Integrated analysis of software product lines

A constraint based framework for consistency, liveness, and commonness checking

Jean-Vivien Millo, Swarup K Mohalik, S. Ramesh
India Science Lab, General Motors Global Research and Development
GM Technical Center India Pvt Ltd, Creator Building
International Tech Park Ltd., Whitefield Road, Bangalore - 560 066, India.

{jean-vivien.millo, swarup.mohalik, ramesh.s}@gm.com

ABSTRACT

Software Product Line (SPL) is a software development fiaonk
to jointly design a family of closely related software prathiin an
efficient and cost-effective manner. In order to separatectin-
cerns and handle complexity, designers usually projectStak
along different perspectives such as feature, architeand be-
haviour. Each perspective deals with variability of a searifacts
and variability constraints among them. SPL designersrgteo
ensure theonsistencyf the individual perspectives and the SPL as
a whole. They are also interested in finding the elemeoatsmon
to all products and thive elements (used in at least one product).

In the literature, most of the works focus on a single perspeand
address the above-mentioned problems within single petisps.
There have also been attempts to express the variabilityffef-d
ent perspectives within the feature perspective. Howeiece the
different perspectives have different intents, coercmgnt into a
single perspective may result in unnatural constructserfelature
perspective. Hence, it is better to keep the perspectivems ate.
However, in any SPL, the perspectives are closely relatexlitin
an implementability relation or through constraints agsirom de-
sign or business reasons. We call this the traceabilitychsphich
mandates an integrated analysis of the different persgscti

In this paper, we propose a constraint-based frameworkenzei-
ability and traceability constraints can be uniformly eegsed, at
the same time keeping the different intents of perspeciiviast.
We describe how the consistency, liveness, and commonnaiss p
lems can be reduced to problems of constraint solving. Tdirau
realistic case study, we provide some evidence that thetredmts
based framework is expressive and scalable to large SPLs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods

General Terms
Verification

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

ISEC’1] February 23-27, 2011 Thiruvananthapuram, Kerala, India
Copyright I 2011 ACM 978-1-4503-0559-4/11/02 ... $10.00

Keywords

Consistency, liveness, commonness, variability, traiigab

1. INTRODUCTION

Software Product Line (SPL) is a software development fraonk

to jointly design a family of closely related softwaseoducts(also
calledvariantg in an efficient and cost-effective manner. All the
variants in the family are composed from a single set of carepts
developed once for the entire family.

Since the specification and implementation of an SPL forstriki
products is complex, in order to separate the concerns amd ha
dle complexity, designers usually project the SPL alonfediht
perspectives. A typical methodology [20] prescribes theespec-
tives: feature, architecture and behaviour. The featurspeetive
lists the features and functionalities of the products ef3PL. Fea-
tures are implemented by components in the behaviour peirepe
The architecture perspective specifies how the components be
organized and interconnected to achieve the feature ergeints.

SPLs require well-defined mathematical models to suppoaria v
ety of analysis. A number of such models have been propogkd in
literature to express the different perspectives of an SR (fea-
tures, architectures and behaviors) [5, 4, 19, 20]. Eacépeetive
deals with a specific set of elements and their relations. foma
source of complexity of these models is thariability [22] of the
product-line elements which captures (1) the fact that kaments
may be mandatory, alternative or optional and (2) the catiri
between elements. Correlation relations constrain thespiee (ab-
sence) of an element through the presence (absence) of orw®r
other elements. In addition, the elements of different pertves
are connected together through what are caltadeability con-
straints. The variability and traceability constraintgdther restrict
the space of products derivable from an SPL. A schematiceof th
perspectives and the constraints is given in Figure 1. Agctih
the variability constraints relate elememtghin a perspective, and
the traceability constraints relate elemestsossperspectives.

Figure 1: Schematic of perspectives and constraints of an SPL

SPL
Architecture
Behavior

Traceability

Variability

One of the most important problems facing an SPL designéeis t
consistencyroblem, namely, to find if the SPL is consistent i.e. if

there are possible products satisfying the variability aladeabil- Finally, Deepak Dhungana [7] introduces a decision-oeeénari-
ity constraints. Further, if the SPL is inconsistent thee arants ability model that links together the variability of the faee per-
to find the source of inconsistency to debug the SPL. The desig spective with the variability of the architecture perspect

also may want to find that the elements of the SPL are not super-

fluous. An element is superfluous @ead if it is not used in any

product derivable from the SPL. On the other hand, an eleisent Traceability modelingMany traceability models [23, 25, 26]
called commonif it is necessary for all the products of the SPL. |ink the features to the components of the architecture. éSatier

Finding the dead and common elements of an SPL are called, re-approaches [36, 27] have linked requirements to impleniens
spectively, thdivenessand thecommonnesproblem. through feature and architecture.

In the literature, the problems of consistency, liveness, eom-

monness have mostly been addressed within individual persp Fyll SPL modeling.A full SPL model is a model or a set of
tives. Exceptin [25, 18], there is no work treating the vailia models that includes all the perspectives of an SPL fromiregu
ity and traceability across all the perspectives of an SPlann nent o code. This domain is dominated by two tools: GEAR$ [16
integrated fashion. From the point of view of a complete prod by Charles W. Krueger anBure::Variant [3] by Danilo Beuche.
uct derivation, such integrated analysis are necessarthdfuone Our approach is different from these because our goal isdbrm
should have automated solutions for the consistency, dsgnand verification of consistency, liveness, and commonness ahsym-

commonness problems since real-life SPLs involve thous@fid thesis of products as in these works, though, as a sideteffec
elements and manual methods are not scalable. Anotherl@otab consistency checking, one can get products.

