
Tracing SPLs Precisely and Efficiently

Ramesh S,
Swarup Mohalik

∗
,

Jean-Vivien Millo
†

India Science Lab
General Motors

TCI, Bangalore, India
ramesh.s@gm.com

Shankara Narayanan
Krishna

Department of Computer
Science and Engineering

IIT Bombay, Powai
Mumbai, India

krishnas@cse.iitb.ac.in

Ganesh Khandu
Narwane

Homi Bhabha
National Institute
Anushakti Nagar
Mumbai, India

ganeshk@cse.iitb.ac.in

ABSTRACT
In a Software Product Line (SPL) comprising specifications
(feature sets), implementations (component sets) and trace-
ability between them, the definition of product is quite sub-
tle. Intuitively, a strong relation of implementability should
be established between implementations and specifications
due to traceability. Various notions of traceability has been
proposed in the literature : [13], [17], [8], [9]; but we found in
our experience that they do not capture all situations that
arise in practice. One example is the case where, an im-
plementation, due to packaging reasons, contains additional
components not required for a particular product specifica-
tion. We have defined a general notion of traceability in
order to cover such situations. Moreover, state-of-the-art
satisfiability based notions lead to products where the im-
plementability relation does not exist. Therefore, in this pa-
per, we propose a simple, set-theoretic formalism to express
the notions of traceability and implementability in a formal
manner. The subsequent definition of SPL products is used
to introduce a set of analysis problems that are either re-
finements of known problems, or are completely novel. Last
but not the least, we propose encoding the analysis prob-
lems as Quantified Boolean Formula (QBF) constraints and
use Quantified SAT (QSAT) solvers to solve these problems
efficiently. To the best of our knowledge, the QBF encod-
ing is novel; we prove the correctness of our encoding and
demonstrate its practical feasibility through our prototype
implementation Software Product Line Engine (SPLE).

1. INTRODUCTION
Software Product Line (SPL) is a development framework to
jointly design a family of closely related software products in
an efficient and cost-effective manner. The basis of an SPL
is a collection of features, called the scope and a collection of

∗swarup.mohalik@gm.com
†jean-vivien.millo@gm.com

reusable components called the core assets, which are devel-
oped once for the entire family [18]. The possible products
in the family are specified through subsets of features from
the scope, and are implemented by subsets of components
selected from the core assets.

In the literature, the structure and analysis of SPL specifica-
tions (feature sets) have been studied in great depth. Since
the products of an SPL are closely related, it is natural to
present their specifications as variations of each other. The
variations include choices (termed variation points) and de-
pendency constraints among the variation points, such as
exclusivity (if f is present then g should not be present),
mandatory (if f is present, then g must also be present) and
more complex cardinal constraints. Managing variability in
large industrial SPLs is quite complex and has given rise to
a number of analysis problems, such as detecting the com-
mon and dead elements, counting the number of variants
etc. Therefore, this has been the focus of SPL research in
the recent years. A comprehensive survey of these analysis
problems and their solutions can be found in Benavides et
al.[5].

On the other hand, since the core assets include reusable
components and the products are closely related, it is ex-
pected that the implementations (subsets of components)
for the products are also closely related and hence can be
specified through the variability constraints over the core as-
sets. Therefore, notations such as FODA (Feature-Oriented
Domain Analysis) diagrams, used to represent feature vari-
ability, can also be used to select variant implementations.
Such an approach has been taken in [17].

Recently, the analysis problems around variability of spec-
ifications have been cast in propositional logic constraints
and SAT-solvers have been used to solve the problems [3].
This is due to the fact that propositional logic provides a
uniform and expressive framework to formulate the analy-
sis problems and also because of the tremendous progress
in SAT-solving in recent years which makes it possible to
address industrial scale problems. The same techniques can
be applied to the variability of implementation as well, for
similar kinds of analysis.

However, due to the fact that the traceability relation con-
nects two different sets of artifacts, namely, specifications
and implementations, certain issues arise naturally in the

full SPL consisting of specifications, implementations and
traceability between the two. These issues include the very
definition of traceability, the induced implements relation
from implementations to specifications, the new SPL anal-
ysis problems arising because of traceability and efficient
methods of solving them. In the literature, there have been
some attempts to identify and address these problems ([10,
21, 2, 7, 6, 11, 25, 17, 8, 9]). In this paper, we refine and en-
hance the results of these works through the following salient
contributions:

• We propose a simple and abstract set-theoretic seman-
tics of SPL with variability and traceability constraints
which captures the core concepts precisely and suc-
cinctly, without the clutter usually associated with
rich notational languages such as FD (Feature Dia-
gram) [14], OVM (Orthogonal Variability Model) [23]
etc.

• We provide a simple, intuitive and usable definition
of traceability. This is used to define when an imple-
mentation implements a feature (also, sets of features).
We show that existing definition of products as satis-
fying instances of SPL constraints is inadequate and
therefore propose a tighter definition of products.

• We define a number of SPL analysis problems some of
which are standard for feature variability but are now
lifted to the entire SPL with traceability (e.g. live,
common and dead elements), some others which arise
because of the dichotomy of specifications and imple-
mentations (soundness and completeness, redundant,
superfluous, extraneous etc).

