
Relating Requirement and Design Variabilities
Jean-Vivien Millo

EPI AOSTE, INRIA Sophia-Antipolis
2004 routes des lucioles, BP93
06902, Sophia-Antipolis, France
Email: jean-vivien.millo@inria.fr

S. Ramesh
Global General Motors R&D

General Motors Technical Center India
ITPL, Whitefield main road, 560066, Bangalore, India

Email: ramesh.s@gm.com

Abstract—This paper presents a novel approach to relate the
variabilities that exist at the requirement and design levels in a
Software Product Line (SPL). This approach is based upon two
key observations: (i) it is not only the requirements, but also
the design contains variability information, (ii) The variability
information at the requirement and design levels are expressed
differently and at different levels of abstraction.

In the context of an SPL composed of features including vari-
ability, the proposed method relates every feature configuration
(evaluation of the configuration parameters) at the design level
with a feature instantiation at the requirement level. The core
step in the method is a conformance checking procedure that
is based upon the well-known automata containment algorithm
used in formal verification of finite state systems.

The method has been implemented on top of the well-known
verification tool, SPIN, and then experimented on an industrial
example with encouraging results.

I. INTRODUCTION

This paper focuses on relating the variability of features
at the requirement and design level in a Software Product
Lines (SPL). An SPL consists of multiple features that can
be assemble together. A feature, as it is defined in this paper,
is a piece of functionality including variability.

The SPL literature is full of models and formalisms for ex-
pressing the variability information, the prominent ones among
them being the Czarnecki’s feature model [1] and the Pohl’s
OVM [2]. The requirements of a feature describe the behavior
of its different configuration. Requirement level promotes a
high level of abstraction where expressibility, clarity, and ease
of analysis are of importance. The following sentence is an
example of a typical SPL requirement containing functionality
and variability information: ”The Door Lock feature in an
automobile SPL, when enabled, will lock the door when a
shift out of park occurs for automatic transmission vehicles
or when a certain calibratable speed (e.g. 5 or 8 mph) is
reached for vehicles with manual transmission.”

The design of a feature realizes the functionality and
variability specified in the requirements taking into account
the implementation and platform constraints. Often in many
application domains, e.g. automotive applications, like the
requirements, the design still contains variability information.
The variability is implemented as “jumper settings” or values
in a ROM. At the deployment stage, the variability is resolved
and a specific product is derived.

In order to relate the requirement and design of a feature,
we define a conformance relation which ensures, for a given

feature, that each configuration at the design level realizes a
configuration at the requirement level. This relation captures
the fact that the variability at the design level is the one
implied at the requirement level. This relation makes use of
the standard automata containment relation used in traditional
model-checking approach to design verification. The goal is
to check that every design configuration conforms to at least
one requirement configuration.

Thus, it involves checking whether the actual behavior and
variability, as realized at the design level, conforms to the
expected behaviour and variability given in the requirements.

For capturing variability in the behavior of a feature, we
have extended the well-known model of finite state ma-
chines, and proposed a model called Finite State Machines
with Variability, in short, FSMv. FSMv is flexible enough
to represent the behavior and variability information at both
the requirement and design level. We define two sub-classes
of FSMv, FSMr and FSMd, to represent the behavior and
variability of a feature at the requirement and design level
respectively.

The proposed approach still suffers from some limitations.
One needs to trace a feature at the requirement level with its
corresponding module(s) at the design level. Some initiatives
such as [3] or [4] pave the way to the automation of this
step. In addition, the conformance relation requires that the
compared automata have comparable alphabet. One have to
identify the correspondance between events at the requirement
level with the signals at the design level. Lastly, the design may
include implementation details that has to be abstracted out to
perform the proposed verification approach.

The proposed approach has been implemented on top of
SPIN [5], a well-known tool for traditional software design
verification. We have conducted experiments on an industrial
example with encouraging results.

In summary, the main contributions of this paper are i) a
method to relate the variability from design to requirement
based on a conformance relation between design and require-
ment models of SPL’s features, ii) a scalable implementation
of the conformation algorithm and iii) a prototype implemen-
tation of the tool.

II. RELATED WORKS

1) SPL variability analysis between requirement and de-
sign: The Variation Point Model (VPM) of Hassan Gomaa

[6], [7] distinguishes between variability at the requirement
and design levels but no design verification approach has
been presented. Kathrin Berg et al.[8] propose a model for
variability handling throughout the life cycle of the SPL.
Andreas Metzger et al.[9] and M Riebisch et al.[10] provide
a similar approach but they do not consider the behavioral
aspect. In the proposed approach, we extract the relation
between expected and actual variability from a behavioral
analysis.

