
Integrated analysis of software product lines
A constraint based framework for consistency, liveness, and commonness checking

Jean-Vivien Millo, Swarup K Mohalik, S. Ramesh
India Science Lab, General Motors Global Research and Development

GM Technical Center India Pvt Ltd, Creator Building
International Tech Park Ltd., Whitefield Road, Bangalore - 560 066, India.

{jean-vivien.millo, swarup.mohalik, ramesh.s}@gm.com

ABSTRACT
Software Product Line (SPL) is a software development framework
to jointly design a family of closely related software products in an
efficient and cost-effective manner. In order to separate the con-
cerns and handle complexity, designers usually project theSPL
along different perspectives such as feature, architecture and be-
haviour. Each perspective deals with variability of a set ofartifacts
and variability constraints among them. SPL designers attempt to
ensure theconsistencyof the individual perspectives and the SPL as
a whole. They are also interested in finding the elementscommon
to all products and thelive elements (used in at least one product).

In the literature, most of the works focus on a single perspective and
address the above-mentioned problems within single perspectives.
There have also been attempts to express the variability of differ-
ent perspectives within the feature perspective. However,since the
different perspectives have different intents, coercing them into a
single perspective may result in unnatural constructs in the feature
perspective. Hence, it is better to keep the perspectives separate.
However, in any SPL, the perspectives are closely related through
an implementability relation or through constraints arising from de-
sign or business reasons. We call this the traceability aspect, which
mandates an integrated analysis of the different perspectives.

In this paper, we propose a constraint-based framework where vari-
ability and traceability constraints can be uniformly expressed, at
the same time keeping the different intents of perspectivesintact.
We describe how the consistency, liveness, and commonness prob-
lems can be reduced to problems of constraint solving. Through a
realistic case study, we provide some evidence that the constraint-
based framework is expressive and scalable to large SPLs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods

General Terms
Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’11, February 23-27, 2011 Thiruvananthapuram, Kerala, India
Copyright l’ 2011 ACM 978-1-4503-0559-4/11/02 ... $10.00

Keywords
Consistency, liveness, commonness, variability, traceability

1. INTRODUCTION
Software Product Line (SPL) is a software development framework
to jointly design a family of closely related softwareproducts(also
calledvariants) in an efficient and cost-effective manner. All the
variants in the family are composed from a single set of components
developed once for the entire family.

Since the specification and implementation of an SPL for industrial
products is complex, in order to separate the concerns and han-
dle complexity, designers usually project the SPL along different
perspectives. A typical methodology [20] prescribes threeperspec-
tives: feature, architecture and behaviour. The feature perspective
lists the features and functionalities of the products of the SPL. Fea-
tures are implemented by components in the behaviour perspective.
The architecture perspective specifies how the components are to be
organized and interconnected to achieve the feature requirements.

SPLs require well-defined mathematical models to support a vari-
ety of analysis. A number of such models have been proposed inthe
literature to express the different perspectives of an SPL (e.g. fea-
tures, architectures and behaviors) [5, 4, 19, 20]. Each perspective
deals with a specific set of elements and their relations. A major
source of complexity of these models is thevariability [22] of the
product-line elements which captures (1) the fact that the elements
may be mandatory, alternative or optional and (2) the correlation
between elements. Correlation relations constrain the presence (ab-
sence) of an element through the presence (absence) of one ormore
other elements. In addition, the elements of different perspectives
are connected together through what are calledtraceability con-
straints. The variability and traceability constraints together restrict
the space of products derivable from an SPL. A schematic of the
perspectives and the constraints is given in Figure 1. As depicted,
the variability constraints relate elementswithin a perspective, and
the traceability constraints relate elementsacrossperspectives.

Figure 1: Schematic of perspectives and constraints of an SPL

One of the most important problems facing an SPL designer is the
consistencyproblem, namely, to find if the SPL is consistent i.e. if

there are possible products satisfying the variability andtraceabil-
ity constraints. Further, if the SPL is inconsistent then one wants
to find the source of inconsistency to debug the SPL. The designers
also may want to find that the elements of the SPL are not super-
fluous. An element is superfluous (ordead) if it is not used in any
product derivable from the SPL. On the other hand, an elementis
called commonif it is necessary for all the products of the SPL.
Finding the dead and common elements of an SPL are called, re-
spectively, thelivenessand thecommonnessproblem.

In the literature, the problems of consistency, liveness, and com-
monness have mostly been addressed within individual perspec-
tives. Except in [25, 18], there is no work treating the variabil-
ity and traceability across all the perspectives of an SPL inan
integrated fashion. From the point of view of a complete prod-
uct derivation, such integrated analysis are necessary. Further, one
should have automated solutions for the consistency, liveness, and
commonness problems since real-life SPLs involve thousands of
elements and manual methods are not scalable. Another notable
point is that existing standard models for the feature perspective do
not have a clean way of expressing complex constraints amongfea-
ture elements. We address all these issues, namely, expressibility,
integrated solution and automated methods in this paper.

1.1 Related Work
Our work is closely related to many research areas of Software
Product Line Engineering. In the following, we give an overview
of the state-of-the-art.

Feature modeling.Modeling the feature perspective of SPLs
has garnered a lot of attention in the research community. Krzysztof
Czarnecki [5] introduced a feature model which is now considered
standard. Don Batory [2] has developed a method based on step-
wise refinement to automatically generate product code froma se-
lection of features from a feature model which is clearly inspired
from Czarnecki. In addition to these models, David Benavides et
al. [35] perform (in)consistency checking of feature models.

Architecture modeling.Many architecture models [10, 31, 13,
28] exist but Tommi Myllymaki [30] points out the lack of archi-
tectural models that can explicitly handle variability. Only EASEL
(MENAGE) by André van der Hoek [13] is able to do it. Similarly,
Eiji Adachi et al. [1] combine the ACME architecture model [10]
with an independent variability model.