• It is known that propositional satisfiability is not an
efficient way of solving some of the analysis problems,
since in certain cases one has to enumerate all the
specifications and implementations. We show that the
costly enumeration can be avoided by encoding these
problems as Quantified Boolean Formulae (QBF), which
are then checked for satisfiability using QSAT (Quan-
tified SAT) solvers. We also provide some evidence of
the scalability of QSAT for analysis problems in large
SPLs : we consider the case study of Electronic Shop-
ping [16] which has 290 features and more than a billion
valid products.

1.1 Related Work
While there is a fairly large body of work in the litera-
ture on different facets of SPL, in the following we men-
tion only those which address traceability as a primary as-
pect. Four important characteristics of a variability model,
namely, consistency, visualization, scalability and traceabil-
ity are defined in [7]. A variability management model that
focuses on the traceability aspect between the notion of
problem and solution spaces is presented in [6]. Anquetil
et al.[2] formalize the traceability relations across problem
and solution space and also across domain and product engi-
neering. In [10], the notion of product maps is defined which
is a matrix giving the relation between features and prod-
ucts. Consistency analysis of product maps is presented in
[11]. Zhu et al.[25] define a traceability relation from require-
ments to features and also from features to architectures

with consistency analysis. [21] presents a method to iden-
tify the traceability between feature model and architecture
model. Czarnecki’s work [13], [8], [9] on giving semantics to
features in feature models by mapping them to other mod-
els has been found useful at the requirements level. In the
above works, the treatment is either informal or does not ad-
dress the role of traceability in the implementability aspect
of SPL.

Borba’s work [19] builds on the idea of automatic generation
of products from assets, by relying on feature diagrams and
configuration knowledge (CK) [13]. A CK relates features to
assets specifying which assets specify or implement possible
feature combinations. [19] lays theoretical foundations on re-
fining and evolving SPLs. The notion of traceability in [19]
is general; however, unlike [19], the focus of our paper is on
the implementability of SPL. In [8] and [9], the authors pro-
pose a template-based approach for mapping feature mod-
els to annotated models expressed in UML/domain specific
modeling language. Based on a particular configuration of
features, an instance of the template is created by evaluat-
ing presence conditions in the model. [9] gives a verification
procedure which establishes that no ill-formed template in-
stances will be produced given a correct configuration of the
feature model. The procedure takes a feature model, and
an annotated template which is an instance of a class model
(like UML), and a set of OCL rules. The rules are written
with respect to the class model, and each OCL constraint is
an invariant on some class c. The final verification is done by
checking the validity of a propositional formula. Our notion
of traceability is more general than instantiating a template
based on the presence of a set of features; moreover, our
analysis operations require an encoding into QSAT, and we
have experimental evidence to suggest that the QSAT en-
coding outperforms SAT based procedures (Table 3).

The paper that is closest to our work is that by Metzger et
al. [17] and deserves a detailed comparison. In this paper,
PL variability refers to the variations among the features of
the system and software variability refers to the variations
among the software system artifacts. In our paper, we follow
a different terminology to bring out the product line hierar-
chy clearly (shown in Figure 1): a scope consists of all the
features, a variant specification (referred to as just ”speci-
fication”) is a subset of features, product line specification
(PL specification) is a set of variant specifications. On the
other hand, core assets comprise all the components, a vari-
ant implementation (referred to as just ”implementation”) is
a subset of components, product line implementation (PL
implementation) is a set of variant implementations. The
PL variability of Metzger et al. is analogous to PL speci-
fications and software variability is analogous to PL imple-
mentations. In Metzger et al., PL variability is represented
as OVM (Orthogonal Variability Model) and software vari-
ability is represented as FD (Feature Diagrams). In our
paper, we give a simple set-theoretic semantics to SPL’s in
lieu of the visually appealing notations such as FD, VFD
and OVM. The advantage is that in this semantics the core
concepts, analysis problems and the solution methods can
be expressed in a more clear, unambiguous and concise way.

The traceability among PL and software variability is repre-
sented in Metzger et al. using X-links. One type of X-links

PL Specification

Specification

Scope

Feature
b b b b b b

b b b

b

PL Implementation

Implementation

Core Assets

Component
b b b b b b

b b b

b
Traceability

Figure 1: Product Line Hierarchy.

is of the form f ⇔ V1∨V2∨ ∨ . . . Vn which says a feature
f is present iff at least one of the variations Vi is present
in the software variability. However, it cannot capture the
fact that a feature may be implemented by different sets
of software artifacts which may require constraints of the
form f ⇔ (c11 ∧ c12 ∧ c13)∨(c21 ∧ c22 . . .)∨ The other
type of traceability constraints suggested in that paper are
general propositional constraints. However, not all propo-
sitional constraints provide the intuitive and strong imple-
mentability relation between the implementations and speci-
fications. The definition of traceability in our paper captures
the above-mentioned class of constraints and is used to de-
fine a reasonable notion of an implements relation between
implementations and specifications. The SAT-based defini-
tion of products in Metzger et al. allows causally unrelated
components and features as products of the SPL. At other
times, it is too restrictive in that it does not allow additional
components in an implementation which do not provide any
feature but are forced to be with other components because
of, say, packaging restrictions. In seems necessary to strike
the right balance between the strictness of X-links and the
general propositional constraints for a reasonable definition
of implementability. This is provided by the definition of
the Covers relation in our paper.