2) Model-Checking of SPL behavior: Kathi Fisler et al.
[11], [12] have developed an analysis based on three-valued
model checking of automata defined using step-wise refine-
ment. Later on, Jing Liu et al. [13] have extended Fisler’s
approach to provide a much more efficient method. Kim
Lauenroth et al. [14], [15] as well as Andreas Classen et al.
[16], [17], [18], and Gruler et al. [19] have developed model
checking methods for SPL behavior. These methods are based
on the verification of LTL/CTL/modal µ calculus formula. In
these verification methods, the requirement and design share
the same variability and only the behavior is checked.

3) Behavior model for SPL: Ulrik Nyman [20], [21] and
later, Jean-Baptiste Raclet et al. [22] have defined the Modal
I/O Automata (MIOA) to express in one automaton all the
possible behaviors of a feature. Similarly, Alessandro Fantechi
and Stefania Gnesi [23] have defined the GEMTS model which
expresses the variability better than MIOA using the at least,
at most operators but GEMTS is not compositional. Patrizia
Asirelli et al. [24], [25] proposes LTS based on deontic logic.
Kathrin Scheidemann et al. [26], [19] present a behavioral
model (PL-CCS) inspired from CCS and introducing a vari-
ation operation. These models are usually coupled with a
variability model such as OVM [2], the Czarnecki feature
model [1], or VPM [6], [7] to attain a fair level of variability
expressibility. Unlike all these approaches, FSMv captures the
variability in an explicit way which we find more intuitive.
Also the FSMv models can be automatically derived from
design models like UML models.

FSMv is similar to FTS [16] and FTS+ [17]. However,
FTS+ is applicable to model the behavior of the entire SPL
while FSMv focuses on single feature. In addition, FTS+ and
its associated methodology is more appropriate to check for
properties focusing on the reachable states of the system while
FSMv focuses on simulation relation between requirement and
design and thus infinite sequence of events.

4) Automatic analysis of feature diagram: In the literature,
variability is usually given by a feature diagram [1] and
translated into a propositional formula. Even though feature
diagrams are not considered in the proposed approach, existing
works about automatic reasoning on feature diagram [27],
[28], [29], [30], [31] have been source of inspiration for the
present article. All these works are mostly based on [32]. [33]
gives an exhaustive survey of the works conducted in this area.

III. RELATING VARIABILITIES

In general, an SPL consists of a collection of features, each
feature having different functionality as well as variability. For

example, consider the body control function product line used
in automotive applications. A typical body control function
has several features, like, door lock, lighting and seat control
function. Each of these features has a distinct function and
variability. For example, the locking behaviour of a door lock
function has a variation point called transmission type. If the
transmission type is manual then the door is locked after
the speed of the vehicle exceeds a certain threshold value;
for automatic transmission, the door is locked when the gear
position is shifted out of park.

As mentioned in the introduction, we make use of a novel
formal model called FSMv for precisely capturing the behavior
of a feature.

A. FSMv and language refinement

FSMv is an extension of the classical FSM model. The dis-
tinguishing aspect of FSMv is its ability to specify variability.
The variability information is captured using a finite set of
variables associated with an FSMv.

Let V ar be a finite set of variables each taking a value
ranging over a finite set of values. Let PredV ar denote the
set of all predicates over V ar using propositional logic; we
assume a set of atomic propositions involving the variables
and the standard relational operators like =, >,<,∈ etc.

Definition 1 (FSMv): An FSMv is a tuple
〈Q, q0,Σ, δ, V ar, ρ,∆〉 where:
• Q is a finite set of states. q0 is the initial state.
• Σ is a set of events.
• δ = Q×Σ×Q is a set of transitions. For t = s1×e×s2 ∈
δ, we define •t = s1, t• = s2, and

•
t= e.

• V ar is a finite set of (variant) variables.
• ρ ∈ PredV ar is a consistent predicate called the global

predicate.
• ∆ is a mapping from every transition to a consistent

predicate on the variables of V ar. ∆: δ → PredV ar
defines the variability domain of a transition.

Note that there is the global predicate (ρ) for the whole FSMv
and local transition predicates (∆) each for a transition. A
simple example of a global predicate is: ¬(var1 = a) ∧
(var2 = var3). As this example shows, the global predicate
restricts the possible values that the variables can take. A
predicate is consistent if there exists at least a valuation of
the variables that satisfies the predicate. Each valuation of
the variables satisfying the global predicate gives rise to a
product variant whose behavior is described by the FSMv with
only and all those transitions whose variability domains (∆)
hold for the given valuation. Thus using the variables one
can represent the behavior of all possible configurations of a
feature in a single FSMv description.