point is that existing standard models for the feature mmtsge do
not have a clean way of expressing complex constraints arfeang
ture elements. We address all these issues, namely, ekjiligss

integrated solution and automated methods in this paper Verification in SPL.Kathi Fisler et al. [15] have developed a

verification method based on three-valued model checkirguef
tomata defined using step-wise refinement. Each step offinere
ment adds the behavior of another feature to the automaton. D
11 Related Work Batory [2] presents a method to check the consistency ofifeat
model. Robin Laney et al. [17] introduce a behavior conaiste
checker for composition of features. Mikolas Janota et a#] [
present a survey of the usage of formal methods in the fieldfof s
ware product line. The authors conclude that formal metlzods

. . . getting more and more used but the consistency checkindgonob
Feature modelingModeling the feature perspective of SPLs ¢ the"Sp| remains a challenge. In view of the constraint dhase

has garnered a lot of attention in the research communigys¢tof frameworks, [2] deals with only the feature perspective. [25],

Czarnecki [5] introduced a feature model which is now coersid the authors handle feature and architecture (but not thavimir)
standard. Don Batory [2] has developed a method based on step perspective in a theorem proving framework for first-ordejid. In

:N'S.e refl?(fement to fautomaftlcally gen%ralte Eror(]jqct (I:Od‘le ﬁg contrast, we analyze feature, architecture and behavisppetives
fectlogo eat;res rodrg.g eaturr(]a mode (‘j’vl'c IS € dear WPITE ol as well as traceability constraints in a simpler framewdtrls pos-
rom Czarnecki. In addition to these models, David Benawi sible that some traceability constraints as in [25] willdea large

al. [35] perform (in)consistency checking of feature msdel number of propositional constraints in our framework. Heere
the simple structure of the constraints allow them to beesblyy

. .) state-of-the-art constraint solvers with small amountesiources
Architecture modelingMany architecture models [10, 31,13, (time and memory).

28] exist but Tommi Myllymaki [30] points out the lack of aiieh
tectural models that can explicitly handle variability. (DEASEL
(MENAGE) by André van der Hoek [13] is able to do it. Similarly 1.2 Qur Contribution
Eiji Adachi et al. [1] combine the ACME architecture mode0[1 | this paper, we solve the problems of consistency, livenasd
with an independent variability model. commonness checking for an SPL considering all the perispsct
jointly and modeling the variability and traceability imfoation in

. . a constraint based framework. Different models used fdewint

Behavior modelingUirik Nyman [19] has defined the /O Modal perspectives of an SPL can be represented as constraidtspan

Automata (IOMA) to express in one automaton all the posdible straint solving can be used to find the solutions to the ctersiy,
haviors of a component. Similarly, Alessandro Fantechi &ted liveness, and commonness problems.

fania Gnesi [8] have defined the GEMTS model which has more

general variability constraints than IOMA using theleastandat We observe that the variability and traceability constsaislay a

mostoperators. Kathrin Scheidemann et al. [12] present a behav- crucial role in limiting the space of SPL variants. Anothdwan-

ioral model (PL-CCS) based upon CCS. tage of the joint analysis is that one gets valid product goméi-
tions as solution to the consistency problem.

Our work is closely related to many research areas of Soétwar
Product Line Engineering. In the following, we give an ovew
of the state-of-the-art.

Variability modeling.Many works [11, 6, 9, 32, 21] discuss ~ We also present a realistic SPL of an entry control systensdcs

about variability problems and present sound variabilitydeils. using a feature model, an architecture model called ModehiAr
Klaus Pohl et al. defined the OVM (Orthogonal Variability Md18] tecture Model (MaM) close to EASEL and a behavior model chlle
which extracts variability from feature model only. Fasi&®oos- GEMTS. We show how the variability constraints can be exéwhc

Frantz compares the OVM with Czarnecki feature model in.[24] out of these models automatically. We then illustrate theaot of

variability and traceability constraints on the consistetiveness,
and commonness problems.

1.3 Organization of the paper

The rest of the paper is organized as follows: we describe the

case study of an entry control system in Section 2. The motiva
tion of our approach is given in Section 3. Section 4 specifies
constraints-based framework for SPL. We formalize the lgrob

of consistency, liveness, and commonness in Section 5 apdee
the solutions for the problems through constraint solviBgction

6 presents our experimental results on the case study absett
Section 7 concludes this paper with an outline of open issues

Finally, the door unlock feature is also optional and canrigg t
gered either when the gear is shifted into park or when th&ear
is removed from ignition. The unlock action opens the drideor
only, all the doors, or no door depending upon a calibratibine
car should have either a manual or an automatic transmissidn

is destined for either American or European market.

Inputs/Outputs of featuregable 1 presents the relations be-
tween features and Inputs/Outputs of the ECPL.

Table 1: Therelations between features and I nputs/Outputs of
the ECPL

2. THEENTRY CONTROL PRODUCT LINE
We introduce here a case study of Entry Control Product LE@&RL)
used in the automotive industry. It will be used all along plager
to motivate and illustrate our work. The entry control systeom-
prises all the features involved in the management of lo€ksus.
In this study, we focus on the following features:

Power lock: this is the basic locking functionality which
manages the locking/unlocking according to key buttongres
and courtesy switch press.

e Door lock: automates the locking of doors.
e Door unlock: automates the unlocking of door(s).

e Door relock: performs automatic relocking of doors in case
of pick up/drop and drive.

e Post crash unlock: causes the unlocking of doors in a post
crash situation.

e Child lock: secures rear doors for children.

e Theft lock: secures the doors from external opening with an
additional lock.