Metzger et al. propose a number of analysis problems; in
the terminology of that paper, they are realizability, inter-
nal competition, usefulness, flexibility and common and dead
elements. We have redefined these in our paper in the per-
spective of the new implements relation. Moreover, we have
described some new and useful SPL analysis problems (su-
perfluous, redundancy, critical component, extraneous fea-
tures). In Metzger et al., it was noted that the satisfiability
based formulation needed to enumerate and check all the
implementations and specifications in order to solve certain
analysis problems. Hence, the cumulative complexity of sat-
isfiability checking may be prohibitive for large SPLs. The
QSAT based formulation proposed in our paper obviates
this problem and gives efficient solution methods scalable
to large, real-life case studies. Table 3 gives a comparison
of SAT and QSAT approaches for the analysis operation
soundness on a case study (MPPL in section 4) which had
38 components and 25 features. Soundness checks if each of
the 238 PL implementations covers some PL specification.

1.2 Outline of The Paper
In the following section, we give a formal definition of an
SPL with traceability. It introduces the central notion of
implements relation and the analyses we would like to carry
out in SPL. In Section 3, we show how the analysis problems

can be encoded in QBF and solved using QSAT solvers. We
present in Section 4 some results of the analyses carried out
using the QSAT solver tool CirQit [12] on two case studies
: (i) Mobile Phone Product Line (MPPL) and (ii) Elec-
tronic Shopping Product Line (ESPL). Finally, we conclude
in Section 5 with a summary of the paper and some future
directions. The proof of the main result relating the analysis
problems and QBF formulae is given in [1].

2. MODEL OF SPL : TRACEABILITY AND
IMPLEMENTATION

Consider an SPL with three features, namely, Anti-Brake
Skidding (ABS), Electronic Stability Control (ESC) and
Lane Centering (LC). The set {ABS, ESC, LC} forms the
scope of the SPL. Variants of vehicles may be derived from
different combination of these features. These different sub-
sets, called specifications of a vehicle, are often decided by
business reasons and form the PL Specification of the SPL.
For example, the PL specification may contain {ABS, LC},
{ABS, ESC} or {ABS, ESC,LC}. These features need sev-
eral components for their implementation, e.g., feature spe-
cific sensors, control softwares, ECUs (Electronic Control
Unit) and actuators. All these components together form
the core assets of the SPL. A specific implementation con-
sists of a set of components. For example, a skid sensor, a
brake sensor, ABS control software and ABS ECU, brake ac-
tuator, lane sensor, lane centering control software and steer-
ing actuator together constitute an implementation. All the
possible implementations (or, variants) in the SPL consti-
tute the PL implementation.

Specification and Implementation.The set of all features
found in any of the products in a productline defines the
scope of the productline. We denote the scope of a product-
line by F with possible subscripts. A scope F consists of
a set of features, denoted by small letters f, g A spec-
ification is subset of features in the scope and denoted by
F, G, The core assets of a product line is denoted by C.

Traceability. A feature is implemented using a non-empty
subset of components in the core asset C. For example,
the feature ABS is implemented by a skid sensor, brake
sensor, brake controller ECU and a brake actuator. This
relationship is modeled by the partial function T : F →
℘(℘(C) \ {∅}). When T (f) = {C1, C2, C3}, we interpret it
as the fact that the set of components C1 (also, C2 and C3)
can implement the feature f . When T (f) is not defined, it
denotes that the feature f does not have any components to
implement it.

Definition 1 (SPL). An SPL Ψ is defined as a triple
〈F , C, T 〉, where F ∈ ℘(℘(F) \ {∅}) is the PL specification,
C ∈ ℘(℘(C) \ {∅}) is the PL implementation and T is the
traceability relation.

Example 2. Consider the SPL Ψ = (F , C, T) with 3 fea-
tures f1, f2, f3 and 4 components c1, c2, c3 and c4, shown

f1

f3

f2

c1

c2

c3

c4

C1

C2

Figure 2: The Example SPL.

pictorially in Figure 2. The solid rectangles denote specifi-
cations and implementations. The hyper-edges from sets of
components to features denote the traceability relation.

• F={F1 : {f1}, F2 : {f2}, F3 : {f1, f2}, F4 : {f3}},

• C = {C1 = {c1, c2}, C2 = {c3, c4}},

• T : f1 → {{c1}}, f2 → {{c2}, {c3}}, f3 → {{c4}}.

From T , it is clear that f1 requires c1 for its implementation,
f3 requires c4 for its implementation, while c2 or c3 can
implement f2.

The Implements relation.A feature is implemented by
a set of components C, denoted implements(C,f), if C
includes a non-empty subset of components C′ such that
C′ ∈ T (f). It is obvious from the definition that if T (f) = ∅,
then f is not implemented by any set of components. In
Example 2, f1 is implemented by implementations C1, f2 is
implemented by C1 and C2, and f3 is implemented by C2

but not by C1.

In order to extend the definition to specifications and im-
plementations, we define a function Provided by(C) which
computes all the features that are implemented by C :
Provided by(C) = {f ∈ F|implements(C, f)}. In Exam-
ple 2, Provided by(C1) = {f1, f2} and Provided by(C2) =
{f2, f3}. With the basic definitions above, we can now define
when an implementation exactly implements a specification.

Definition 3 (Realizes). Given C ∈ C and F ∈ F,
Realizes(C,F) if F = Provided by(C).

The realizes definition given above is rather strict. Thus, in
the above example, the implementation C1 realizes the spec-
ification {f1, f2}, but it does not realize {f1} even though
it provides the implementation of f1. In many real-life use-
cases, due to the constraints on packaging of components,
the exactness may be restrictive. For example, a roll-over
control component is not necessary for an ABS feature but
may be packaged in the stability control module by a com-
ponent provider. In the absence of a choice, the integra-
tor company has to buy the roll-over control which provides

more features than is decided for a variant1. Hence, we relax
the definition of Realizes in the following.