Definition 2 (Configuration): A configuration, denoted by
π, is a mapping that associates each variable in V ar with an
appropriate value.

The set of all configurations is denoted by ΠV ar. Let π ∈
ΠV ar be a configuration. π(var) is the value associated to
var in π.

We define ΠV ar(ρ) as the set of all the configurations of
V ar that satisfy the predicate ρ. ΠV ar(ρ) = {π|π |= ρ} where
”|=” denotes the standard Boolean satisfiability relation.

We define ρπ as the predicate which is satisfied only by π.
If ∀i ∈ [1, |V ar|], π(vari) = ai, then ρπ :

∧|V ar|
i=1 (vari = ai).

Given a configuration π and a transition t, we say that t is
allowed in π if π |= ∆(t).

An FSMv is said to be nondeterministic, if there exists a
configuration, an event, and a state in the state machine from
which two distinct transitions triggered by the same event are
allowed in the same configuration.

For a transition t, if ∆(t) is inconsistent with ρ, then t is
not allowed in any valid configuration. Likewise, a transition
can be allowed in multiple valid configurations.

As a concrete example of an FSMv, consider the feature
Door lock in automotive software which controls the locking
of the doors when the vehicle starts. This is one of the features
in the Entry Control Product Line to be discussed later as a
case study.

The expected behavior of this feature is modeled using the
FSMv Reqdl described pictorially in Figure 1. In the initial
state, this feature becomes active when all the doors are closed.
The doors are locked when either the speed of the vehicle
exceeds a predefined value or the gear is shifted out of park.
An unlock event reactivates the feature.

There are four configurations for this feature all of which are
described using the three variables: DL Enable, Transmission
and DL User Pref; see the box at the top left in the figure for
the possible values of these variables. The bottom box gives
the global predicate associated with the machine. It ensures
that in every valid configuration, the variable Transmission has
the value Manual implies that DL User Pref takes the value
Speed. This captures the fact that in manual transmission, the
door is closed when speed reaches a threshold value. Note that
to avoid clutter, the transition predicates use a short hand nota-
tion: for the edge labeled Park:ShiftOutOfPark, the predicate
is DL User Pref = Park, i.e., ∆(t) = (DL User Pref =

Park) and
•
t= ShiftOutOfPark. The transition labeled

with Disable:* means that when DL Enable = Disable, it stalls
on any event.

B. The SPL requirement and design models

In the requirement of a product line, the variability is usually
discussed in terms of variation points, which are at a high level
of abstraction and focused on clarity and expressibility. The re-
striction of the possible configurations is expressed as general
constraints on these variation points, e.g., the global predicate
Manual =⇒ Speed in the Door lock example, without
concerning about how they are implemented. In contrast, in a
design, the variability description is constrained by efficiency,
implementability, ease of reconfiguration and deployment con-
siderations. For instance, in the automotive applications, one
often finds that the variation points are expressed using a set
of variables, called calibration parameters. The calibration
parameters range over a set of simple values and each setting

of the parameters corresponds to a reconfiguration to a specific
product.

In order to capture the difference between the requirements
and design of an SPL, we define a subclass of FSMv, called
FSMd.

Definition 3 (FSMd): An FSMd (d stands for design) is an
FSMv where the global predicate ρ takes the simple form
ρ =

∨m
i=1 ρπi

where each ρπi
is a conjunction of equality

constraints of the form (v = V), where v is a variable and V
is a specific value that can be assigned to the variable. Further
each transition predicate is also conjunction of such equality
constraints.
ρ has the same expresivness in FSMd than in a general

FSMv but we want to capture the fact that, at the design level,
the possible configurations are given as an exhaustive list of
tuples of values but not as general constraint.

Let us illustrate FSMd using the Door lock example. Desdl
Figure 2 describes the behaviour of a design of Door lock.
This is similar to Figure 1 except that the active state (top
elliptical shaped state in Figure 2) is split into two states (the
top and the bottom elliptical shaped states in Figure 2. The top
active state is for auto-transmission whereas the bottom one is
for manual transmission as can be seen from the configuration
label of the two transitions going from the initial state. The
major difference to be noted in these two machines is the
variability representation. Two parameters (Cp1 and Cp2)
encode the possible configurations in the FSMd. Cp1 = Auto
corresponds to the configuration in which the transmission is
Auto whereas Cp1 = Moff corresponds to either the manual
transmission or that the feature is disabled according to the
value of Cp2. Similarly, Cp2 = Speed means that the user
preference is set on Speed but Cp2 = Poff means either
Park or that the feature is disabled.

