately,
this stochastic evolution is not well adapted to our problem, as it would create
as much incoherence in the evolution.

In [6], [22], the authors smoothed the evolution term of the active contour
along the contour, in order to add some correlation in the evolution of neighbor
points. This allows the contour to evolve in a more coherent way, avoiding local
minima. Unfortunately, the local minima we tackle cannot be avoided in this
way, as the evolution can be seen as coherent until a singularity is created.

However, if we make the assumption that objects to segment are characterized
by boundaries where image intensity changes “in the same way” from the inside
to the outside, we can use this constraint to maintain the coherence in the
segmentation (Fig. 4). This constraint can be defined by having, for each point
x of the contour, the local interior mean µin(x) whether inferior or superior to
the local exterior mean µout(x). Thus, if the contour is locally in contradiction
to this constraint, the evolution direction needs to be changed.

Normally, the gradient descent will ensure that the contour evolves in a way
that maximizes the difference between µin(x) and µout(x) for each point x of the
contour. In areas where the contour is locally in contradiction with the previous
constraint, taking the opposite gradient direction will ensure that the evolution
will lead to a situation where µin(x) = µout(x). In essence, this process is some-
what similar to a form of local simulated annealing allowing a local increase of the
energy to avoids unwanted local minima. However this increase is not stochastic
but driven the constraint. This leads to the following evolution equation:


















∂Φ

∂t
(x) = S(x)

(

(I(x) − µin(x))2

2σin(x)2
−

(I(x) − µout(x))2

2σout(x)2
+ log

σin(x)2

σout(x)2

)

+ νκ

S(x) = ± sign (µin(x) − µout(x))

where ’±’ depends on the type of the global constraint. The energy is therefore
increased or decreased, depending on the sign of S(x).

(a) (b) (c)

Fig. 4. (a) Initialization; Convergence without (b) and with (c) the constraint.
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In Fig. 4, the convergence of the active contour can be seen with and without
this coherence constraint, on a synthetic image created as a simple cortex model
with high intensity drifts. The initialization in figure 4.a is quite problematic, as
it crosses the edges of the object to segment.

Without the constraint (Fig. 4(b)), the segmentation obtained is ”locally
correct”, as it locally separates the interior and exterior of the contour. However,
It has no sense if we look at the global scope, and this kind of segmentation is
of course not acceptable.

With the constraint (Fig. 4(c)), the contour evolves in a more coherent way,
and finally manage to extract the totality of the white matter, even under very
strong inhomogeneities. Although this constraint restrict the nature of objects
to segment, it is quite effective on objects that satisfy it. Actually this constraint
is not so restrictive, as the majority of structures of interest in medical images
can be characterized by it. Note that this simulated annealing can be used with
multiple regions, by increasing the energy if the local features of the contour
separating two different regions are not the ones desired.

5 Varying the local neighborhood

As explained in section 3.2, there is no evolution in areas where the local statis-
tics inside and outside the contour are the same. This results in the creation
of “layers” in the segmentation, in the neighborhood of image edges (Fig. 3.d).
As mentioned earlier, the thickness of these layers is correlated with the neigh-
borhood parameter of the model, but using large neighborhoods give results
equivalent to standard global models.

Thus, we would like to use small neighborhoods close to an image edge, and
large neighborhoods in homogeneous areas, depending on the proximity of the
closest image edge (Fig. 6). The question is how to detect this edge proximity.

In [15] the authors tackled similar problems with the purpose of extracting
edges and ridges from images. Their method is based on detecting features at
various scales of the same image, and keeping the k most salient features de-
pending on a saliency measure. It allows them to extract sharp edges as well as
smooth edges by increasing the locality of the estimation of these features.

Our problem is somehow similar. If we assume that the neighborhood param-
eter is actually a scale used to compute statistics, the problem becomes one of
finding the most salient scale for each point of the contour to make the contour
locally evolve. As we want to favor sharp edges over smooth ones, and make
the contour evolve even in locally homogeneous areas, the scale is chosen as the

smallest one inducing an evolution speed superior to a given threshold :

ρ(x) = inf
ρ

(

∂Φ

∂t

∣

∣

∣

∣

ρ

(x) > ǫ

)

x ∈ Γ , (4)

where ∂Φ
∂t

∣

∣

ρ
is the evolution equation computed with a Gaussian windows of

variance ρ, x a point of the contour Γ , and ǫ a constant corresponding to a
threshold for the scale selection.
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Fig. 5. Top: initialization and evolution of the contour; Bottom: Scales chosen at each
point of the contour, with ǫ = 1 and using 30 scales.

By choosing this scale selection scheme, the contour will evolve even in homo-
geneous regions. Indeed, at each iteration and for each point, the optimal scale
is found by slowly increasing the neighborhood from the minimum scale to the
maximum, until it reaches some edge of an object, thus giving information about
how the contour should locally evolve. Actually, the model depicted in section 2
is not restricted by choosing a unique size of Gaussian windows for all points,
and we can indeed use different windows size depending on local features.