Definition 4 (Covers). Given C ∈ C and F ∈ F,
Covers(C, F) if F ⊆ Provided by(C) and Provided by(C) ∈
F .

The additional condition (Provided by(C) ∈ F) is added
to address a tricky issue introduced by the Covers defini-
tion. Suppose that the scope F in Example 2 consisted
of only two specifications {f1} and {f2}. This models two
variants with mutually exclusive features. The implementa-
tion C1 implements {f1}. Without the proviso, we would
have Covers(C1, {f1}). However, since Provided by(C1) =
{f1, f2}, it actually implements both the features together,
thus violating the requirement of mutual exclusion.

The set of products of the SPL are now defined as the spec-
ifications, and the implementation covering them through
the traceability relation.

Definition 5 (SPL Products). Given an SPL Ψ =
〈F , C, T 〉, the products of the SPL denoted Prod(Ψ), is the
set of all specification-implementation pairs 〈F, C〉 where
Covers(C, F).

Thus, in Example 2, we see that among the potential 8 prod-
ucts (4 specifications × 2 implementations) the valid prod-
ucts are 〈C1, F1〉, 〈C1, F2〉, 〈C1, F3〉, 〈C2, F2〉 and 〈C2, F4〉.

2.1 SPL Level Properties
Given an SPL 〈F , C, T 〉, we define the following analysis
problems. The problems center around the new definition
of SPL product.

1. The completeness property of the SPL relates to the
implementability of a specification. A specification F
is implementable if there is an implementation C such
that Covers(C,F). Completeness determines if the
PL implementation (set of implementation variants)
for the SPL is adequate to provide implementation for
all the variant specifications in the PL specification.
An SPL 〈F , C, T 〉 is complete if for every F ∈ F , there
is an implementation C ∈ C such that Covers(C, F).

2. The soundness property relates to the usefulness of an
implementation in an SPL. An implementation is said
to be useful if it implements some specification in the
scope. An SPL 〈F , C, T 〉 is sound if for every C ∈ C,
there is a specification F ∈ F such that Covers(C, F).

3. Given a specification, we want to find out all the vari-
ant implementations in the architecture such that they
cover the specification. This is given by a function
FindCovers(F) = {C|Covers(C, F)}.

1This example is hypothetical. Usually, such extra compo-
nents can be disabled by calibration parameters either by
the provider or by the integrator.

4. At times, it is necessary for a premier set of features to
be provided exactly for some product variants. In this
case, we want to find out if there is an implementation
which realizes the specification. A specification is exis-
tentially explicit if there is an implementation C such
that Realizes(C,F). Dually, it is universally explicit
if for all implementations C ∈ C, Covers(C, F) implies
Realizes(C,F).

5. A given specification may be implemented by multiple
implementations. This may be a desirable criterion of
the PL implementation from the perspective of opti-
mization among various choices. Thus the specifica-
tions which are implemented by only a single imple-
mentation are to be identified. F ∈ F has a unique
implementation if |FindCovers(F)| = 1.

6. Identification of common, live and dead elements in
an SPL are some of the basic analyses identified in the
SPL community. We redefine these concepts in terms
of our notion of products : An element e is common
if for all 〈F, C〉 ∈ Prod(Ψ), e ∈ F ∪ C. An element e
is live if there exists 〈F, C〉 ∈ Prod(Ψ) such that e ∈
F∪C. An element e is dead if for all 〈F, C〉 ∈ Prod(Ψ),
e 6∈ F ∪ C.

7. There are certain implementations that are useful, but
the implementable specifications are not affected if these
implementations are dropped from the PL implemen-
tation. These implementations are called superfluous.
Formally, an implementation C ∈ C is superfluous if for
all F ∈ F such that Covers(C,F), there is a different
implementation D ∈ C such that Covers(D, F).

Superfluousness is relative to a given PL implemen-
tation. If in an SPL Ψ, F = {{f}}, C = {{a}, {b}}
and T (f) = {{a}, {b}}, then both the implementa-
tions {a} and {b} are superfluous w.r.t. Ψ, whereas if
either {a} or {b} is removed from the PL implemeta-
tion, the remaining implementation ({b} or {a}) is not
superfluous anymore (w.r.t. the reduced SPL).

8. A component is redundant if it does not contribute to
any feature in any implementation in the PL imple-
mentation. A component c ∈ C is redundant if for ev-
ery C ∈ C, we have Provided by(C) = Provided by(C\
{c})). An SPL can be optimized by removing the re-
dundant components without affecting the set of prod-
ucts. Redundant elements may not be dead. Due to
the packaging, redundant elements can be part of use-
ful implementations of the SPL and hence be live.

9. A component c is critical for a feature f in the SPL
scope F , when the component must be present in an
implementation that implements the feature f : for all
implementations C ∈ C, (c 6∈ C ⇒ ¬implements(C,f)).
This definition can be extended to specifications as
well: a component c if critical for a specification F , if
for all implementations C ∈ C, (c 6∈ C ⇒ ¬Covers(C,F)).

10. When a specification is covered (but not realized) by
an implementation, there may be extra features (other
than those in the specification) provided by the imple-
mentation. These extra features are called extraneous
features of the implementation. Since there can be

multiple covering implementations for the same spec-
ification, we get difference choices of implementation
and extraneous features pairs :
Extra(F) ≡ {〈C, Provided by(C) \ F 〉|Covers(C, F)}.