In our discussions, we often distinguish an FSMd by using
the tuple 〈Qd, qd0 ,Σ, δd, V ard, ρd,∆d〉 using the subscript d at
appropriate places. Further we use the notation FSMr to denote
the configuration state machines whose global predicates are
not of the special form assumed in FSMd. Any such machine
is called a requirement state machine and a typical requirement
state machine, is denoted by 〈Qr, qr0,Σ, δr, V arr, ρr,∆r〉.

C. Variant and language

Given the behavior of a feature with multiple variants, we
can obtain the behavior of a single variant or instance by
configuring it. A variant is a standard FSM corresponding to
a given configuration. In the sequel, we consider only FSMvs
with deterministic variants.

Definition 4 (Variant of an FSMv): Let M =
〈Q, q0,Σ, δ, V ar, ρ,∆〉 be an FSMv and π ∈ ΠV ar(ρ)
be a configuration of M . The variant of M is a standard
FSM obtained from M by retaining only those transitions
(and the respective source and target states) that are allowed
in π. The transition predicates and global predicates are also
removed from the tuple as they do not play any role in the
resultant state machine. We denote it M ↓ π.

DL_Enable: {Enable,Disable}
Transmission: {Auto,Manual}
DL_User_Pref: {Speed, Park}

ManualSpeed

Disable: *

Unlock
Lock

Fig. 1. The FSMv of the feature Door lock.

Cp1:{Moff, Auto}
Cp2:{Poff, Speed}

MoffΛPoff:*

Lock

Lock

Sp
e

ed
>n

M
o

ff
:U

n
lo

ck

Poff:
ShiftOutOfPark

Fig. 2. Desdl: the FSMd abstracted from the design of the feature Door
lock.

In the example of the feature Door lock, the variant
Reqdl ↓ 〈Enable, Auto, Park〉 does not contain the tran-
sitions with the event Speed > n and ∗. The variant Reqdl ↓
〈false,X,X〉 contains only the initial state with the self-loop
labeled (Disable:*).

The configuration operation forms the basis for defining the
semantics of FSMv and comparing FSMd and FSMr. Since a
variant of an FSMv is a standard FSM, we can give a language-
theoretic semantics to FSMv. Given an FSMv machine M ,
the semantics of M is a mapping that associates with each
configuration, π, of M , the language of the FSM M ↓ π,
denoted by L(M ↓ π).

D. Language refinement

An FSMd conforms to an FSMr if and only if there exists
a mapping Φ relating every configuration of the FSMd with
some configuration of the FSMr such that the language of the
variant of the FSMd on a given configuration is a subset of
the language of the variant of the FSMr on the corresponding
configuration. Φ is a total mapping from the configuration of

an FSMd to the configuration of its corresponding FSMr. Φ
embodies the conformance relation.

Definition 5 (The mapping Φ): Let Req and Des be a pair
of FSMr and FSMd respectively. Φ : ΠV ard(ρd)→ 2ΠV arr (ρr)

Definition 6 (Language refinement): Let Des and Req be
a pair of FSMd and FSMr respectively.
Des conforms to Req denoted Des ≤Φ Req if ∃Φ such

that for all the configurations πd of Des, there exists πr in
Φ(πd) and L(Des ↓ πd) ⊆ L(Req ↓ πr)1.

In the feature Door lock, Φ(〈Moff, Speed〉) =
{〈Enable,Manual, Speed〉} since L(Desdl ↓ 〈Moff,
Speed〉) ⊆ L(Reqdl ↓ 〈Enable,Manual, Speed〉).

IV. THE CONFORMANCE ALGORITHM

Let f be a feature. Suppose that the FSMr Reqf represents
the expected behavior of f and the FSMd Desf the actual be-
havior. Then the conformance checking problem is to compute
a mapping Φ such that

Desf
?
≤Φ Reqf

We say that Φ is the conformance relation between Desf and
Reqf .

The conformance relation is computed by comparing every
projection of Desf with every projections of Reqf . Algorithm
1, given below, presents a possible implementation using the
standard automata containment algorithm[34], as implemented
in the SPIN model checker [5]. To use SPIN, one should
describe the system along with the checked property in the
Promela language [5]. Out of this description, SPIN generates
the pan.c file which is the verifier for your system. After com-
pilation, the pan(.exe) executable performs the verification.

A. Promela Model of Desf and Reqf
The model consists of three automata implemented as

Promela processes: one process represents the environment,
another represents Desf and a third represents Reqf . In the
environment process, at every step, one random event can be
broadcast to Desf and Reqf using synchronous channels. In
the processes corresponding to Desf and Reqf , the calibration
parameters (V ard) and variation points (V arr) are represented

1⊆ expresses the refinement.

as read only variables. The states are encoded using a variable
which initially holds the initial state. We assume an error state
in both the models.