Figure 2: Thefeature model of the ECPL

Entry control

Door
unlock

Post crash
unlock

Shift out Shift into Key -
[of park][Speed] [park][removed][Driver]

The feature perspective of the ECPtigure 2 presents
the feature model of the ECPL (a la Czarnecki). The dark gray
boxes are features of the ECPL. The light gray boxes are param
eters modeled as features. Child lock and Theft lock areooati
features. The Door lock feature is optional and can be trizge
either when the gear is shifted out of park or when the cardspee
reaches a predefined value. The Door relock feature is agdtion

Features Inputs Outputs
i"”’ tesy SIWitCh Unlock driver door
Power lock eysignal Unlock all doors
Driver door signal Lock all doors
Passengerdoor signal
. Airbag deployed Unlock child lock
Child lock
fieioc Switch child lock Lock child lock
Airbag deployed Unlock theft lock
Theftlock
eftlod Switch theft lock Lock theft lock
Post crash unlock | Airbag deployed Unlock all doors
Transmission status .
Unlock driver door
Door unlock Power mode Unlock all doors
Ignition status
Vehicle speed
Door lock Transmission status Lock all doors
Power mode
Brake pressed
Door relock Brake released Lock all doors
Vehicle speed
Power mode

The architecture perspective of the ECHigure 3 rep-
resents an architecture model presented in a notatiorddditelal
Architectural Model (Appendix A). Itis a simplified form of&SEL
[13] and yet preserves the essential notion of variabilépteal

to the product line. The model is composed of six components:
Power lock, Door lock manager, Auto lock, Child lock, The ft
lock, andChild lock LED. The first two items are mandatory but
the other four items are optional (denoted in the diagramdtted
boxes). The full system has 13 "in" ports (dark gray squaaes)

7 "out" ports (light gray squares). For clarity, we have gred 6
"in" ports of the featureduto lock and 4 "in" ports of the feature
Power lock in two graphical objects (squares with dark border).
The portAirbag deployeds replicated again for clarity of the fig-
ure.

The Auto lock component requires six global input signals plus
the airbag signal, it exchanges status signal Withld lock and
Theft lock components, provides lock/unlock action signals to
the Door lock manager and may provide the airbag signal to
Child lock andT he ft lock components. Th&ower lock com-
ponent requires the four global input signals, it exchargjetus
signal withC'hild lock andT he ft lock components, and provides
lock/unlock action signals to thBoor lock manager.

The Door lock manager component arbitrates between the lock/
unlock action signals fromuto lock and Power lock and for-
wards them to the global outputsChild lock and Theft lock
components require their respective Switch signal, exghata-
tus signal withAuto lock and Power lock and provide respec-
tive lock/unlock actions. These components may receivaitibag
signal directly from the global inputs or through theuto lock

Figure 3: The Modal Architecture Model of the ECPL

Unlock driver door

Unlock all doors Lock all doors

Q

Vehicle spee
Transmission status|

Courtesy switch
Key signal
Driver door signal

Power mode|

Passenger door signal

Ignition status|
Airbag deployed
Airbag deployed
Switch child lock

Airbag deployed
Switch theft lock

Unlock child lock Lock child lock Unlock theft lock Lock theft lock

component. This variability is the artifact of the archttee and
its choice depends upon a design decision. Theld lock LED
drives the status of the LED associated to®Held lock feature.

The behavior perspective of the ECPRtigures 4, 5 and
6 describe the behaviours of (1) the door lock feature anddloe

relock feature, (2) the door unlock feature and (3) the pesticun-

lock feature using automata. The behaviors of other fea@mnmenot
presented here because of their lack of variability and ladsause
of space limitation.

The bent arrows crossing transitions introduce variahitithe au-

tomata. Each automaton represents many possible behtvibizs
feature can take. A product of the ECPL contains exactly care t
sition from those crossed by the same bent arrow. The transst

dotted when optional.

Figure4: Theautomaton of Door lock and Door relock features
in the Auto lock component

Brake pressefg”“_,

Shift out of park Lock doors

"""'mnboor(s) opened
Lock doors
Lock doors

Lock doors Door(s) closed

Speed 2 n

C/ Brake released

The automaton of the door lock feature in Figure 4 starts faom
initial state where the Door lock feature is enabled, theirengs
running and all doors are closed. Depending upon the traassoni
configuration (automatic or manual), and user preferersss$ec-
tion 6.4 for details), all doors lock when either the gearhited
out of parkor the car speed exceeds a calibrated val)e At this
state, Door relock is triggered if the driver brakes, theleast one
door is opened and closed. All doors will lock again whenegith
the brake is released or car speed exceeds

The Door unlock feature’s automaton in Figure 5 starts fram a
initial state where the Door unlock feature is enabled, thgire
is running and all doors are closed. According to the trassion
configuration or to the user preference (see Section 6.4¢efwiild),
the doors are unlocked when either the gear is shifted into qra
the car key is removed from ignition. The doors unlocked kg th
unlock action can be the driver door only, all the doors, odaoor.

Figure 5. The automaton of Door unlock featurein the Auto
lock component

'\ Unlock driver door
J nlock no door
Unlotk_all doors

/ Unlock all doors

Shift into park

Ignition OFF

The Post crash unlock feature’s automaton in Figure 6 Sranis
an initial state where a crash has occurred. First, thegsrhee de-
ployed. Then, according to the presence of Child Lock antieft
Lock, these two locks are opened and then, all doors are ketoc
If both Child Lock and Theft Lock are present in the produleere
is no specification about the order in which they are supptsbd
unlocked. Any order can be followed or the two unlock acticas
be done in parallel. This choice of order of execution is sanegple
of variability specific to the behavior perspective.

Figure 6: The automaton of Post crash unlock feature in the
Auto lock component

Airbag
deployed’

The traceability constraints of the ECPlrable 2 presents
the traceability constraints between the features and d¢ngpo-
nents of the ECPL.

Table 2: Traceability constraints of the ECPL

| Feature | Component |
Power lock Power lock& Door lock manager
Child lock Child lock & Child lock LED

Theft lock Theft lock
Post crash Unlock Auto lock
Door lock Auto lock
Door unlock Auto lock
Door relock Auto lock

3. PERSPECTIVESAND INTEGRATED
ANALYSIS

As we have illustrated in Section 2, an SPL can be expressed us
different perspectives such as feature, architecture,batdvior
perspectives. Inthe literature, there are different madglaradigms
for different perspectives: Czarnecki feature model fesusn the
feature perspective [5], EASEL [13] focus on the architexiper-
spective, and GEMTS [8] focuses on the behavior perspective

Most of these models are informal as they have only graphégsl
resentation to ease the understanding of the SPL’s penapct
This attribute limits their capacity of representation ofstraints.
Consequently some constraints belonging to the model'spper
tive cannot be expressed. For example, in the ECPL, thewfello
ing constraint is not part of the Figure #:a product is made for
the USA, the door lock feature must be presenn [8], the au-
thors introduce an additional language called ACTL to repne
constraints that cannot be expressed directly within a GENAF
stance.