Behavior modeling.Ulrik Nyman [19] has defined the I/O Modal
Automata (IOMA) to express in one automaton all the possiblebe-
haviors of a component. Similarly, Alessandro Fantechi andSte-
fania Gnesi [8] have defined the GEMTS model which has more
general variability constraints than IOMA using theat leastandat
mostoperators. Kathrin Scheidemann et al. [12] present a behav-
ioral model (PL-CCS) based upon CCS.

Variability modeling.Many works [11, 6, 9, 32, 21] discuss
about variability problems and present sound variability models.
Klaus Pohl et al. defined the OVM (Orthogonal Variability Model) [18]
which extracts variability from feature model only. Fabricia Roos-
Frantz compares the OVM with Czarnecki feature model in [24].

Finally, Deepak Dhungana [7] introduces a decision-oriented vari-
ability model that links together the variability of the feature per-
spective with the variability of the architecture perspective.

Traceability modeling.Many traceability models [23, 25, 26]
link the features to the components of the architecture. Some other
approaches [36, 27] have linked requirements to implementations
through feature and architecture.

Full SPL modeling.A full SPL model is a model or a set of
models that includes all the perspectives of an SPL from require-
ment to code. This domain is dominated by two tools: GEARS [16]
by Charles W. Krueger andPure::Variant [3] by Danilo Beuche.
Our approach is different from these because our goal is formal
verification of consistency, liveness, and commonness and not syn-
thesis of products as in these works, though, as a side-effect of
consistency checking, one can get products.

Verification in SPL.Kathi Fisler et al. [15] have developed a
verification method based on three-valued model checking ofau-
tomata defined using step-wise refinement. Each step of the refine-
ment adds the behavior of another feature to the automaton. Don
Batory [2] presents a method to check the consistency of feature
model. Robin Laney et al. [17] introduce a behavior consistency
checker for composition of features. Mikolás Janota et al. [14]
present a survey of the usage of formal methods in the field of soft-
ware product line. The authors conclude that formal methodsare
getting more and more used but the consistency checking problem
of the SPL remains a challenge. In view of the constraint based
frameworks, [2] deals with only the feature perspective. In[25],
the authors handle feature and architecture (but not the behaviour)
perspective in a theorem proving framework for first-order logic. In
contrast, we analyze feature, architecture and behavior perspectives
as well as traceability constraints in a simpler framework.It is pos-
sible that some traceability constraints as in [25] will lead to large
number of propositional constraints in our framework. However,
the simple structure of the constraints allow them to be solved by
state-of-the-art constraint solvers with small amount of resources
(time and memory).

1.2 Our Contribution
In this paper, we solve the problems of consistency, liveness, and
commonness checking for an SPL considering all the perspectives
jointly and modeling the variability and traceability information in
a constraint based framework. Different models used for different
perspectives of an SPL can be represented as constraints, and con-
straint solving can be used to find the solutions to the consistency,
liveness, and commonness problems.

We observe that the variability and traceability constraints play a
crucial role in limiting the space of SPL variants. Another advan-
tage of the joint analysis is that one gets valid product configura-
tions as solution to the consistency problem.

We also present a realistic SPL of an entry control system forcars
using a feature model, an architecture model called Model Archi-
tecture Model (MaM) close to EASEL and a behavior model called
GEMTS. We show how the variability constraints can be extracted
out of these models automatically. We then illustrate the impact of

variability and traceability constraints on the consistency, liveness,
and commonness problems.

1.3 Organization of the paper
The rest of the paper is organized as follows: we describe the
case study of an entry control system in Section 2. The motiva-
tion of our approach is given in Section 3. Section 4 specifiesthe
constraints-based framework for SPL. We formalize the problems
of consistency, liveness, and commonness in Section 5 and propose
the solutions for the problems through constraint solving.Section
6 presents our experimental results on the case study of Section 2.
Section 7 concludes this paper with an outline of open issues.

2. THE ENTRY CONTROL PRODUCT LINE
We introduce here a case study of Entry Control Product Line (ECPL)
used in the automotive industry. It will be used all along thepaper
to motivate and illustrate our work. The entry control system com-
prises all the features involved in the management of locks of cars.
In this study, we focus on the following features:

• Power lock: this is the basic locking functionality which
manages the locking/unlocking according to key button press
and courtesy switch press.

• Door lock: automates the locking of doors.

• Door unlock: automates the unlocking of door(s).

• Door relock: performs automatic relocking of doors in case
of pick up/drop and drive.

• Post crash unlock: causes the unlocking of doors in a post
crash situation.

• Child lock: secures rear doors for children.

• Theft lock: secures the doors from external opening with an
additional lock.

Figure 2: The feature model of the ECPL

The feature perspective of the ECPL.Figure 2 presents
the feature model of the ECPL (a la Czarnecki). The dark gray
boxes are features of the ECPL. The light gray boxes are param-
eters modeled as features. Child lock and Theft lock are optional
features. The Door lock feature is optional and can be triggered
either when the gear is shifted out of park or when the car speed
reaches a predefined value. The Door relock feature is optional.

Finally, the door unlock feature is also optional and can be trig-
gered either when the gear is shifted into park or when the carkey
is removed from ignition. The unlock action opens the driverdoor
only, all the doors, or no door depending upon a calibration.The
car should have either a manual or an automatic transmissionand
is destined for either American or European market.

Inputs/Outputs of features.Table 1 presents the relations be-
tween features and Inputs/Outputs of the ECPL.

Table 1: The relations between features and Inputs/Outputs of
the ECPL

The architecture perspective of the ECPL.Figure 3 rep-
resents an architecture model presented in a notation called Modal
Architectural Model (Appendix A). It is a simplified form of EASEL
[13] and yet preserves the essential notion of variability central
to the product line. The model is composed of six components:
Power lock, Door lock manager,Auto lock, Child lock, Theft
lock, andChild lock LED. The first two items are mandatory but
the other four items are optional (denoted in the diagram by dotted
boxes). The full system has 13 "in" ports (dark gray squares)and
7 "out" ports (light gray squares). For clarity, we have grouped 6
"in" ports of the featureAuto lock and 4 "in" ports of the feature
Power lock in two graphical objects (squares with dark border).
The portAirbag deployedis replicated again for clarity of the fig-
ure.