The main structure of either of these processes is a while
loop with a switch statement inside. Each case represents a
state. For each state, its output transitions are listed and can
be triggered if the corresponding event is present and if the
variability domain of the transition is respected by the current
configuration. An additional transition goes to the error state
when none of the above transitions can be taken. The error
state has only one outgoing transition self-looping on any
event.

Appendix A gives details about the generated Promela file.

B. The conformance checking

Algorithm 1 starts by generating a Promela file containing
the three processes defined above: the environment, Desf , and
Reqf plus the initialization sequence and a never claim which
holds for the language containment condition. During the ini-
tialization, the configuration of Desf and Reqf are initialized
with a given couple of configurations. Then the environment
followed by Desf and Reqf are run atomically. The never
claim assertion is the following never((¬error(Desf) ∧
error(Reqf))
(where error(X) means that X is in error state). The never
claim is violated when the design is not in the error state
while the requirement process is in. It means that, at some
point, the design handles an event but the requirement does
not. So, the language conformance condition is violated for
the current couple of configurations.

Algorithm 1 runs the full verification algorithm of SPIN
for every couple of configurations. SPIN(i.e. pan(.exe)) returns
either one error, corresponding to a pair for which the confor-
mance condition is violated, or no error when the conformance
condition holds and thus this couple can be added to the
conformance mapping Φ. One should note that the analysis
can be fully parallelized. Since the analysis is feature-wise, the
considered variability remains limited and thus the complexity
though still exponential is scalable.

C. Correctness of Algorithm 1

The following lemma proves the correctness result.
Lemma 1: ∀(πd, πr), L(Desf ↓ πd) 6⊆ L(Reqf ↓ πr) if

and only if ¬error(Desf) ∧ error(Reqf).
Proof:

(⇒)
There exists a word in L(Desf ↓ πd) which is prefixed by
u.e with u a finite prefix of a word in L(Reqf ↓ πr), and e an
event such that u.e is not a prefix of any word in L(Reqf ↓
πr). In such a situation, Desf does not go to the error state
but Reqf does.
(⇐)
If L(Desf ↓ πd) ⊆ L(Reqf ↓ πr) then whenever Reqf enters
an error state then Desf enters an error state.

Algorithm 1 implements the conformance checking using
SPIN.

Input : Desf , Reqf .
Output : The mapping Φ when Desf ≤Φ Reqf
1. Generate a Promela file which contains Reqf , Desf , the
environment, the never claim and, the initialization sequence
as described above.
for all πd ∈ ΠV ard(ρd) do

for all πr ∈ ΠV arr (ρr) do
2. Launch the full verification algorithm of spin for the
configuration (πd, πr)
3. Build the mapping Φ from the output of spin.
if (πd, πr) does not return any error then

Φ(πd) = Φ(πd) ∪ {πr}
end if

end for
end for
4. Conclude whether the design conforms to the requirement
if ∀πd ∈ ΠV ard(ρd), Φ(πd) 6= Ø then

return true along with (Φ)
else

return false along with (πd) {where πd has no corre-
spondence through Φ}

end if

V. EXPERIMENTAL RESULTS

The Entry Control Product Line comprises all the features
involved in the management of the locks in a car. In this study,
we focus on the following features:
• Power lock: this is the basic locking functionality which

manages the locking/unlocking according to key button
press and courtesy switch press.

• Last Door Closed Lock: delays the locking of the doors
until all the doors are closed. It is applicable when the
lock command appends while a door is open.

• Door lock: automates the locking of doors when the
vehicle starts.

• Door unlock: automates the unlocking of door(s) when
the vehicle stops.

• Anti-lockout: is intended to prevent the inadvertent lock-
out situations: the driver is out of the car with the key
inside and all the doors locked.

• Post crash unlock: unlocks all the doors in a post crash
situation.

• Theft security lock: secures the car with a second lock.
Each feature is represented as a pair of state machines

containing 3 to 8 states.

A. Global analysis results

We have built an experimental tool called FSMv-Verifier
to implement and validate the proposed method. We ran
Algorithm 1 on the features Power lock, Last Door Closed
Lock, Post crash unlock, Door lock, Door unlock, Anti-lockout
and Theft security lock from the ECPL. A bug was found in the

Feature PL & LDCL PCU DL DU AL TSL
Exec. time 2546 ms 1267 ms 1468 ms 1453 ms 1177 ms 1980 ms

pan.exe 1730 ms 86 ms 377 ms 385 ms 28 ms 1130 ms

TABLE I
EXECUTION TIME OF FSMV-VERIFIER ON ALGORITHM 1

Door lock feature (see below). Figure I presents the execution
time of Algorithm 1 for each feature including the calls to
SPIN, GCC, PAN and the cleaning of temporary files. The
execution time of the analysis itself (execution of pan.exe) is
given in the second line.