In every SPL, there are some constraints on the elementssacro
different perspectives. In ECPL, the presence of the Thek fea-
ture constraints the presence of the Theft lock componehtiam
behavior of the Post crash unlock feature. We call them ataitiey
constraints (from feature to components, from feature tmbier,
etc.). Of course, a product extracted from a SPL is valid drity
respects the variability constraints from every perspestiof the
SPL as well as the traceability constraints.

Representation of different perspectives using diffefermalisms
creates difficulties in carrying out an integrated analgs$ithe en-
tire SPL. In order to check the consistency of the SPL and tb fin
the live and common elements we need a uniform framework.

In the following Section, we propose a constraint based éwmonk

to express uniformly all the constraints in an integratesian re-
gardless of the perspective(s) they come from. Then, thelgms

of consistency, liveness and commonness of the elementseof t
SPL are reduced to Constraint Satisfaction Problem (CSéPgan
be solved using off-the-shelf tools such as YICES [34] or BDD
SOLVE [33].

4. A CONSTRAINT BASED FRAMEWORK
In this section, we give formal definitions of the three petjves,
namely, feature, architecture and behaviour, throughehefsle-
ments in each perspective and the variability constraiftis.trace-
ability constraints are defined over the elements of evergpee-
tives. An SPL is then defined through these perspectivestpiis
traceability constraints.

The most important aspect of a product line is the variahilhich
is reflected in each of the perspectives. Variability isadtrced by
the choice between elements that are mandatory, optioratesr
natives. An element or a group of elements for which these&ebo
are available is called wariation point In the feature model of
the ECPL, the transmission is a variation point becausenithea
either automatic or manual. Door relock is optional, thiglso
a variation point. There are additional constraints catiedj dif-
ferent elements within each perspective coming from bgsinea-
sons (bundling certain features) or from design conssainhese
choices are captured through theriability constraints

The following constraint language is used to model commkntwn
constraints in SPL engineering. L¥tbe a finite set of boolean val-
ued elements. We denote by, a set of boolean expressions over
V. A ground assignment is a functign: V' — Bool. It can be
equivalently expressed as a subsetof V' = {v € V|p(v) =
true}. A ground assignmerit” satisfies the set of constraints
(denotedV’ = Cv) if all the constraints inCy evaluate to true
with the ground assignmeft’. C'y is consistentf there is a satis-
fying ground assignment and it is callestonsistenptherwise.

Each element in the perspectives of the SPL is modeled as a
boolean valued propositioa,. When it is clear in the context,
we treat each elemeanfas the corresponding propositional variable
ep SO as to simplify the notation. Each perspective is given as a
set of constraint€' on its elements. A variation point is an ele-
ment which is not assigned the valtieie or false. A satisfying
ground assignmerny for the constraintg” fixes the values of the
elements and thus defines a possible product of the penspelti

this product, an elemeiatis present iffo(e,) = true.

4.1 Feature perspective

We define a feature of a system as a set of requirements on the
system behaviour identified by a keyword (hame of the feature
The first level of variability in a feature model comes frore fhos-
sibility of absence/presence of a feature. In this paperaise
model the inputs and outputs of the features as elements éé¢h
ture perspective. This gives us more variability than thegufee
names alone and has more meaningful traceability with tblei-ar
tecture perspective. In ECPL, Table 1 gives the inputs amputsi
required by each feature. This information is extractednfitbe
requirements.

A feature f is defined as a tripléf, Input ¢, Outputs) where f
is the name of the featurénput; and Output; are respectively
finite sets of input and output variable names.

DEFINITION 1 (FEATURE PERSPECTIVE The feature perspec-
tive F' is a tuple (F, C'r) whereF' is a set of features an@'r is
a set of constraints. Leb’r be the set of elementd, . .({f} U
Inputy U Outputy). Cr is defined oveE'r and includes the fol-
lowing:

e These constraints capture the fact that if a feature is prese
then so are all its inputs and outputsf = A

f = /\oGOutputf 0,

iEI'erutf 2

e In contrast, if an input (output) is present, then so is atslea
a feature that requires iti = \/fEF/Z.EInputf fs

0= VfEF/oEOutputf f

In the feature perspective of ECPL, the set of features amtl

the elements of the Figure 2 plus the inputs and outputs dfahk
1. The set of constraints includes items suclDasr relock =

Door lock andPost crash unlock = Airbag deployed\Unlock
all doors.

4.2 Architecture perspective

In an SPL, every product has the same architectural skelaion
some variations occur from product to product. In the aedhitre
perspective of the ECPL, the skeleton is formed by the compisn
Door lock manager and Power lock which are mandatory for
every product (Figure 3). The interconnections among thed a
with the environment are also part of the skeleton. All theeot
elements form the variable part of the ECPL.

Let C be the set of components. A componerg C'is a tuple
(name, inter face) where:

e name is the name of the component.

e interface is a set ofports. port € interface is a tu-
ple (p_name, direction) wherep_name is the name of the
port anddirection € {in, out,in_out}.

We designate a special component calledt for the purpose of
defining the interface of the architecture with the envirenin

presence of transitions from the same automaton or thenme sé
transitions from different automata. In the ECPL, one camress
constraints such as "if the trigger é&loor lock is Shift out of

park, the trigger ofDoor unlock is Shi ft into park" (This spe-
cific constraint is not part of our case study even though wahble
to model it).