The Auto lock component requires six global input signals plus
the airbag signal, it exchanges status signal withChild lock and
Theft lock components, provides lock/unlock action signals to
the Door lock manager and may provide the airbag signal to
Child lock andTheft lock components. ThePower lock com-
ponent requires the four global input signals, it exchangesstatus
signal withChild lock andTheft lock components, and provides
lock/unlock action signals to theDoor lock manager.

TheDoor lock manager component arbitrates between the lock/
unlock action signals fromAuto lock andPower lock and for-
wards them to the global outputs.Child lock and Theft lock
components require their respective Switch signal, exchange sta-
tus signal withAuto lock andPower lock and provide respec-
tive lock/unlock actions. These components may receive theairbag
signal directly from the global inputs or through theAuto lock

Figure 3: The Modal Architecture Model of the ECPL

component. This variability is the artifact of the architecture and
its choice depends upon a design decision. TheChild lock LED
drives the status of the LED associated to theChild lock feature.

The behavior perspective of the ECPL.Figures 4, 5 and
6 describe the behaviours of (1) the door lock feature and thedoor
relock feature, (2) the door unlock feature and (3) the post crash un-
lock feature using automata. The behaviors of other features are not
presented here because of their lack of variability and alsobecause
of space limitation.

The bent arrows crossing transitions introduce variability in the au-
tomata. Each automaton represents many possible behaviorsthat a
feature can take. A product of the ECPL contains exactly one tran-
sition from those crossed by the same bent arrow. The transition is
dotted when optional.

Figure 4: The automaton of Door lock and Door relock features
in the Auto lock component

The automaton of the door lock feature in Figure 4 starts froman
initial state where the Door lock feature is enabled, the engine is
running and all doors are closed. Depending upon the transmission
configuration (automatic or manual), and user preferences (see Sec-
tion 6.4 for details), all doors lock when either the gear is shifted
out of parkor the car speed exceeds a calibrated value (n). At this
state, Door relock is triggered if the driver brakes, then atleast one
door is opened and closed. All doors will lock again when either
the brake is released or car speed exceedsn.

The Door unlock feature’s automaton in Figure 5 starts from an
initial state where the Door unlock feature is enabled, the engine
is running and all doors are closed. According to the transmission
configuration or to the user preference (see Section 6.4 for details),
the doors are unlocked when either the gear is shifted into park or
the car key is removed from ignition. The doors unlocked by the
unlock action can be the driver door only, all the doors, or nodoor.

Figure 5: The automaton of Door unlock feature in the Auto
lock component

The Post crash unlock feature’s automaton in Figure 6 startsfrom
an initial state where a crash has occurred. First, the airbags are de-
ployed. Then, according to the presence of Child Lock and/orTheft
Lock, these two locks are opened and then, all doors are unlocked.
If both Child Lock and Theft Lock are present in the product, there
is no specification about the order in which they are supposedto be
unlocked. Any order can be followed or the two unlock actionscan
be done in parallel. This choice of order of execution is an example
of variability specific to the behavior perspective.

Figure 6: The automaton of Post crash unlock feature in the
Auto lock component

The traceability constraints of the ECPL.Table 2 presents
the traceability constraints between the features and the compo-
nents of the ECPL.

Table 2: Traceability constraints of the ECPL
Feature Component

Power lock Power lock& Door lock manager
Child lock Child lock & Child lock LED
Theft lock Theft lock

Post crash Unlock Auto lock
Door lock Auto lock

Door unlock Auto lock
Door relock Auto lock

3. PERSPECTIVES AND INTEGRATED
ANALYSIS

As we have illustrated in Section 2, an SPL can be expressed using
different perspectives such as feature, architecture, andbehavior
perspectives. In the literature, there are different modeling paradigms
for different perspectives: Czarnecki feature model focuses on the
feature perspective [5], EASEL [13] focus on the architecture per-
spective, and GEMTS [8] focuses on the behavior perspective.

Most of these models are informal as they have only graphicalrep-
resentation to ease the understanding of the SPL’s perspectives.
This attribute limits their capacity of representation of constraints.
Consequently some constraints belonging to the model’s perspec-
tive cannot be expressed. For example, in the ECPL, the follow-
ing constraint is not part of the Figure 2:if a product is made for
the USA, the door lock feature must be present.In [8], the au-
thors introduce an additional language called ACTL to represent
constraints that cannot be expressed directly within a GEMTS in-
stance.

In every SPL, there are some constraints on the elements across
different perspectives. In ECPL, the presence of the Theft lock fea-
ture constraints the presence of the Theft lock component and the
behavior of the Post crash unlock feature. We call them traceability
constraints (from feature to components, from feature to behavior,
etc.). Of course, a product extracted from a SPL is valid onlyif it
respects the variability constraints from every perspectives of the
SPL as well as the traceability constraints.

Representation of different perspectives using differentformalisms
creates difficulties in carrying out an integrated analysisof the en-
tire SPL. In order to check the consistency of the SPL and to find
the live and common elements we need a uniform framework.

In the following Section, we propose a constraint based framework
to express uniformly all the constraints in an integrated fashion re-
gardless of the perspective(s) they come from. Then, the problems
of consistency, liveness and commonness of the elements of the
SPL are reduced to Constraint Satisfaction Problem (CSP) and can
be solved using off-the-shelf tools such as YICES [34] or BDD-
SOLVE [33].