B. Detailed analysis of Door lock

We ran Algorithm 1 on the feature Door lock and a bug was
found. In Desdl, the transition from middle oval state to the
round state labeled with Poff:ShiftOutOfPark is incorrect. We
have Φ(〈Auto, Poff〉) → Ø. If we remove the concerned
transition, and run again Algorithm 1, we get the following
conformance relation:
• Φ(〈Moff, Poff〉)→ {〈Disable,X,X〉}
• Φ(〈Moff, Speed〉)→ {〈Enable,Manual, Speed〉,
〈Enable, Auto, Speed〉}

• Φ(〈Auto, Poff〉)→ 〈Enable, Auto, Park〉
• Φ(〈Auto, Speed〉)→ {〈Enable, Auto, Speed〉,
〈Enable,Manual, Speed〉}

One can see that a design configuration may be associated
to more than one requirement configuration.

VI. CONCLUDING REMARKS

The paper argued that in an SPL, both the design and
requirements may contain variability information and that
there is a need for relating these. The novel aspect of the
proposed work is to relate the variability from the design level
to the requirement level.

A novel model called FSMv is proposed for modeling
both requirements and design with variabilities and a new
conformance relation over FSMv models are also defined.
Algorithm 1 for checking the conformance between the design
and requirement models of a feature has been proposed.
A prototype tool has been implemented and was used for
verifying an industrial scale product line.

The proposed approach assumes that the requirements and
designs are expressed as finite state machines and hence
can be applied only on finite state systems. For general
designs involving infinite states, one needs to build finite state
abstractions and apply the proposed approach. In fact, for the
case study, we indeed developed finite state abstractions of the
entry control product line’s features and applied the tool. We
are also extending this work to general infinite state systems.

In this paper, the expected behavior is an early repre-
sentation of the feature but it could also represent a safety
property of the feature. For this, FSMv can be extended with
an accepting condition such as that used in Büchi automata.
This is an interesting future work direction. The conformance
relation used in this paper, is based on the language refinement.

Other relations like bi-simulation, failure traces could also be
explored.

In many SPL, the configuration parameters are shared from
a feature to another. Moreover, the features follow some
composition constraints in order to weave a product. These
constraints are usually given by a feature diagram. Still, these
constraints exist differently at the requirement and design
level. One could extend the proposed approach and check
that every possible product at the design level conforms to a
product at the requirement level. To do so, one can consider all
the possible products (feature combination) at the design level
that respect the composition constraint. When considering the
φ mapping, one can relate every design product to one (or
many) requirement product(s). Finally, one can check that the
corresponding requirement product respects their composition
constraint. If not, the design allows features composition that
are not specified in the requirement.

REFERENCES

[1] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley Professional, June 2000.

[2] A. Metzger and K. Pohl, “Variability management in software product
line engineering,” in ICSE COMPANION ’07: Companion to the pro-
ceedings of the 29th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 186–187.

[3] K. Czarnecki, “Mapping features to models: A template approach based
on superimposed variants,” in GPCE 2005 - Generative Programming
and Component Enginering. 4th International Conference. Springer,
2005, pp. 422–437.

[4] BigLeverSoftware, “The software product line lifecycle framework,”
2008.

[5] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, September 2003. [Online].
Available: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07
-20&path=ASIN/0321228626

[6] H. Gomaa and D. L. Webber, “Modeling adaptive and evolvable soft-
ware product lines using the variation point model,” in HICSS ’04:
Proceedings of the Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) - Track 9. Washington, DC,
USA: IEEE Computer Society, 2004, p. 90268.3.

[7] H. Gomaa and E. Olimpiew, “Managing variability in reusable
requirement models for software product lines,” in High Confidence
Software Reuse in Large Systems, ser. Lecture Notes in Computer
Science, H. Mei, Ed. Springer Berlin / Heidelberg, 2008, vol. 5030,
pp. 182–185. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
68073-4 17

[8] K. Berg, J. Bishop, and D. Muthig, “Tracing software product line vari-
ability: from problem to solution space,” in SAICSIT ’05: Proceedings
of the 2005 annual research conference of the South African institute
of computer scientists and information technologists on IT research
in developing countries. , Republic of South Africa: South African
Institute for Computer Scientists and Information Technologists, 2005,
pp. 182–191.