3. SPL ANALYSIS PROBLEMS
In the literature, different analysis problems in SPL are usu-
ally encoded as satisfiability problems for propositional con-
straints[3] and SAT solvers such as Yices[24], Bddsolve[4]
are used to solve them. As has been noted in [17], it is
not possible to cast certain problems such as completeness
and soundness as a single propositional constraint. How-
ever, we observe that these problems need quantification
over propositional variables encoding features and compo-
nents and that the more expressive logic formalism of Quan-
tified Boolean Formulae (QBF) is necessary to encode the
analysis problems. QBF is generalized form of propositional
formulae with quantification (existential and universal) over
the propositional symbols. The boolean satisfiability prob-
lem for propositional formulae is then naturally extended to
QBF satisfiability problem (QSAT).

Let C = {c1, . . . , cn} be the core assets and let F = {f1, . . . , fm}
be the scope of the SPL. Each feature and component x is
encoded as a propositional variable px. Given an implemen-

tation C, bC denotes the formula
V

ci∈C
pci , and C̄ denotes a

bitvector where C̄[i] = 1 (TRUE) if ci ∈ C and 0 (FALSE)

otherwise. Similarly, for a specification F , we have bF and
F̄ .

Let CONF (resp. CONI) denote the set of constraints over
the propositional variables capturing the PL specification
(resp. PL implementation). Given the PL specification and
implementation as sets, it is straightforward to get these
constraints. When one uses richer notations like FD etc, one
can extract these constraints following [3]. For the trace-
ability, the encoding CONT is as follows. Let f be a feature
and let T (f) = {C1, C2 . . . , Ck}. We define formula T (f)
as

W
j=1..k

V
ci∈Cj

pci . If the set T (f) is undefined(empty),

then formula T (f) is set to FALSE. CONT is then de-
fined as

V
fi∈F [formula T (fi) ⇒ pfi

] for the features fi

for which T (fi) is defined and FALSE if T (.) is not defined
for any feature.

The implementation question whether implements(C,f) is

now answered by asking whether the formula bC for the
set of components C alongwith the traceability constraints
CONT can derive the feature f . This is equivalent to asking

whether bC ∧ CONT ∧ (¬pf) is UNSAT. Since it is evident
that only T (f) is used for the implementation of f , this

can further be optimized to bC ∧ (formula T (f) ⇒ pf) ∧
(¬pf). However, as we will see later, since implements(., .)
is used as an auxiliary function in the other analyses, we
want to encode it as a formula with free variables. Thus,
form implementsf(x1, . . . , xn) is a formula which takes n
boolean values (0 or 1) as arguments, corresponding to the
bitvector C̄ of an implementation C and evaluates to either
TRUE or FALSE.

form implementsf(x1, . . . , xn) =
∀pc1 . . . pcn{[

Vn

i=1
(xi ⇒ pci)] ⇒ formula T (f)}.

This forms the core of encoding for all the other analy-
ses. Hence the correctness of this construction is crucial.
Lemma 1 states the correctness result. The proof is given in
[1].

Lemma 1. (Implements) Given an SPL, a set of compo-
nents C, and a feature f , implements(C, f) iff
form implementsf (v1, . . . , vn), where C̄ = 〈v1, . . . , vn〉, eval-
uates to TRUE.

In order to extend the construction to encode Covers, we
construct a formula f covers(x1, . . . , xn, y1, . . . , ym) where,
the first n boolean values encode an implementation C and
the subsequent m boolean values encode a specification F .
The formula evaluates to TRUE iff Covers(C,F) holds.
f covers(x1, . . . , xn, y1, . . . , ym) =Vm

i=1
[yi ⇒ form implementsfi

(x1, . . . , xn)].

Similarly, we have f realizes(x1, . . . , xn, y1, . . . , ym) =

m^

i=1

[yi ⇔ form implementsfi
(x1, . . . , xn)].

Notice the replacement of ⇒ in f covers(..) by ⇔
in f realizes(..).

In Example 2, we ask whether Covers({c1, c2}, {f1}). Since
there are 4 components c1, c2, c3 and c4, and 3 features f1, f2

and f3, this translates to the formula f covers(1, 1, 0, 0, 1, 0, 0),
which, after simplification boils down to
form implementsf1(1, 1, 0, 0). Since formula T (f1) = pc1∧
pc2 , after simplification we get ∀pc1 . . . pc4{(1 ⇒ pc1 ∧ 1 ⇒
pc2) ⇒ (pc1 ∧ pc2)}. Since this is true, we conclude that
Covers({c1, c2}, {f1}) holds.

In order to demonstrate a negative example, we ask whether
Covers({c1, c2}, {f3}). We simplify the encoded formula
f covers(1, 1, 0, 0, 0, 0, 1), with formula T (f3) = pc4 . This
yields form implementsf3(1, 1, 0, 0) and at last,
∀pc1 . . . pc4{(1 ⇒ pc1 ∧ 1 ⇒ pc2) ⇒ pc4}. Since this is
FALSE (for say, pc1 = 1, pc2 = 1 and pc4 = 0), we conclude
correctly that Covers({c1, c2}, {f3}) does not hold.

We encode the other analysis problems as QBF formulae as
shown in Table 1. The correctness of the encoding is as-
serted by the following theorem. In the theorem, for the
constraint CONI , CONI [qc1 , . . . , qcn] denotes the same con-
straint where each propositional variable pci has been re-
placed by a new propositional variable qci .