4. A CONSTRAINT BASED FRAMEWORK
In this section, we give formal definitions of the three perspectives,
namely, feature, architecture and behaviour, through the set of ele-
ments in each perspective and the variability constraints.The trace-
ability constraints are defined over the elements of every perspec-
tives. An SPL is then defined through these perspectives plusthe
traceability constraints.

The most important aspect of a product line is the variability, which
is reflected in each of the perspectives. Variability is introduced by
the choice between elements that are mandatory, optional oralter-
natives. An element or a group of elements for which these choices
are available is called avariation point. In the feature model of
the ECPL, the transmission is a variation point because it can be
either automatic or manual. Door relock is optional, this isalso
a variation point. There are additional constraints correlating dif-
ferent elements within each perspective coming from business rea-
sons (bundling certain features) or from design constraints. These
choices are captured through thevariability constraints.

The following constraint language is used to model commonlyknown
constraints in SPL engineering. LetV be a finite set of boolean val-
ued elements. We denote byCV a set of boolean expressions over
V . A ground assignment is a functionρ : V → Bool. It can be
equivalently expressed as a subset ofV : V ′ = {v ∈ V |ρ(v) =
true}. A ground assignmentV ′ satisfies the set of constraintsCV

(denotedV ′ |= CV) if all the constraints inCV evaluate to true
with the ground assignmentV ′. CV is consistentif there is a satis-
fying ground assignment and it is calledinconsistentotherwise.

Each elemente in the perspectives of the SPL is modeled as a
boolean valued propositionep. When it is clear in the context,
we treat each elemente as the corresponding propositional variable
ep so as to simplify the notation. Each perspective is given as a
set of constraintsC on its elements. A variation point is an ele-
ment which is not assigned the valuetrue or false. A satisfying
ground assignmentρ for the constraintsC fixes the values of the
elements and thus defines a possible product of the perspective. In
this product, an elemente is present iffρ(ep) = true.

4.1 Feature perspective
We define a feature of a system as a set of requirements on the
system behaviour identified by a keyword (name of the feature).
The first level of variability in a feature model comes from the pos-
sibility of absence/presence of a feature. In this paper, wealso
model the inputs and outputs of the features as elements of the fea-
ture perspective. This gives us more variability than the feature
names alone and has more meaningful traceability with the archi-
tecture perspective. In ECPL, Table 1 gives the inputs and outputs
required by each feature. This information is extracted from the
requirements.

A featuref is defined as a triple〈f, Inputf , Outputf 〉 wheref
is the name of the feature,Inputf andOutputf are respectively
finite sets of input and output variable names.

DEFINITION 1 (FEATURE PERSPECTIVE). The feature perspec-
tive F is a tuple〈F, CF 〉 whereF is a set of features andCF is
a set of constraints. LetEF be the set of elements

S

f∈F ({f} ∪

Inputf ∪ Outputf). CF is defined overEF and includes the fol-
lowing:

• These constraints capture the fact that if a feature is present,
then so are all its inputs and outputs.f ⇒

V

i∈Inputf
i,

f ⇒
V

o∈Outputf
o,

• In contrast, if an input (output) is present, then so is at least
a feature that requires it.i ⇒

W

f∈F/i∈Inputf
f ,

o ⇒
W

f∈F/o∈Outputf
f .

In the feature perspective of ECPL, the set of features contains all
the elements of the Figure 2 plus the inputs and outputs of theTable
1. The set of constraints includes items such asDoor relock ⇒
Door lock andPost crash unlock ⇒ Airbag deployed∧Unlock
all doors.

4.2 Architecture perspective
In an SPL, every product has the same architectural skeletonbut
some variations occur from product to product. In the architecture
perspective of the ECPL, the skeleton is formed by the components
Door lock manager andPower lock which are mandatory for
every product (Figure 3). The interconnections among them and
with the environment are also part of the skeleton. All the other
elements form the variable part of the ECPL.

Let C be the set of components. A componentc ∈ C is a tuple
〈name, interface〉 where:

• name is the name of the component.
• interface is a set ofports. port ∈ interface is a tu-

ple 〈p_name, direction〉 wherep_name is the name of the
port anddirection ∈ {in, out, in_out}.

We designate a special component calledroot for the purpose of
defining the interface of the architecture with the environment.

Let I be the set of possible interconnections between components
of C. An interconnectioni ∈ I is defined as a couple(p1, p2)
where:

• p1 is a port such that,p1.direction ∈ {out, in_out}, p1 ∈
c1.interface andc1 ∈ C.

• p2 is a port such that,p2.direction ∈ {in, in_out}, p2 ∈
c2.interface andc2 ∈ C.

• p1 6= p2.

DEFINITION 2 (ARCHITECTUREPERSPECTIVE). An architec-
ture perspective is a tuple〈(C, I), CA〉 whereC is a set of com-
ponents including the root component, andI is a set of intercon-
nections. Elements of the architecture perspective are defined as
EA = C ∪ I . CA is a set of constraints defined overEA.

In the ECPL, the set of components contains the 6 components of
the Figure 3 plus the root component. The set of interconnections
contains the 35 interconnections of the same figure. One of the
constraints inEA relates the presence of the Child lock LED com-
ponent to the presence of the Child lock component:Child lock

LED cmp ⇔ Child lock cmp.

4.3 Behavior Perspective
The behaviour perspective of an SPL represents the behaviour of
features using high level representation such as an automaton. In
the ECPL, The figures 4, 5, and 6 present respectively the behavior
of the featuresDoorlock andDoor relock, Door unlock, and
Post crash unlock. The variability in this perspective captures
the different possible behaviors of a given feature. Some transitions
of the automaton model of a feature can be mandatory, optional, or
alternative. For example, in Figure 4, the two outgoing transitions
from the initial state are alternatives: only one of them is imple-
mented in a product. The variability constraints relate either the

presence of transitions from the same automaton or the presence of
transitions from different automata. In the ECPL, one can express
constraints such as "if the trigger ofDoor lock is Shift out of

park, the trigger ofDoor unlock is Shift into park" (This spe-
cific constraint is not part of our case study even though we are able
to model it).