[9] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval,
“Disambiguating the documentation of variability in software product
lines: A separation of concerns, formalization and automated
analysis,” in Requirements Engineering Conference, 2007. RE ’07.
15th IEEE International, 2007, pp. 243–253. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4384187

[10] M. Riebisch and R. Brcina, “Optimizing design for variability using
traceability links,” in ECBS ’08: Proceedings of the 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 235–244.

[11] H. C. Li, S. Krishnamurthi, and K. Fisler, “Modular verification of open
features using three-valued model checking,” Autom. Softw. Eng., vol. 12,
no. 3, pp. 349–382, 2005.

[12] S. Krishnamurthi and K. Fisler, “Foundations of incremental aspect
model-checking,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 2,
p. 39, 2007.

[13] J. Liu, S. Basu, and R. Lutz, “Compositional model checking of software
product lines using variation point obligations,” Automated Software
Engineering, vol. 18, pp. 39–76, 2011, 10.1007/s10515-010-0075-7.
[Online]. Available: http://dx.doi.org/10.1007/s10515-010-0075-7

[14] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain
artifacts in product line engineering,” in ASE ’09: Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 269–280.

[15] K. Lauenroth, A. Metzger, and K. Pohl, “Quality assurance in the
presence of variability,” SSE, Institut fur Informatik und Wirtschaftsin-
formatik, univertitat Duisburg Essen, Tech. Rep., 2011.

[16] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in ICSE ’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering.
New York, NY, USA: ACM, 2010, pp. 335–344.

[17] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” in 33rd International
Conference on Software Engineering, ICSE 2011, May 21-28, 2011,
Waikiki, Honolulu, Hawaii, Proceedings. ACM, 2011, pp. 321–330,
acceptance rate: 14http://2011.icse-conferences.org/

[18] M. Cordy, A. Classen, G. Perrouin, P. Heymans, P.-Y. Schobbens,
and A. Legay, “Simulation relation for software product lines:
Foundations for scalable model checking (to appear),” in 34th
International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, Proceedings, June 2012, acceptance
rate: 21[Online]. Available: http://www.ifi.uzh.ch/icse2012/

[19] A. Gruler, M. Leucker, and K. D. Scheidemann, “Modeling and model
checking software product lines,” in FMOODS, ser. Lecture Notes in
Computer Science, G. Barthe and F. S. de Boer, Eds., vol. 5051.
Springer, 2008, pp. 113–131.

[20] K. G. Larsen, U. Nyman, and A. Wasowski, “Modal i/o automata for
interface and product line theories,” in ESOP, ser. Lecture Notes in
Computer Science, R. D. Nicola, Ed., vol. 4421. Springer, 2007, pp.
64–79.

[21] U. Nyman, “Modal transition systems as the basis for interface theo-
ries and product lines,” Ph.D. dissertation, PhD thesis, Department of
computer science, Aalborg University, Denmark, 2008.

[22] J.-B. Raclet, B. Caillaud, E. Badouel, A. Legay, A. Benveniste, and
R. Passerone, “Modal interfaces: Unifying interface automata and modal
specifications,” in EMSOFT, C. M. Kirsch and R. Wilhelm, Eds. ACM,
2009.

[23] A. Fantechi and S. Gnesi, “Formal modeling for product families
engineering,” in SPLC, SPLC’08, Ed. IEEE Computer Society, 2008,
pp. 193–202.

[24] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi, “Deontic logics
for modeling behavioural variability,” in VaMoS, 2009, pp. 71–76.

[25] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “A logical
framework to deal with variability.” in IFM’10, 2010, pp. 43–58.

[26] A. Gruler, M. Leucker, and K. D. Scheidemann, “Calculating and
modeling common parts of software product lines,” in SPLC, SPLC’08,
Ed. IEEE Computer Society, 2008, pp. 203–212.

[27] D. Benavides, P. Trinidad, and A. Ruiz-Corts, “Using constraint pro-
gramming to reason on feature models,” in in the seventeenth interna-
tional conference on software engineering and knowledge engineering,
2005.

[28] J.-V. Millo, S. Mohalik, and S. Ramesh, “Integrated analysis of software
product lines: A constraint based framework for consistency, liveness,
and commonness checking,” in ISEC: India Software Enginnering
Conference, 2011.