DEFINITION 3 (BEHAVIOUR PERSPECTIVE. The behaviour
perspective of an SPL is defined as a tufiie Cs), whereB is a
set of automata. Each automaton is associated with one oyman
features.C is a set of constraints. The elements of the behaviour
perspective are all the transitions from the automata ofSRé i.e.
Ep = UbEB T, (whereT, is the set of transitions of the automata
b). Cp is defined oveEs.

In the behavior perspective of the ECPL, the set of elements i
formed by all the transitions of figures 4, 5, and 6. For exanpl
Door lock trigger = Shift out of park @& Speed > n is one

of the constraints il®'s (here,® is the "exclusive or" operation).

4.4 Traceability Constraints

Each feature may require one or more components for its imple
mentation. On the other hand, each component can also be used
to implement one or many features. In addition, a feature beay
implemented by one or many automata from the behaviour per-

Let I be the set of possible interconnections between componentsspective. Thus, there are relations across elements friferedit

of C. An interconnection € I is defined as a couplé, p2)
where:

e p1 is a port such thaip; .direction € {out,in_out}, p1 €
ci.anter face andey € C.

e po is a port such thatps.direction € {in,in_out}, p2 €
ca.inter face andeg € C.

® p1 # pa.

DEFINITION 2 (ARCHITECTUREPERSPECTIVE. An architec-
ture perspective is a tupl§C, I),C4) whereC' is a set of com-
ponents including the root component, ahdés a set of intercon-
nections. Elements of the architecture perspective araelkfas
Ea=CUI. Cj4is asetof constraints defined ovEr,.

In the ECPL, the set of components contains the 6 componénts o
the Figure 3 plus the root component. The set of intercommest
contains the 35 interconnections of the same figure. Oneeof th
constraints inF 4 relates the presence of the Child lock LED com-
ponent to the presence of the Child lock componentild lock
LED cemp < Child lock cmp.

4.3 Behavior Perspective

The behaviour perspective of an SPL represents the behlasiou
features using high level representation such as an aubomét
the ECPL, The figures 4, 5, and 6 present respectively thevimha
of the featuresDoorlock and Door relock, Door unlock, and
Post crash unlock. The variability in this perspective captures
the different possible behaviors of a given feature. Soamesitions
of the automaton model of a feature can be mandatory, optiona
alternative. For example, in Figure 4, the two outgoingsitons
from the initial state are alternatives: only one of themniplie-
mented in a product. The variability constraints relatbegitthe

perspectives necessary for implementing products of an Sk
set of traceability constraintSr capture this "implements" relation
across perspectives. There may be variability in the tlzlsare-
lations themselves e.g. features can be satisfied by mamaiive
choices of components.

DEFINITION 4 (TRACEABILITY CONSTRAINTS). The set of
traceability constraints is a set of constraints ovBr U E4 U
E'i, each constraint necessarily involving elements from rtizaa
one perspective (otherwise they would be part of the vdrigbi
constraints)

In the ECPL, Table 2 gives the traceability constraints friea-
tures to components. The first line of the table correspondiset
following constraint: Power lock = Power lock cmp & Door
lock manager cmp.

45 SPL

An SPL integrates the feature, architecture and behavierspec-
tives, each comprising its variability constraints. In gidd, the
traceability constraints provide the link among the elets@gross
different perspectives. Formally,

DEFINITIONS5 (SPL). An SPL is defined as a tuple
(FP,AP, BP,Cr)whereF P = (F,CF) is a feature perspective,
AP = (A, C},) is an architecture perspective ag§lP = (B, Cg)
is a behaviour perspective an@r is a set of traceability con-
straints.

4.6 Product

A feature product is a ground assignmentfogatisfying the con-
straintsC'r. Definition of architecture and behaviour products are

similar. A product of SPL consists of a feature product, ahiar
tecture product, and a behaviour product which also medtabe-
ability constraint<Cr. Formally,

DEFINITION 6 (PrRODUCT). A product of an SPL is a tuple
(F', A’, B') such that

F'=Cr

A ECa

B' = Cp,and
FFUAUB ECr

The set of all consistent products of an SPL is denoted as
PROD(SPL).

In ECPL, the following set of feature$: Power lock, Post Crash
unlock, Transmission, Manual, Location, USA } satisfies
the set of constraint€’s. This is the smallest feature product in
ECPL. If we associate to this feature product an architeghuod-
uct and a behavior product that, all together, satisfy thegability
constraints, we get a product.

5. CONSISTENCY, LIVENESS, AND COM-

MONNESS
Let Cspr, = Cr U Ca U Cp U Cr, be the set comprising all
the variability constraints from the perspectives and thegability
constraints. Also, leflspr, = Er U E4 U Ep be the set of all
elements of the SPL(features, components, interconmectad
transitions).

Given the constraint-based model of an SPL as above, oneecan d

fine the consistency, liveness and commonness as follows.

1. An SPL is said to be consistent if ROD(SPL) is non-
empty i.e. there exists at least one product in the family.

2. Anelemenkt € Espy islive if 3P € PROD(SPL) such
thate € P i.e. itis contained in a product of SPL. Itis called
deador superfluous otherwise.

3. Anelement € Espy, is common ifVP € PROD(SPL)
such that € P i.e. itis contained in all the products of SPL.

The consistency, liveness, and commonness problems oéatem
of Espr are defined as:

e Consistency problem: Given an SPL, find if it is consistent.

e Liveness problem: Given an SPL, find the set of alive and
dead elements.

e Commonness problem: Given an SPL, find the set of com-
mon elements.

The basic solutions for the problems use the results of flefimg
proposition which is a simple consequence of the definittmove.

PrRoOPOSITION 7. The following statements hold:

e PROD(SPL) is non-empty ifCspr, is satisfiable.

e c € Esprisliveiff Cspr U {e} is satisfiable.

e ¢ € Egpr iscommon iflCspr, U {—e} is unsatisfiable.