DEFINITION 3 (BEHAVIOUR PERSPECTIVE). The behaviour
perspective of an SPL is defined as a tuple〈B, CB〉, whereB is a
set of automata. Each automaton is associated with one or many
features.CB is a set of constraints. The elements of the behaviour
perspective are all the transitions from the automata of theSPL i.e.
EB =

S

b∈B Tb (whereTb is the set of transitions of the automata
b). CB is defined overEB.

In the behavior perspective of the ECPL, the set of elements is
formed by all the transitions of figures 4, 5, and 6. For example,
Door lock trigger ⇒ Shift out of park ⊕ Speed ≥ n is one
of the constraints inCB (here,⊕ is the "exclusive or" operation).

4.4 Traceability Constraints
Each feature may require one or more components for its imple-
mentation. On the other hand, each component can also be used
to implement one or many features. In addition, a feature maybe
implemented by one or many automata from the behaviour per-
spective. Thus, there are relations across elements from different
perspectives necessary for implementing products of an SPL. The
set of traceability constraintsCT capture this "implements" relation
across perspectives. There may be variability in the traceability re-
lations themselves e.g. features can be satisfied by many alternative
choices of components.

DEFINITION 4 (TRACEABILITY CONSTRAINTS). The set of
traceability constraints is a set of constraints overEF ∪ EA ∪
EB, each constraint necessarily involving elements from morethan
one perspective (otherwise they would be part of the variability
constraints)

In the ECPL, Table 2 gives the traceability constraints fromfea-
tures to components. The first line of the table corresponds to the
following constraint:Power lock ⇒ Power lock cmp & Door

lock manager cmp.

4.5 SPL
An SPL integrates the feature, architecture and behaviour perspec-
tives, each comprising its variability constraints. In addition, the
traceability constraints provide the link among the elements across
different perspectives. Formally,

DEFINITION 5 (SPL). An SPL is defined as a tuple
〈FP, AP, BP, CT 〉 whereFP = 〈F, CF 〉 is a feature perspective,
AP = 〈A,CA〉 is an architecture perspective andBP = 〈B, CB〉
is a behaviour perspective andCT is a set of traceability con-
straints.

4.6 Product
A feature product is a ground assignment ofF satisfying the con-
straintsCF . Definition of architecture and behaviour products are

similar. A product of SPL consists of a feature product, an archi-
tecture product, and a behaviour product which also meet thetrace-
ability constraintsCT . Formally,

DEFINITION 6 (PRODUCT). A product of an SPL is a tuple
〈F ′, A′, B′〉 such that

• F ′ |= CF

• A′ |= CA

• B′ |= CB , and
• F ′ ∪ A′ ∪ B′ |= CT

The set of all consistent products of an SPL is denoted as
PROD(SPL).

In ECPL, the following set of features:{Power lock, Post Crash

unlock, Transmission, Manual, Location, USA } satisfies
the set of constraintsCF . This is the smallest feature product in
ECPL. If we associate to this feature product an architecture prod-
uct and a behavior product that, all together, satisfy the traceability
constraints, we get a product.

5. CONSISTENCY, LIVENESS, AND COM-
MONNESS

Let CSPL = CF ∪ CA ∪ CB ∪ CT , be the set comprising all
the variability constraints from the perspectives and the traceability
constraints. Also, letESPL = EF ∪ EA ∪ EB be the set of all
elements of the SPL(features, components, interconnections and
transitions).

Given the constraint-based model of an SPL as above, one can de-
fine the consistency, liveness and commonness as follows.

1. An SPL is said to be consistent iffPROD(SPL) is non-
empty i.e. there exists at least one product in the family.

2. An elemente ∈ ESPL is live if ∃P ∈ PROD(SPL) such
thate ∈ P i.e. it is contained in a product of SPL. It is called
deador superfluous otherwise.

3. An elemente ∈ ESPL is common if∀P ∈ PROD(SPL)
such thate ∈ P i.e. it is contained in all the products of SPL.

The consistency, liveness, and commonness problems of elements
of ESPL are defined as:

• Consistency problem: Given an SPL, find if it is consistent.
• Liveness problem: Given an SPL, find the set of alive and

dead elements.
• Commonness problem: Given an SPL, find the set of com-

mon elements.

The basic solutions for the problems use the results of the following
proposition which is a simple consequence of the definition above.

PROPOSITION 7. The following statements hold:

• PROD(SPL) is non-empty iffCSPL is satisfiable.

• e ∈ ESPL is live iff CSPL ∪ {e} is satisfiable.

• e ∈ ESPL is common iffCSPL ∪ {¬e} is unsatisfiable.

Thus, the consistency problem can be solved by checking the sat-
isfiability of the set of constraintsCSPL using a constraint solver.
One can find the set of live elements by iterating through the el-
ements and checking their liveness (resp. commonness) through
Proposition 7.2 (resp. Proposition 7.3). Computationallybetter
algorithms for checking liveness and commonness are presented
respectively in Algorithms 1 and 2.

Algorithm 1 checks whether elements ofESPL are live or not.
Input: SPL
Output: ELive, the set of live elements ofSPL andEDead, the
set of dead elements
Elive =Ø
Edead =Ø
repeat

Selecte ∈ ESPL \ (Elive ∪ Edead)
if CSPL ∪ {e} is not satisfiablethen

{We adde to the set of dead elements.}
Edead = Edead ∪ {e}

else
GenerateEg, a satisfying ground assignment forCSPL ∪
{e}.
{Obviously, the elements inEg are live and instead of a
single element, we possibly get a large set of live elements}
{Add Eg to the set of lived elements.}
Elive = Elive ∪ Eg

end if
until ESPL = (Elive ∪ Edead)

Algorithm 2 checks whether elements ofESPL are common or
not.