Theorem 6. Given an SPL Ψ, each of the properties
listed in Table 1 holds good iff the corresponding formula
evaluates to true.

Proof. The proof can be seen at [1].

4. IMPLEMENTATION, CASE STUDIES
In order to verify the satisfiability of the QBF formulae en-
coding the analysis problems, we represent them in a tool
input format called QPRO [22]. The format is a standard
input file format in non-prenex, non-CNF form. We use

the tool CirQit [12] to check the satisfiability of QBFs for
SPL analysis. The choice of the tool is based upon its per-
formance: CirQit has solved the most number of problems
in the non-prenex, non-CNF track of QBFEval’10 [20]. It
accepts QBFs in QPRO format and returns TRUE if the
formula is satisfiable, and FALSE otherwise. We have de-
veloped a prototype implementation that takes as input an
SPL; any of the given analysis operations can be selected
thereafter: the corresponding formulae are automatically
generated in QPRO format. The CirQit tool is then in-
voked to check the satisfiability. Our prototype implemen-
tation Software Product Line Engine (SPLE) can be seen at
[15], while Figure 3 gives a screen shot of SPLE.

In order to illustrate the SPL analysis method described in
the paper, we considered two examples : (i) Mobile Phone
Product Line (MPPL) [16] used in the Mobile Phone compa-
nies, as well as (ii)Electronic Shopping Product Line (ESPL)
[16]. MPPL was taken from [16] (the Feature Diagram : Mo-
bile Phone). This gives us the scope F as well as the set of
PL specifications F required by our notion of an SPL. To
provide the PL implementation C corresponding to this, we
designed an architecture diagram (see below) as well as a
traceability relation.

MPPL : Feature Diagram.Figure 4 presents the feature
diagram of the MPPL. Rectangles are used to represent fea-
tures of the MPPL. The mandatory features are represented
by dark rectangles and filled circles on top. The optional fea-
tures are represented by dotted rectangles and hollow circles
on top. The features Utility Functions, Setting, OS, etc.,
are mandatory features and Connectivity, media, etc., are
optional features. The alternative features are represented
by hollow arc relationship between parent features and child
features. In an alternative relationship, when a parent fea-
ture is part of any specification, then its mandatory to select
exactly one child feature. For example, in case the OS fea-
ture is selected, it is mandatory to select exactly one from
Symbian or WinCE. The Or features are represented by
filled arc relationship between parent features and child fea-
tures. In an Or relationship, when a parent feature is part
of any specification, it is mandatory to select at least one
child feature. If connectivity feature is part of any specifi-
cation, one must select at least one feature from Bluetooth,
USB or Wifi. The requires cross-tree constraint between
the Games feature and Java Support feature denotes that
the product with the Games feature must include the Java
Support feature. The excludes cross-tree constraint between
MP3 and MP4 denotes that the product with the MP3 fea-
ture must not select the MP4 feature and vice versa.

MPPL : Architecture Diagram.Figure 5 represents the
architecture of MPPL. The given architecture diagram is a
kind of feature diagram. It consists of mandatory and op-
tional components. The mandatory components are repre-
sented by solid rectangles and optional components are rep-
resented by dotted rectangles. The components Transmitter,
Receiver, etc. are mandatory components and GPRSApps,
MP3Apps, etc. are optional components. The mandatory
relationship between two components is represented by solid
lines and optional relationship is represented by dotted lines.

Properties Formula
Implements(C,f) form implementsf(v1, . . . , vn)
C̄ = (v1, . . . , vn)

Covers(C,F), C̄ = (v1, . . . , vn) f covers(v1, . . . , vn, u1, . . . , um)
Realizes(C,F), F̄ = (u1, . . . , um) f realizes(v1, . . . , vn, u1, . . . , um)

Ψ complete ∀pf1 . . . pfm{CONF ⇒
∃pc1 . . . pcn [CONI ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)]}

Ψ sound ∀pc1 . . . pcn{CONI ⇒
∃pf1 . . . pfm [CONF ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)]}

F existentially explicit ∃pc1 . . . pcn{CONI ∧ f realizes(pc1, . . . , pcn , u1, . . . , um)}
F̄ = (u1, . . . , um)

F universally explicit ∃pc1 . . . pcn{CONI ∧ f realizes(pc1 , . . . , pcn , u1, . . . , um)} ∧
F̄ = (u1, . . . , um) ∀pc1 . . . pcn {[(CONI∧ f covers(pc1 , . . . , pcn , u1, . . . , um)] ⇒

f realizes(pc1 , . . . , pcn , u1, . . . , um)}.
F has unique implementation ∃pc1 . . . pcn [CONI ∧ f covers(pc1 , . . . , pcn , u1, . . . , um)]∧

F̄ = (u1, . . . , um) ∀qc1 . . . qcn((CONI [qc1 . . . qcn] ∧ f covers(qc1 , . . . , qcn , u1, . . . , um)) ⇒ (∧n
l=1(pcl

⇔ qcl
)))]

ci common ∀pc1 . . . pcnpf1 . . . pfm{(CONI ∧ CONF ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)) ⇒ pci}
ci live ∃pc1 . . . pcn , pf1 . . . pfm{(CONI ∧ CONF ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)) ∧ pci}
c dead ∀pc1 . . . pcnpf1 . . . pfm{(CONI ∧ CONF ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)) ⇒ ¬pci}