Figure 5 shows the evolution of the active contour (top row), as well as the
different scales chosen at each point (bottom row). This image is interesting as it
shows three fundamental problems in medical images: large intensity drifts (top
corner of the triangle), noisy regions (right corner of the triangle) and smooth
contours (left corner of the triangle). Where standard edge-based or region-based
model would fail to provide good results, our model behaves quite well, choosing
accurately the scales depending of the proximity and the ”smoothness” of the
triangle edges. The robustness of our model to noisy regions comes from the fact
that the speed is normalized by the local variance, so the noisier the region is,
the smaller the speed is, and the higher the scale chosen will be. This allows
to choose larger scales if the contour is in a noisy regions, thus improving the
accuracy of computation of local statistics.

6 Implementation

With the multiscale approach, various scales are incorporated in our model, so
each region has to be blurred several times using different Gaussian kernels to
obtain a scale space of local statistics. This allows to retrieve, for each point of
the contour, the optimal scale using the criteria of Eq. 4.
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For efficiency purpose, these local statistics are limited to only a few scales.
In the experiments, the small scales are more important, so the variances take
the values: 2, 4, 8, 16. The model is described by the following algorithm:

Algorithm 1 Segmentation using adaptive local statistics
repeat

for all scales ρj ∈ {ρ1, . . . , ρn} do

for all regions Ωi ∈ {Ω1, . . . , Ωn} do

Compute local mean µi,j of Ωi at scale ρj

Compute local variance σ2

i,j of Ωi at scale ρj

end for

end for

for all points in the active contour do

Find optimal scale ρopt using Eq. (4) with µi,j and σ2

i,j

Compute speed with µi,opt and σ2

i,opt

end for

Update contour
until convergence

Finding the correct scale from the set of local statistics is very fast, and the
bottleneck remains the creation of the scale space of statistics at each iteration.

Images single scale 4 scales 4 scales GPU

2D (3002) 13.17 sec 56.36 sec 7.61 sec
3D (2563) 51mn 20sec 3h 4mn 25mn

Table 1. Time execution of 500 iterations. ‘4 scales GPU’ corresponds to time execu-
tion of the multi-threaded algorithm on a GPU (NVidia’s Quadro FX570M).

In Table 1, the execution time of 500 iteration of the algorithm is shown on a
2D and a 3D image. It is compared with the single scale model [20], and with its
implementation on a GPU (graphics processing unit), using the NVidia’s Cuda
Library2. Indeed, our implementation of the recursive filter is an optimized one,
using multi-threaded routine to fully use the potentials of highly parallel com-
puting device. This leads to reasonable times for both 2D and 3D image. Notice
that our model remains faster than the ones that need some PDE computation
at each iteration [24].

7 Results

Our model was tested on several synthetic and real images in 2D and 3D.

2 www.nvidia.com/cuda



Local Statistic based Region Segmentation with Automatic Scale Selection 11

Fig. 6. Top row: Initialization and evolution of the contour with the global Gaus-
sian model ; Middle row: Initialization and evolution of the contour with our model ;
Bottom-row: Scales chosen a each point of the contour.

In Fig. 6, our model is compared to the global Gaussian one (Chan & Vese
model), on a synthetic image created as a simple cortex model with large inho-
mogeneities. The kind of initialization used here does not facilitate the global
model as the contour crosses the edges of the structure to segment. Moreover, the
distribution of intensity of the internal and external regions are the same. Due
to its sensitivity to inhomogeneities, the global model (Fig. 6 top row) results
in separating globally the bright areas from the dark ones, with no preference
to sharp edges. Global non parametric models such as Parzen windows [14] give
similar results. By contrast, our model (Fig. 6 middle row) behaves quite well. It
extracts accurately the details of the region’s shape, is more robust to inhomo-
geneities, and improves notably the behavior of the model to initialization. Note
that the scales ( Fig. 6 bottom row) are chosen accurately, depending on the
proximity to the closest image edge. Due to the proximity of the initialization
to the solution, only a few scales are needed.

Figure 7 shows the same kind of comparison with a real 3D anatomical MRI
of a head. We initialize the contour in both model with a sphere centered in the
middle of the brain (red contour in the Fig. 7 top left image). The background
of the image being significantly darker than the brain, the global model (green
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contour in the Fig. 7 top left image) only manages to extract the skin of the
head from the background, and does not retrieve important details of the brain
such as sulcii or gyrii. It does not converge segmenting the white matter, and
“leaks” in the cerebrospinal fluid (Fig. 7 middle row)).

As can be seen in the bottom row of Fig. 7, our model manages to extract a lot
of details of the white matter of the brain, and does not leak in the cerebrospinal
fluid thanks to its preference of sharper image edges (blue contour in the Fig. 7
top left image). Note that in both results, the same amount of regularization has
been used.

The complexity of the Deriche recursive filter allows us to compute 3D convo-
lutions in a reasonable time (3 pass of the image in 3D), and due to the number
of blurs our model requires, a non recursive convolution scheme would have made
it unusable in 3D.

Fig. 7. Top Row: left, MRI with contours (see text), right, convergence of our model ;
Middle Row: evolution of the global model ; Bottom Row: evolution of our model.
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8 Conclusion and future work

In this paper, the robustness of the region segmentation model has been improved
using local statistics by making the model spatially coherent, and by locally
selecting the correct scale at each point of the contour. Promising results were
obtained in both 2D and 3D. This model has been used successfully to segment
particular structures in medical images and we are currently looking at extending
this model to non scalar images (color images or registered multimodal medical
images).
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