Input: SPL
Output: ECommon, the set of common elements ofSPL
Ecommon =Ø
{We add theEcommon all the mandatory elements from each
perspective.}
Ecommon+ = Emandatory

{We propagate the truth values of the current common elements
among the rest of the constraints...}
CSPL+ = Ecommon

{...and simplify the constraint as much as possible}
Simplify(CSPL)
{Simplification leads to obvious constraints such as

V

e meaning
that the elementse are mandatory.}
for all New statement

V

e ∈ CSPL do
Ecommon = Ecommon ∪ {e}

end for
{But all the mandatory elements cannot be found like that, ex-
haustive search is yet required.}
for all e ∈ ESPL \ Ecommon do

if CSPL ∪ {¬e} is not satisfiablethen
{ e is a common element.}
Ecommon = Ecommon ∪ {e}

end if
end for

6. ECPL IN THE CONSTRAINT BASED
FRAMEWORK

In this section, we model the ECPL according to the constraint
based framework defined in Section 4.

6.1 Constraints of the feature perspective
As defined earlier, the elements of the feature perspective are the
propositional symbols of the features and the input and output vari-
ables. The set of constraints corresponding to the Czarnecki feature
model can be derived as follows :

• p andq are related through a mandatory relation iffp ⇔ q ∈
CF .

• p andq are related through an optional relation iffq ⇒ p ∈
CF .

• p and〈q1, . . . qp〉 are related through an alternative relation
iff p ⇒ q1 ⊕ · · · ⊕ qi ⊕ · · · ⊕ qn ∈ CF .

• p and〈q1, . . . qp〉 are related through anor relation with car-
dinality (n,m) iff p ⇒
W

S⊆{q1··· ,qp}(
V

s∈S s), n ≤ Card(S) ≤ m.

The variability constraints derived from the Figure 2 are given in
the following:

1 pEntry control

2
pEntry control ⇔
pPower lock ∧pTransmission∧pLocation

3 pTransmission ⇔ pManual ⊕pAutomatic

4 pLocation ⇔ pUSA ⊕pEurope

5 pChild lock ⇒ pEntry control

6 pTheftlock ⇒ pEntry control

7 pPower lock ⇔ pPost crash unlock

8 pDoor lock ⇔ pPower lock

9 pDoor unlock ⇔ pPower lock

10 pDoor lock ⇔ pTrigger 1

11 pTrigger 1 ⇒ pShift out of park ⊕ pSpeed

12 pDoor relock ⇒ pDoor lock

13 pDoor unlock ⇔ pTrigger 2∧pDoor

14 pTrigger 2 ⇒ pShift into park ⊕ pKey removed

15 pDoor ⇒ pDriver ⊕ pAll ⊕ pNo

From the requirement document of ECPL, we have extracted the
following additional constraints. Constraints of these types cannot
be accommodated cleanly in the Czarnecki feature model.

16 pUSA ⇒ pDoor lock

17 pUSA ⇒ pDoor unlock

18 pManual ⇒ pSpeed

19 pManual ⇒ pKeyRemoved

6.2 Constraints of the architecture perspective
The elements of the architecture perspective are the components
(including the root component) and the links. The set of constraints
corresponding to theModal Architecture Modelcan be derived as
follows: Let ℓ = (p1, p2) ∈ L be an interconnection and letpi be
a port of the componentci, i ∈ {1, 2}. We have

• If a componentc is mandatory, thenpc ∈ CA

• If an interconnectionℓ is mandatory, thenℓ ⇔ c1∧c2 ∈ CA,

• If an interconnectionℓ is optional, thenℓ ⇒ c1∧c2 ∈ CA.

From Figure 3, we have extracted the following four constraints
(ABD stands forAirbag deployed).

20 pLink ABD Child lock cmp ⇒ pChild lock cmp

21 pLink ABD Theft lock cmp ⇒ pTheft lock cmp

22
pLink ABD Auto lock cmp Child lock cmp ⇒
pAuto lock cmp∧pChild lock cmp

23
pLink ABD Auto lock cmp Theft lock cmp ⇒
pAuto lock cmp∧pTheft lock cmp

From the requirement document of ECPL, we had extracted the fol-
lowing four additional constraints. Again, it is not easy tocapture
these constraints in the pictorialModal Architecture Model.

Since theChild lock feature is implemented using the two com-
ponentsChild lock andChild lock LED, The relation 24 should
be inCA.

24 pChild lock cmp ⇔ pChild lock LED cmp

The propagation of theAirbag deployedinput can be implemented
by two different ways: each of the following components:Auto
lock, Child lock, andTheft lock can have either a direct con-
nection from the global "in" port or onlyAuto lock has a direct
connection and it propagates this signal to the two other compo-
nents.

25
pLink ABD Child lock cmp ⇔
pLink ABD Theft lock cmp

26
pLink ABD Auto lock cmp Child lock cmp ⇔
pLink ABD Auto lock cmp Theft lock cmp

27
pLink ABD Child lock cmp ⇔
¬pLink ABD Auto lock cmp Child lock cmp

6.3 Constraints of the behavior perspective
The elements of the behavior perspective are the transitions. The
variability constraint corresponding to the automata of Section 2
can be extracted as follows: Letvp = {t1, ...ti, ...tm} be a set of
transitions crossed by a bent arrow. Thenvp ⇒ t1 ⊕ ...⊕ ti ⊕ ...⊕
T m ∈ CB. If this variation point has to be considered, only one
transition can be present in any product.