Thus, the consistency problem can be solved by checkingattie s
isfiability of the set of constraint§’sp1, using a constraint solver.
One can find the set of live elements by iterating through the e
ements and checking their liveness (resp. commonness)gihro
Proposition 7.2 (resp. Proposition 7.3). Computationbbter
algorithms for checking liveness and commonness are pegsen
respectively in Algorithms 1 and 2.

Algorithm 1 checks whether elements Bk p, are live or not.
Input: SPL
Output: Erive, the set of live elements (fPL andEpeaq, the
set of dead elements

Eliue =0
Ejcaa =9
repeat

SeleCt@ S ESPL \ (Eliue U Edead)

if Cspr, U {e} is not satisfiablehen
{We adde to the set of dead elements.}
Eicad = Egeaa U {e}

ese
Generatel,;, a satisfying ground assignment 0z U
{e}.
{Obviously, the elements itE, are live and instead of a
single element, we possibly get a large set of live elements}
{Add E, to the set of lived elements.}
Eli’ue - Eli’ue U Eg

end if

until Espr = (Eliue U Edead)

Algorithm 2 checks whether elements &fsp;, are common or
not.

Input: SPL
Output: Ecommon, the set of common elements §P L
Ecommun =0
{We add the E.ommonr all the mandatory elements from each
perspective.}
Ecommont = Emandatory
{We propagate the truth values of the current common elesent
among the rest of the constraints...}
CSPL“’ = Ecommon
{...and simplify the constraint as much as possible}
Simplify(Cspr)
{Simplification leads to obvious constraints such/as meaning
that the elements are mandatory.}
for all New statemenf\ e € Cspr do

Ecommon = Ecommon U {6}
end for
{But all the mandatory elements cannot be found like that, ex
haustive search is yet required.}
for all e € Espr \ Ecommon dO

if Cspr, U {—e} is not satisfiabl¢hen

{e is a common element.}
Ecommon = Ecommon U {6}

end if

end for

6. ECPL IN THE CONSTRAINT BASED
FRAMEWORK

In this section, we model the ECPL according to the condtrain
based framework defined in Section 4.

6.1 Constraintsof the feature perspective

As defined earlier, the elements of the feature perspectaé¢ha
propositional symbols of the features and the input andudiwgari-
ables. The set of constraints corresponding to the Czairfestkire
model can be derived as follows :

e p andq are related through a mandatory relationifes ¢ €

Cr.

e p andgq are related through an optional relationgfl= p €
Cr.

e pand(q,...qp) are related through an alternative relation

iffp=qg® - ©¢® - Dg, €Cr.

e pand{qi,...qp) are related through am relation with car-
dinality (n,m) iff p =
Vscia ,qp}(/\ses s),n < Card(S) < m.

The variability constraints derived from the Figure 2 areegiin
the following:

1 PEntry control

pEnt'ry control <&

PPower lock /\pTransmission /\pLocation
PTransmission <= PManual DPAutomatic
PLocation < PUSA @pEurope
PChildlock = PEntry control
PTheftlock = PEntry control
PPowerlock < PPost crash unlock
PDoorlock <~ PPower lock
PDoorunlock < PPower lock
PDoorlock <~ pTT'iggeT' 1
PTrigger1 = DShiftoutof park D DSpeed
PDoorrelock = PDoor lock
PDoor unlock - pTT'iggeT'Q/\pDoor'

PTrigger2 = PShiftintopark © PKeyremoved

3
4
5
6
7
8
9
10
11
12
13
14
15 PDoor = PDriver © Pall © PNo

From the requirement document of ECPL, we have extracted the g

following additional constraints. Constraints of thespety cannot
be accommodated cleanly in the Czarnecki feature model.

16 pPUsA = PDoorlock

17 PUSA = PDoorunlock

18 pmanual = DSpeed

19 PManual = pKeyRemo'ued

6.2 Constraintsof thearchitecture perspective
The elements of the architecture perspective are the coemp®n
(including the root component) and the links. The set of tairgs
corresponding to th&odal Architecture Modetan be derived as
follows: Letl = (p1,p2) € L be an interconnection and lgf be
a port of the component;, ¢ € {1,2}. We have

e |f a component is mandatory, thep. € Cy4
e If an interconnectiorf is mandatory, theh < ciAca € Ca,

e If an interconnectiod is optional, ther! = ciAca € Ca.

From Figure 3, we have extracted the following four constsai
(ABD stands forAirbag deployejl
20 PLink ABD Childlock cmp = PChildlock cmp
21 PLink ABD Theftlock cmp = PTheftlock cmp
22 PLink ABD Autolock cmp Child lock cmp =
PAutolock cmp/\pchildlock: cmp
PLink ABD Autolock cmp Theftlock cmp =
PAutolock cmp /\pTheft lock cmp

23

From the requirement document of ECPL, we had extractedthe f
lowing four additional constraints. Again, it is not easycapture
these constraints in the pictorislodal Architecture Model

Since theChild lock feature is implemented using the two com-
ponentsC'hild lock andChild lock LE D, The relation 24 should
be inCa.

24 PcChildlock cmp < PChildlock LED cmp

The propagation of thAirbag deployednput can be implemented
by two different ways: each of the following component$uto
lock, Child lock, andTheft lock can have either a direct con-
nection from the global "in" port or onlAuto lock has a direct
connection and it propagates this signal to the two otherpcem
nents.

PLink ABD Child lock cmp <=

25 PLink ABD Theftlock cmp

26 PLink ABD Autolock cmp Child lock cmp =
PLink ABD Autolock cmp Theftlock cmp

27 PLink ABD Childlock cmp =

TPLink ABD Autolock cmp Child lock cmp

6.3 Constraints of the behavior perspective

The elements of the behavior perspective are the transitidhe
variability constraint corresponding to the automata oft®a 2
can be extracted as follows: Lep = {t1,...ti,...tm } be a set of
transitions crossed by a bent arrow. Then= t1 ®...®t D ... D
T.. € Cg. If this variation point has to be considered, only one
transition can be present in any product.