C superfluous ∀pf1 . . . pfm [(CONF ∧ f covers(v1, . . . , vn, pf1 , . . . , pfm)) ⇒
C̄ = (v1, . . . , vn) ∃pc1 . . . pcn(CONI ∧ ∨i=1..n(pci 6= vi) ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm))]

ci redundant ∀pc1 . . . pcnpf1 . . . pfm{(pci ∧ CONI ∧ CONF ∧ f covers(pc1 , . . . , pcn , pf1 , . . . , pfm)) ⇒
f covers(pc1 , . . . ,¬pci , . . . , pcn , pf1 , . . . , pfm)}

ci critical for fj ∀pc1 . . . pcn [form implementsfj
(pc1 . . . pcn) ⇒ pcj]

Table 1: Properties and Formulae

Figure 3: A Screenshot of SPLE

Figure 4: Feature Diagram of MPPL.

The relationship with value 1 denotes that we have to select
exactly one component from the given set of components. In
the given architecture diagram, we can select only one OS
setup i.e. SymbianOSSetup or WinCEOSSetup. The rela-
tionship with value 1+ denotes that we have to select at least
one component from the given set of components. If we se-
lect ConnectivityInterface and ConnectivityAdapter com-
ponents then it is mandatory to select at least one compo-
nent from {BluetoothHwd, USBHwd, WifiHwd}. In the
MPPL, there are a total of 25 features, 38 components and
more than 7000 valid products.

MPPL : Traceability relations.Table 2 presents the trace-
ability relation of MPPL.

Feature Components
UtilityF unctions {{UtilInterface, UtilAdapter}}

Calls {{Transmitter, Receiver}}

V oice {{Keypad, Mice, Speaker}}

Data {{Keypad, GP RSApps}}

Messaging {{MessageInterface, MessageAdapter}}

SMS {{SMSApps}}

EMS {{EMSApps}}

MMS {{MMSApps}}

Games {{GamesInterface, GamesAdapter}}

AlarmClock {{AlarmApps}}

RingingT ones {{RingTonesApps}}

Settings {{SettingInterface, SettingAdapter}}

JavaSupports {{MIDP2.0}, {MIDP3.0}}

OS {{SymbianOSSetup}, {WinCEOSSetup}}

Symbian {{SymbianOSSetup}}

W inCE {{WinCEOSSetup}}

Media {{MediaInterface, MediaAdapter}}

Camera {{V GA}, {MP1.3}, {MP2.0}, {MP3.2}, {MP5.0}}

MP3 {{MP3Apps}}

MP4 {{MP4Apps}}

Connectivity {{ConnectivityInterface, ConnectivityAdapter}}

Bluetooth {{BluetoothHwd}}

USB {{USBHwd}}

Wifi {{WifiHwd}}

Table 2: Traceability Relation of MPPL.

Table 3 compares the performances of SAT and QSAT based
encoding of the property soundness, which checks whether
every PL implementation covers some PL specification. The
QBF formulae for soundness can be seen in Table 1 : there
is a block of 38 universal quantifiers corresponding to the
38 components in MPPL; this when unrolled in SAT would
require us to check the property for all the 238 implemen-
tations. Table 3 shows that encoding in QBF is far more

efficient: note that it took just .023 s in QSAT to answer
this, while we had to abort after a day’s wait in the case of
the SAT encoding.

Number of SAT QSAT
PL implementations Time(sec) Time(sec)

1 0.016s ∼= 0

10 0.022s ∼= 0

500 0.237s ∼= 0

1000 0.350s ∼= 0

2000 0.433s ∼= 0

5000 0.848s ∼= 0

10000 1.571s ∼= 0

20000 2.701s ∼= 0

40000 7.384s ∼= 0

60000 14.134s ∼= 0

238 > 1 day 0.023s

Table 3: MPPL soundness : SAT vs. QSAT performances

The Electronic Shopping Product Line (ESPL) is a much
bigger product line (the Feature Model : Electronic Shop-
ping from [16]) with 290 features, and more than a billion
valid products. We enhanced this with an archirecture dia-
gram comprising of 290 components, and a 1-1 traceability
relation, thereby preserving all the valid products. On both
MPPL and ESPL, we checked the analysis operations; all
the analyses were carried out using the QBF encoding of
the previous section and application of the CirQit tool. We
have recorded the time required to check the satisfiability of
the formulae in Table 4. To compare with the SAT based ap-
proach, we unrolled the QBF formulae into SAT formulae for
the analysis operations other than Implements, Realizes and
Covers and checked their satisfiability using a SAT solver;
in the case of ESPL, we had to abort after a day’s wait for
all the operations. This was expected, after looking at Table
3 for the operation of soundness in the case of MPPL.

5. CONCLUSION
In this paper, we have proposed a semantic formulation for
Software Product Lines using elementary set theory, in order
to give precise and unambiguous definitions for traceability
between the specifications and implementations. Based on
this, a new definition for products in an SPL is proposed.
We show that our definition is different from the satisfiabil-
ity based definition and that it captures the intricacies of the
implementation relation in the correct way. With this foun-
dation, we define a set of analysis problems for the SPLs.

Figure 5: Architecture Diagram of MPPL.