From the figures 4, 5, and 6, we extract the following constraints:

28
pDoor lock trigger ⇒
pSpeed ⊕ pShift out of park (from Figure 4)

29
pDoor unlock trigger ⇒
pKey removed ⊕ pShift into park (from Figure 5)

30
pDoor unlock door_1 ⇒
pDriver ⊕ pAll ⊕ pNo (from Figure 5)

31
pDoor unlock door_2 ⇒
pDriver ⊕ pAll ⊕ pNo (from Figure 5)

32
pPcu1

⇒ pUnlock nothing ⊕ pUnlock child lock⊕
pUnlock theft lock ⊕ pUnlock both (from Figure 6)

33
pPcu2

⇒ pUnlock theft lock first ⊕ pUnlock child lock first

⊕pUnlock both in parallel (from Figure 6)

Let us add an extra requirement specifying that if both ChildLock
and Theft Lock are present, then Child lock should be deactivated
first. This gives us an additional constraint,

34 pPcu2
⇔ pUnlock child lock first.

6.4 Traceability Constraints

Traceability from features to architecture.According to
Table 2, the traceability constraints are the following:

35
pPower lock ⇒
pPower lock cmp∧pDoor lock manager cmp

36
pChild lock ⇒
pChild lock cmp∧pChild lock LED cmp

37 pTheft lock ⇒ pTheft lock cmp

38 pPost crash unlock ⇒ pAuto lock cmp

39 pDoor look ⇒ pAuto lock cmp

40 pDoor unlock ⇒ pAuto lock cmp

41 pDoor relock ⇒ pAuto lock cmp

In addition, we have the constraints relating the input/output signals
of the features to the in-ports and out-ports of the root component.

Traceability from features to behaviors.Because of cor-
relation between the variability in the feature perspective and the
behavior perspective, the following requirements has to betrans-
lated in constraints

• The choice of the doors (driver, all, no) referred by the Door
unlock feature is the same in every models.

42 pDoor ⇔ pDoor unlock door_1

43 pDoor ⇔ pDoor unlock door_2

• The selection of the trigger of the feature Door lock (resp.
Door unlock) is the same in every model.

44 pTrigger 1 ⇔ pDoor lock trigger

45 pTrigger 2 ⇔ pDoor unlock trigger

• Concerning Post crash unlock, if child lock feature is en-
abled, it is opened first. Then if theft lock feature is enabled,
it is opened before unlocking the doors.

46
pUnlock nothing ⇔
¬pChild lock ∧ ¬pTheft lock

47
pUnlock child lock ⇔
pChild lock ∧ ¬pTheft lock

48
pUnlock theft lock ⇔
¬pChild lock ∧ pTheft lock

49
pUnlock both ⇔
pChild lock ∧ pTheft lock

6.5 Consistency, liveness, and commonness
checking

For the ECPL, the number of feature products is 640, number of
architecture products is 32 and the number of variations within
the behavior perspective is 72. Taken separately, these give rise
to 640x32x72=1474560 combinations. However, with traceability
constraints, the number of products turns out to be only 460.We
verified that all the elements are live (each element is used in at
least one product) except for the transitionsUnlock theft lock
first and Unlock both in parallel which are dead due to the
constraint 34. We also verified that featuresPower lock andPost
crash unlock are common to all the products. Also, since the fea-
ture Post crash unlock is mandatory, the featuresDoor lock,
Door unlock, andDoor relock are also common because they
are all implemented by theAuto lock component. TheAuto lock
component is also common.

7. CONCLUSION
In this paper, we have proposed a constraint based frameworkfor
SPL. We claim that the framework provides a uniform and expres-
sive formalism to describe the constraints within and across per-
spectives. Thus, the analysis problems of SPLs can be addressed in

a framework which integrates all the perspectives of a givenSPL.
We have illustrated this approach through a case study of entry con-
trol system for automobiles. The integrated set of constraints com-
prises both intra- and inter- perspective constraints (variability and
traceability). Our experiments show that the set of constraints mod-
eling the entire SPL can be efficiently analyzed for consistency and
computing live and common elements.

The large number of possible products of an SPL is an issue in the
industry. This has an implication on the effort spent to derive the
desired products. We have suggested that traceability constraints
capturing some aspects of design (of both architecture and algo-
rithms in the components) can reduce this number by a large extent.
The case study provides some evidence to this effect.

The number of constraints can become a problem in case of very
large SPLs because all the constraints of the SPLs are integrated
in the same constraint solving framework. However, the specific
structure of constraints (most constraints are implications) can be
exploited to optimize the analysis methods. Domain and applica-
tion specific study should be carried out to identify specificopti-
mization techniques.

8. REFERENCES
[1] E. Adachi, T. Batista, U. Kulesza, A. L. Medeiros, C. Chavez

and A. Garcia. Variability management in aspect-oriented
architecture description languages: An integrated approach.
Brazilian Symposium on Software Engineering, 2009.

[2] D. S. Batory. Feature models, grammars and propositional
formulas. In J. H. Obbink and K. Pohl, editors,SPLC,
volume 3714 ofLecture Notes in Computer Science, pages
7–20. Springer, 2005.

[3] D. Beuche. Modeling and building software product lines
with pure: : Variants. InSPLC, page 358, 2008.

[4] J. Bosch.Design and use of software architectures: adopting
and evolving a product-line approach. ACM Press/ Addison
- Wesley Publishing Co., New York, NY, USA, 2000.

[5] K. Czarnecki and U. Eisenecker.Generative Programming:
Methods, Tools and Applications. ACM Press, Addison-
Wesley Publishing Co. New York, NY, USA, June 2000.

[6] E. A. de Oliveira, Junior, I. M. S. Gimenes, E. H. M. Huzita
and J. C. Maldonado. A variability management process for
software product lines. InCASCON ’05: Proceedings of the
2005 conference of the Centre for Advanced Studies on
Collaborative research, pages 225–241. IBM Press, 2005.

[7] D. Dhungana and P. Grünbacher. Understanding
decision-oriented variability modelling. In Thiel and Pohl
[29], pages 233–242.

[8] A. Fantechi and S. Gnesi. Formal modeling for product
families engineering. InSPLC, pages 193–202, 2008.

[9] P. C. C. Felix Bachmann. Variability in software product
lines. Technical Report TR-012, CMU/SEI, 2005.