From the figures 4, 5, and 6, we extract the following constsai
28 PDoorlock trigger =)

DPSpeed © PShiftout of park (from Figure 4)

PDoorunlock trigger =

pKey removed ©® pShz‘ft into park (from Figure 5)

PDoorunlock door_1 =

30 PDriver ® Pau @ pwo (from Figure 5)
31 PDoorunlock door_2 = .
PDriver D Pau D PNo (from F|gure 5)
32 PPcuy = PUnlock nothing ® PUnlock child.lock:@
DPUnlock theftlock ® PUniock botn (from Figure 6)
33 PPcusy = PUnlock theftlock first ® PUnlock childlock first

@pUnlock: both in parallel (from Figure 6)

Let us add an extra requirement specifying that if both Chddk
and Theft Lock are present, then Child lock should be deatetil/
first. This gives us an additional constraint,

34 PPcuy € DUnlock childlock first-

6.4 Traceability Constraints

Traceability from features to architectureccording to
Table 2, the traceability constraints are the following:

35 PPower lock =
PPower lock cmp/\pDoor' lock manager cmp
36 PcChildlock =
PChildlock cmp /\pchild lock LED cmp
37 PTheftlock = PTheftlock cmp
38 PPostcrash unlock = PAutolock cmp
39 PDoorlook = PAutolock cmp
40 PDoor unlock = PAutolock cmp
41 PDoor relock = PAutolock cmp

In addition, we have the constraints relating the inpugiatsignals
of the features to the in-ports and out-ports of the root camept.

Traceability from features to behaviorBecause of cor-
relation between the variability in the feature perspectnd the
behavior perspective, the following requirements has tdrdes-
lated in constraints

e The choice of the doors (driver, all, no) referred by the Door

unlock feature is the same in every models.
42 PDoor <~ PDoorunlock door_1
43 PDoor < PDoor unlock door_2

e The selection of the trigger of the feature Door lock (resp.

Door unlock) is the same in every model.
44 PTrigger1 < PDoorlock trigger
45 PTrigger 2 < PDoor unlock trigger

e Concerning Post crash unlock, if child lock feature is en-

abled, it is opened first. Then if theft lock feature is endble
it is opened before unlocking the doors.
46 PUnlock nothing =
TPChildlock /N TDTheft lock
47 PUnlock child lock <
PChildlock N\ TPTheft lock
48 PUnlock theftlock <
TPChildlock N\ PTheft lock
49 PUnlock both <=
PChildlock \ DTheftlock

6.5 Consistency, liveness, and commonness

checking

For the ECPL, the number of feature products is 640, number of

architecture products is 32 and the number of variationfimwit
the behavior perspective is 72. Taken separately, thesergie
to 640x32x72=1474560 combinations. However, with tragiégab
constraints, the number of products turns out to be only A§6.
verified that all the elements are live (each element is useat i
least one product) except for the transitidiialock theft lock
first and Unlock both in parallel which are dead due to the
constraint 34. We also verified that featuf@swer lock and Post

crash unlock are common to all the products. Also, since the fea-

ture Post crash unlock is mandatory, the featureRoor lock,

Door unlock, and Door relock are also common because they

are all implemented by thduto lock component. Theluto lock
component is also common.

7. CONCLUSION

In this paper, we have proposed a constraint based frameanrk

SPL. We claim that the framework provides a uniform and esqre

sive formalism to describe the constraints within and acimer-
spectives. Thus, the analysis problems of SPLs can be addrés

a framework which integrates all the perspectives of a gEh.
We have illustrated this approach through a case study of eon-
trol system for automobiles. The integrated set of constisaiom-
prises both intra- and inter- perspective constraintsgldity and
traceability). Our experiments show that the set of corgsanod-
eling the entire SPL can be efficiently analyzed for conaisteand
computing live and common elements.

The large number of possible products of an SPL is an issuein t
industry. This has an implication on the effort spent toethe
desired products. We have suggested that traceabilitytredms
capturing some aspects of design (of both architecture byud a
rithms in the components) can reduce this number by a latgaex
The case study provides some evidence to this effect.

The number of constraints can become a problem in case of very

large SPLs because all the constraints of the SPLs are atéspr
in the same constraint solving framework. However, the ifigec
structure of constraints (most constraints are implicefjacan be
exploited to optimize the analysis methods. Domain andiegpl
tion specific study should be carried out to identify speaifiti-
mization techniques.

8. REFERENCES

[1] E. Adachi, T. Batista, U. Kulesza, A. L. Medeiros, C. Chav
and A. Garcia. Variability management in aspect-oriented
architecture description languages: An integrated agproa
Brazilian Symposium on Software Engineerifg09.

[2] D.S. Batory. Feature models, grammars and propositiona
formulas. In J. H. Obbink and K. Pohl, edito&PLC
volume 3714 oL ecture Notes in Computer Scienpages
7-20. Springer, 2005.

[3] D. Beuche. Modeling and building software product lines
with pure: : Variants. I'SPLGC page 358, 2008.

[4] J. Bosch.Design and use of software architectures: adopting
and evolving a product-line approacACM Press/ Addison
- Wesley Publishing Co., New York, NY, USA, 2000.

[5] K. Czarnecki and U. Eiseneckébenerative Programming:
Methods, Tools and Application&CM Press, Addison-
Wesley Publishing Co. New York, NY, USA, June 2000.

[6] E. A. de Oliveira, Junior, I. M. S. Gimenes, E. H. M. Huzita
and J. C. Maldonado. A variability management process for
software product lines. IRASCON '05: Proceedings of the
2005 conference of the Centre for Advanced Studies on
Collaborative researchpages 225-241. IBM Press, 2005.

[7] D. Dhungana and P. Griinbacher. Understanding
decision-oriented variability modelling. In Thiel and Poh
[29], pages 233-242.

[8] A. Fantechi and S. Gnesi. Formal modeling for product
families engineering. ISPLC pages 193-202, 2008.

[9] P. C. C. Felix Bachmann. Variability in software product
lines. Technical Report TR-012, CMU/SEI, 2005.