[29] T. Thum, D. Batory, and C. Kastner, “Reasoning about edits to
feature models,” in Proceedings of the 31st International Conference

on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 254–264. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070526

[30] T. Than Tun, Q. Boucher, A. Classen, A. Hubaux, and P. Heymans,
“Relating requirements and feature configurations: a systematic
approach,” in Proceedings of the 13th International Software
Product Line Conference, ser. SPLC ’09. Pittsburgh, PA, USA:
Carnegie Mellon University, 2009, pp. 201–210. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1753235.1753263

[31] R. E. Lopez-Herrejon and A. Egyed, “Detecting inconsistencies in
multi-view models with variability,” in ECMFA, ser. Lecture Notes in
Computer Science, T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier,
Eds., vol. 6138. Springer, 2010, pp. 217–232.

[32] D. S. Batory, “Feature models, grammars, and propositional formulas,”
in SPLC, ser. Lecture Notes in Computer Science, J. H. Obbink and
K. Pohl, Eds., vol. 3714. Springer, 2005, pp. 7–20.

[33] D. Benavides, S. Segura, and A. Ruiz-Corts, “Automated analysis of
feature models 20 years later: a literature review,” Information
Systems, vol. 35, no. 6, pp. –, 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.is.2010.01.001

[34] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” in Proceedings of the First Annual IEEE
Symposium on Logic in Computer Science, Cambridge, Ed., June 1986,
pp. 322–331.

[35] SPLC’08, Ed., Software Product Lines, 12th International Conference,
SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings.
IEEE Computer Society, 2008.

APPENDIX

The following presents the structure of the ProMela file
called “fsmvInputForSpin” generated from the Door lock
example presented in the paper. Algorithm 1 runs the three
following command in sequence:

1) spin -a ./fsmvInputForSpin
2) gcc pan.c -DPRINTF -o pan
3) pan -X -m10000000 -w25 -c10000 -a -n
Thanks to the “-DPRINTF” and the “-c” options, the

output of pan contains a line of comment with the val-
ues of the calibration parameters and variation points every
times the never claim is violated, such as “vp v DL ENA:
0, vp v transmission: 0, vp v configuration: 0,vp cp1: 1,
vp cp2: 0” (the explicit values associated to the integer values
are recovered from the #define statement at the begin of the
“fsmvInputForSpin” file). A line of comment is generated for
every couple of configuration which does not match.

/*The calibration parameter’s values*/
#define d_cp1_Moff 0
#define d_cp1_Auto 1
//same for cp2 values

/*The variation point’s values*/
#define r_v_DL_ENA_Enable 0
#define r_v_DL_ENA_Disable 1
//same for the other VP values

/*The Events*/
#define evt_e 0
#define evt_AllDoorsClosed 1
//...
#define evt_Unlock 7

/*The states of the design model*/

#define des_ADL_Inactive 0
//...
#define des_ADL_Done 5
#define des_error 6

/*The states of the requirement model*/
#define req_ADL_Inactive 0
//...
#define req_error 4

/*these channels are used to forward
the event in the design and requirement
from the environment*/
chan evts_req= [0] of {byte};
chan evts_des= [0] of {byte};

/*State variable*/
byte req_state;
byte des_state;

/*Initialization variables*/
byte vp_v_DL_ENA;
byte vp_v_transmission;
byte vp_v_configuration;
byte vp_cp1;
byte vp_cp2;

/*This flag is used to ensure that the
never claim is checked only after that
the environment, the design, and the
requirement have run but not in between*/
byte flag;

proctype environmentModel(){
do
::flag==0 -> flag=1;
atomic{if
::(1)-> evts_des! evt_e;

evts_req! evt_e;
//Same for every other events
fi;}
od;
};

proctype requirementModel() {
mtype currentEvent;
req_state=req_ADL_Inactive;
do
::flag==2-> evts_req?currentEvent;
if
//A case for every valid state
//As described in Section IV-A
::else -> req_state = req_error;
fi; flag=0;
od;
};

proctype designModel() {
mtype currentEvent;
des_state=des_ADL_Inactive;
do
::flag==1-> evts_des?currentEvent;
if
//A case for every valid state
//As described in Section IV-A
::else -> des_state = des_error;
fi; flag=2;
od;
};

/*never claim definition*/
never {
TO_init:
if
::(flag==0
&& req_state==req_error
&& des_state!=des_error)
->//print the configuration

goto accept_S9
::(1) -> goto TO_init

fi;

accept_S9:
if
::(1) -> goto TO_init

fi;
}

/*The initialization sequence*/
init{
flag=0;
atomic{ if
//All the possible configurations
//of the requirement
//are listed and selected randomly
fi;}

atomic{
if
//All the possible configurations
//of the design
//are listed and selected randomly
fi;}

atomic
{
run environmentModel();
run requirementModel();
run designModel();
}

}