Properties MPPL ESPL
Avg. Time(sec) Avg. Time(sec)

Implements .0017 .014
realizes .043 .423
covers .021 .018

complete .025 4.68
sound .023 4.22

existentially explicit .061 0.862
universally explicit .127 5.42

common .007 0.154
live .0226 0.145
dead .008 0.153

critical .0013 .015

Table 4: Time Complexity for Properties and Formulae

We show that these problems can be formulated as QBF
satisfiability and can be solved using QSAT tools such as
CirQit.

We have demonstrated the feasibility of our approach through
a small fragment of an industrial SPL. Since QSAT problem
is PSPACE-complete, generic QSAT solving may not scale
well. However, one observes that the formulas for the SPL
analyses have very specific structure which can be exploited
for efficient QSAT solving. In fact, while a detailed study of
the scalability of our approach is under way, our preliminary
experiments give optimistic results.

The proposed semantic model of the SPL treats specifica-
tions and implementations as sets of features and compo-
nents respectively. When richer structures such as multisets
is imposed on these elements, it will affect the definitions
of traceability and implements. Then the underlying logics
have to be redesigned to handle the extra expressive power,
which will have implication on the analysis algorithms.

6. REFERENCES
[1] http://www.cse.iitb.ac.in/∼krishnas/tr2012.pdf, 2012.

[2] N. Anquetil, B. Grammel, I. G. L. da Silva, J. A. R.

Noppen, S. S. Khan, H. Arboleda, A. Rashid, and
A. Garcia. Traceability for model driven, software
product line engineering. ECMDA Traceability
Workshop Proceedings, Berlin, Germany, pages 77–86,
Norway, June 2008. SINTEF.

[3] D. S. Batory. Feature models, grammars, and
propositional formulas. In J. H. Obbink and K. Pohl,
editors, SPLC, volume 3714 of Lecture Notes in
Computer Science, pages 7–20. Springer, 2005.

[4] BDDSolve. http://www.win.tue.nl/ wieger/bddsolve/,
2010.

[5] D. Benavides, S. Segura, and A. Ruiz-Corẗı£¡s.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 35(6):615–636,
2010.

[6] K. Berg, J. Bishop, and D. Muthig. Tracing software
product line variability: from problem to solution
space. SAICSIT ’05: Proceedings of the 2005 annual
research conference of the South African institute of
computer scientists and information technologists on
IT research in developing countries, pages 182–191, ,
Republic of South Africa, 2005. South African
Institute for Computer Scientists and Information
Technologists.

[7] D. Beuche, H. Papajewski, and
W. Schr̈ı£¡der-Preikschat. Variability management
with feature models. Science of Computer
Programming, 53(3):333 – 352, 2004. Software
Variability Management.

[8] K. Czarnecki and M. Antkiewicz. A template based
approach based on superimposed variants. Proceedings
of GPCE’05, pages 422–437, 2005.

[9] K. Czarnecki and K. Pietroszek. Verifying feature
based model templates against well-formedness ocl
constraints. Proceedings of GPCE’06, pages 211–220,
2006.

[10] J.-M. DeBaud and K. Schmid. A systematic approach
to derive the scope of software product lines. ICSE
’99: Proceedings of the 21st international conference
on Software engineering, pages 34–43, New York, NY,
USA, 1999. ACM.

[11] T. Eisenbarth, R. Koschke, and D. Simon. A formal
method for the analysis of product maps.
Requirements Engineering for Product Lines
Workshop, Essen, Germany, 2002.

[12] A. Goultiaeva and F. Bacchus.
http://www.cs.utoronto.ca/ alexia/cirqit/, 2010.

[13] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[14] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. A feature-oriented reuse method with
domainspecific reference architectures. Annals of
Software Engineering, 5(1):143âĂŞ168, 1998.

[15] http://www.cse.iitb.ac.in/∼krishnas/SPLE.zip, 2012.

[16] D. C. Marcilio Mendonca, Moises Branco. s.p.l.o.t. -
software product lines online tools. Proceedings of
OOPSLA’09, 2009.

[17] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens,
and G. Saval. Disambiguating the documentation of
variability in software product lines: A separation of
concerns, formalization and automated analysis.
Requirements Engineering Conference, 2007. RE ’07.
15th IEEE International, pages 243–253, 2007.

[18] S. E. I. of Carnegie Mellon University. Software
product line web site, - 2010.

[19] P. Borba, L. Teixeira and R. Gheyi. A theory of
software product line refinement. Theoretical
Computer Science, 2012. doi:10.1016/j.tcs.2012.01.031.

[20] C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck,
O. Kullmann, and I. Lynce. The seventh qbf solvers
evaluation (qbfeval’10). In O. Strichman and
S. Szeider, editors, SAT, volume 6175 of Lecture Notes
in Computer Science, pages 237–250. Springer, 2010.

[21] T. K. Satyananda, D. Lee, S. Kang, and S. I. Hashmi.
Identifying traceability between feature model and
software architecture in software product line using
formal concept analysis. Computational Science and
its Applications, International Conference, 0:380–388,
2007.

[22] M. Seidl. http://www.qbflib.org/format qpro.pdf,
2009.

[23] P. Stan Bühne, Kim Lauenroth and Klaus Pohl.
Modelling requirements variability across product
lines. Proceedings of RE’05, pages 41–52, IEEE
Computer Society, 2005.

[24] YICES. http://yices.csl.sri.com/, 2010.

[25] C. Zhu, Y. Lee, W. Zhao, and J. Zhang. A feature
oriented approach to mapping from domain
requirements to product line architecture. In Software
Engineering Research and Practice, pages 219–225,
2006.