[10] D. Garlan, R. T. Monroe and D. Wile. Acme: an architeetur
description interchange language. In J. H. Johnson, editor
CASCONpage 7. IBM, 1997.

[11] H. Gomaa and D. L. Webber. Modeling adaptive and
evolvable software product lines using the variation point
model. INHICSS '04: Proceedings of the 37th Annual
Hawaii International Conference on System Scien2664.

[12] A. Gruler, M. Leucker and K. D. Scheidemann. Calculgtin
and modeling common parts of software product lines. In
SPLGC pages 203-212, 2008.

[13] A. V. D. Hoek. Capturing product line architectures.lin
Proceedings of the 4th International Software Architeetur
Workshop number CU-CS-895-99, pages 2000-95, 2000.

[14] M. Janota, J. Kiniry and G. Botterweck. Formal methats i
software product lines: Concepts, survey and guidelines,
2008.

[15] S. Krishnamurthi and K. Fisler. Foundations of increrad
aspect model-checkingCM Trans. Softw. Eng. Methodol.
16(2):39, 2007.

[16] C. W. Krueger and K. Jackson. Requirements enginedoing

systems and software product lines, 2009.

R. Laney, T. T. Tun, M. Jackson and B. Nuseibeh.

Composing features by managing inconsistent requirements

In L. du Bousquet and J.-L. Richier, editoiinth

International Conference on Feature Interactions in Safev

and Communication Systems (ICFI'Qppges 141-156,

2007.

A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens and

G. Saval. Disambiguating the documentation of variabitity

software product lines: A separation of concerns,

formalization and automated analysis Requirements

Engineering Conference, 2007. RE '07. 15th IEEE

International pages 243-253, 2007.

U. Nyman.Modal Transition Systems as the Basis for

Interface Theories and Product Liné3hD thesis,

Department of computer science, Aalborg University,

Denmark, 2008.

S. E. |. of Carnegie Mellon University. Software protiline

web site: http://www.sei.cmu.edu/productlines, 2010.

G. Perrouin, F. Chauvel, J. DeAntoni and J.-M. Jézéquel

Modeling the variability space of self-adaptive applioas.

In Thiel and Pohl [29], pages 15-22.

K. Pohl, G. Béckle and F. J. v. d. Linde8oftware Product

Line Engineering: Foundations, Principles and Techniques

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

M. Riebisch and R. Brcina. Optimizing design for vaildip

using traceability links. IECBS’08: Proceedings of the 15th

Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systepages 235244,

Washington, DC, USA, 2008. IEEE Computer Society.

F. Roos-Frantz. A preliminary comparison of formal

properties on orthogonal variability model and feature

models. In D. Benavides, A. Metzger and U. W. Eisenecker,
editors,VaMoS$ volume 29 oflCB Research Reparpages

121-126. Universitat Duisburg-Essen, 2009.

T. K. Satyananda, D. Lee and S. Kang. Formal verificatibn

consistency between feature model and software architectu

in software product line. ICSEA '07: Proceedings of the

International Conference on Software Engineering Advance

[26], page 10.

T. K. Satyananda, D. Lee, S. Kang and S. |. Hashmi.

Identifying traceability between feature model and sofeva

architecture in software product line using formal concept

analysisComputational Science and its Applications,

International Conferenced:380-388, 2007.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27] L. Shen, X. Peng and W. Zhao. A comprehensive
feature-oriented traceability model for software prodiret
development. Irsoftware Engineering Conference, 2009.
ASWEC '09. Australianpages 210 —219, April 2009.
M. Svahnberg, J. van Gurp and J. Bosch. A taxonomy of
variability realization techniques: Research artictasftw.
Pract. Exper, 35(8):705—-754, 2005.
S. Thiel and K. Pohl, editorSoftware Product Lines, 12th
International Conference, SPLC 2008, Limerick, Ireland,
September 8-12, 2008, Proceedings. Second Volume
(Workshops)Lero Int. Science Centre, University of
Limerick, Ireland, 2008.
M. Tommi. Variability management in software
product-lines. Technical Report 30, Institute of Software
Systems, Tampere University of Technology, January 2002.
[31] R. C.van Ommering, F. van der Linden, J. Kramer and
J. Magee. The koala component model for consumer
electronics softwardEEE Computer33(3):78-85, 2000.
[32] M. Voelter and I. Groher. Product line implementatising
aspect-oriented and model-driven software development. |
SPLC '07: Proceedings of the 11th International Software
Product Line Conferen¢gages 233—-242, Washington, DC,
USA, 2007. IEEE Computer Society.
[33] Website. http://www.win.tue.nl/ wieger/bddsolve/.
[34] Website. http:/lyices.csl.sri.com/.
[35] J. White, D. C. Schmidt, D. Benavides, P. Trinidad and
A. Ruiz-Cortés. Automated diagnosis of product-line
configuration errors in feature models.Pnoceedings of the
12th International Software Product Line Conferenpages
225-234, Washington, DC, USA, 2008. IEEE Computer
Society.
C. Zhuy, Y. Lee, W. Zhao and J. Zhang. A feature oriented
approach to mapping from domain requirements to product
line architecture. In H. R. Arabnia and H. Reza, editors,
Proceedings of the International Conference on Software
Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP 2006, Las
Vegas, Nevada, USA, June 26-29, Volumgabes 219-225.
CSREA Press, 2006.

(28]

[29]

[30]

[36]

APPENDI X
A. MODAL ARCHITECTURE MODEL

DEFINITION8 (MODAL ARCHITECTURE MODEL). A modal
architecture model (MAM) is a tuple
(C, cspi, Link, Ac, A;) where:

e (C'is a set of components.
e ¢,y IS the root component.

e Link is a set of links or interconnectior{®1, p2) where,p;
(resp.p2) is anout (in) port of a component; (c2).

e A : C — {may, must} associates a modality to a compo-
nent.

e A;: Link — {may, must} associates a modality to a link.