[10] D. Garlan, R. T. Monroe and D. Wile. Acme: an architecture
description interchange language. In J. H. Johnson, editor,
CASCON, page 7. IBM, 1997.

[11] H. Gomaa and D. L. Webber. Modeling adaptive and
evolvable software product lines using the variation point
model. InHICSS ’04: Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, 2004.

[12] A. Gruler, M. Leucker and K. D. Scheidemann. Calculating
and modeling common parts of software product lines. In
SPLC, pages 203–212, 2008.

[13] A. V. D. Hoek. Capturing product line architectures. InIn
Proceedings of the 4th International Software Architecture
Workshop, number CU-CS-895-99, pages 2000–95, 2000.

[14] M. Janota, J. Kiniry and G. Botterweck. Formal methods in
software product lines: Concepts, survey and guidelines,
2008.

[15] S. Krishnamurthi and K. Fisler. Foundations of incremental
aspect model-checking.ACM Trans. Softw. Eng. Methodol.,
16(2):39, 2007.

[16] C. W. Krueger and K. Jackson. Requirements engineeringfor
systems and software product lines, 2009.

[17] R. Laney, T. T. Tun, M. Jackson and B. Nuseibeh.
Composing features by managing inconsistent requirements.
In L. du Bousquet and J.-L. Richier, editors,Ninth
International Conference on Feature Interactions in Software
and Communication Systems (ICFI’07), pages 141–156,
2007.

[18] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens and
G. Saval. Disambiguating the documentation of variabilityin
software product lines: A separation of concerns,
formalization and automated analysis. InRequirements
Engineering Conference, 2007. RE ’07. 15th IEEE
International, pages 243–253, 2007.

[19] U. Nyman.Modal Transition Systems as the Basis for
Interface Theories and Product Lines. PhD thesis,
Department of computer science, Aalborg University,
Denmark, 2008.

[20] S. E. I. of Carnegie Mellon University. Software product line
web site: http://www.sei.cmu.edu/productlines, 2010.

[21] G. Perrouin, F. Chauvel, J. DeAntoni and J.-M. Jézéquel.
Modeling the variability space of self-adaptive applications.
In Thiel and Pohl [29], pages 15–22.

[22] K. Pohl, G. Böckle and F. J. v. d. Linden.Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[23] M. Riebisch and R. Brcina. Optimizing design for variability
using traceability links. InECBS’08: Proceedings of the 15th
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pages 235–244,
Washington, DC, USA, 2008. IEEE Computer Society.

[24] F. Roos-Frantz. A preliminary comparison of formal
properties on orthogonal variability model and feature
models. In D. Benavides, A. Metzger and U. W. Eisenecker,
editors,VaMoS, volume 29 ofICB Research Report, pages
121–126. Universität Duisburg-Essen, 2009.

[25] T. K. Satyananda, D. Lee and S. Kang. Formal verificationof
consistency between feature model and software architecture
in software product line. InICSEA ’07: Proceedings of the
International Conference on Software Engineering Advances
[26], page 10.

[26] T. K. Satyananda, D. Lee, S. Kang and S. I. Hashmi.
Identifying traceability between feature model and software
architecture in software product line using formal concept
analysis.Computational Science and its Applications,
International Conference, 0:380–388, 2007.

[27] L. Shen, X. Peng and W. Zhao. A comprehensive
feature-oriented traceability model for software productline
development. InSoftware Engineering Conference, 2009.
ASWEC ’09. Australian, pages 210 –219, April 2009.

[28] M. Svahnberg, J. van Gurp and J. Bosch. A taxonomy of
variability realization techniques: Research articles.Softw.
Pract. Exper., 35(8):705–754, 2005.

[29] S. Thiel and K. Pohl, editors.Software Product Lines, 12th
International Conference, SPLC 2008, Limerick, Ireland,
September 8-12, 2008, Proceedings. Second Volume
(Workshops). Lero Int. Science Centre, University of
Limerick, Ireland, 2008.

[30] M. Tommi. Variability management in software
product-lines. Technical Report 30, Institute of Software
Systems, Tampere University of Technology, January 2002.

[31] R. C. van Ommering, F. van der Linden, J. Kramer and
J. Magee. The koala component model for consumer
electronics software.IEEE Computer, 33(3):78–85, 2000.

[32] M. Voelter and I. Groher. Product line implementation using
aspect-oriented and model-driven software development. In
SPLC ’07: Proceedings of the 11th International Software
Product Line Conference, pages 233–242, Washington, DC,
USA, 2007. IEEE Computer Society.

[33] Website. http://www.win.tue.nl/ wieger/bddsolve/.
[34] Website. http://yices.csl.sri.com/.
[35] J. White, D. C. Schmidt, D. Benavides, P. Trinidad and

A. Ruiz-Cortés. Automated diagnosis of product-line
configuration errors in feature models. InProceedings of the
12th International Software Product Line Conference, pages
225–234, Washington, DC, USA, 2008. IEEE Computer
Society.

[36] C. Zhu, Y. Lee, W. Zhao and J. Zhang. A feature oriented
approach to mapping from domain requirements to product
line architecture. In H. R. Arabnia and H. Reza, editors,
Proceedings of the International Conference on Software
Engineering Research and Practice & Conference on
Programming Languages and Compilers, SERP 2006, Las
Vegas, Nevada, USA, June 26-29, Volume 1, pages 219–225.
CSREA Press, 2006.

APPENDIX
A. MODAL ARCHITECTURE MODEL

DEFINITION 8 (MODAL ARCHITECTURE MODEL). A modal
architecture model (MAM) is a tuple
〈C, cspl, Link, ∆c, ∆l〉 where:

• C is a set of components.

• cspl is the root component.

• Link is a set of links or interconnections(p1, p2) where,p1

(resp.p2) is anout (in) port of a componentc1 (c2).

• ∆c : C → {may,must} associates a modality to a compo-
nent.

• ∆l : Link → {may,must} associates a modality to a link.

