Safe CCSL specifications and Marked Graphs

Frédéric Mallet
Univ. Nice Sophia Antipolis,
CNRS, I3S, UMR 7271, INRIA,
06900 Sophia Antipolis, France
Frederic.Mallet@unice.fr

Jean-Vivien Millo
Univ. Nice Sophia Antipolis,
CNRS, I3S, UMR 7271, INRIA,
06900 Sophia Antipolis, France

Robert de Simone
INRIA Sophia Antipolis Méditerranée,
06900 Sophia Antipolis, France

Abstract—The Clock Constraint Specification Language (CCSL) proposes a rich polychronous time model dedicated to the specification of constraints on logical clocks: i.e., sequences of event occurrences. A priori independent clocks are progressively constrained through a set of clock operators that define when an event may occur or not. These operators can be described as labeled transition systems that can potentially have an infinite number of states. A CCSL specification can be scheduled by performing the synchronized product of the transition systems for each operator. Even when some of the composed transition systems are infinite, the number of reachable states in the product may still be finite: the specification is safe. The purpose of this paper is to propose a sufficient condition to detect that the product is actually safe. This is done by abstracting each CCSL constraint (relation and expression) as a marked graph. Detecting that some specific places, called counters, in the resulting marked graph are safe is sufficient to guarantee that the composition is safe.

I. INTRODUCTION

The Clock Constraint Specification Language (CCSL) [1] was initially introduced as a companion language of the UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE). Its purpose is to provide a language to specify functional and non-functional requirements on top of UML models. It relies on a logical notion of time that can be uniformly used to describe causal constraints in the application part of a system, physical and temporal dependencies in execution platforms as well as new constraints coming from the allocation of the application onto the execution platform or from external requirements from the designers.

The semantics of CCSL constraints was defined formally [2] to support exhaustive analyses of CCSL specifications. Until now, most work [3], [4], [5] on the exhaustive verification of properties on a CCSL specification was assuming a bounded subset of CCSL operators. Indeed, having a finite state-space is required to do standard state explorations. Assuming bounded primitive constraints is an easy way to guarantee that the whole specification is bounded.

In [6], we have given a state-based representation of CCSL constraints and we have shown that even though the primitive constraints were unbounded, the composition of these primitive constraints could lead to a system where only a finite number of states were accessible. In this paper, we define a notion of safety for CCSL and establish a condition to decide on whether a CCSL specification is safe. Having such a condition is an important and necessary step to allow co-design, code generation and model-checking.

We propose an abstraction of a CCSL specification as a Marked Graph (MG) and we use classical results on marked graphs to decide on the safety of a CCSL specification. The contributions consist in formally defining a safety condition for a CCSL specification and proposing a transformation into marked graphs to check this condition. A simple algorithm is given to perform the analysis.

Section II introduces the considered CCSL constraints and presents their state-based semantics. Section III defines formally the notion of safety for a CCSL specification. It also introduces a clock causality graph to capture the causality relations extracted from each CCSL constraint. Section IV recalls the definition of a MG, its execution semantics and some useful classical results. Then, Section V gives the rules to transform the clock causality graph in a MG and shows the semantic equivalence between CCSL causality and a place in MG. Finally, it gives a sufficient condition to decide whether a CCSL specification is bounded and provides an algorithm to check this condition. Section VI discusses a simple example and Section VII browses the related works. Finally Section VIII concludes with some views on possible extensions.

II. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

This section briefly introduces the logical time model [1] of MARTE and the Clock Constraint Specification Language (CCSL). A technical report [2] describes the syntax and the semantics of a kernel set of CCSL constraints. We only describe the constraints that are used for the discussion.

The notion of multiform logical time has first been used in the theory of Synchronous languages [7] and its polychronous extensions [8]. The use of tagged systems to capture and compare models of computations was advocated by [9]. CCSL provides a concrete syntax to make the polychronous clocks first-class citizens of UML-like models.

A. Logical time model

Clocks in CCSL are used to measure dates of occurrences of events in a system. Logical clocks replace physical dates by a logical sequencing. We never presume that clocks or events are described relative to a global physical time but we rather consider that clocks are independent of each other.

Definition 1 (Logical clock): A clock c belongs to a set of propositions C.

Clocks are assumed to be independent of each other. During the execution of a system, clocks tick according to occurrences of related events. The schedule captures what happens during one particular execution.
Definition 2 (Schedule): A schedule is defined as a function \(\text{Sched} : \mathbb{N}_{\geq 0} \rightarrow 2^C \). Given an execution step \(s \in \mathbb{N}_{\geq 0} \), and a schedule \(\sigma \in \text{Sched} \), \(\sigma(s) \) denotes the set of clocks that tick at step \(s \).

For a given schedule, it is useful to know the relative advance of clocks, i.e., their configuration.

Definition 3 (Clock configuration): For a given schedule \(\sigma \), the configuration is defined as \(\chi_\sigma : C \times \mathbb{N} \rightarrow \mathbb{N} \). \(\forall c \in C \), it is defined recursively as:

- \(\chi_\sigma(c, 0) = 0 \), the initial configuration,
- \(\forall n > 0, \chi_\sigma(c, n) = \chi_\sigma(c, n-1) + 1 \) if \(c \notin \sigma(n) \),
- \(\forall n > 0, \chi_\sigma(c, n) = \chi_\sigma(c, n-1) + 1 \) if \(c \in \sigma(n) \).

For a clock \(c \in C \), and a step \(n \in \mathbb{N} \), \(\chi_\sigma(c, n) \) denotes the number of times the clock \(c \) has ticked at step \(n \) for the given schedule \(\sigma \).

The Clock Constraint Specification Language is used to specify a set of valid schedules. Since a CCSL specification does not assume a global time, there is usually an infinite number of schedules that satisfy a given specification. If there is no satisfying schedule, then the specification is ill-formed.

Definition 4 (CCSL specification): A CCSL specification \(\text{Spec} \) is a tuple \((C, \text{Rel}, \text{Def})\), where \(C \) is a set of clocks, \(\text{Rel} \) and \(\text{Def} \) are two disjoint sets collectively called CCSL constraints, \(\text{Rel} \) is a set of clock relations whereas \(\text{Def} \) is a set of clock definitions.

1) Clock relations:

Definition 5 (Primitive CCSL relations): We define the set of primitive relation operators: \(\text{RelOp} = \{\oplus, \#, \prec, \supsets\} \).

A Clock relation is \(\text{Rel} : C \times \text{RelOp} \times C \). Let \(\text{left} : \text{Rel} \rightarrow C \) be the function that gives the left clock involved in a relation. Let \(\text{right} : \text{Rel} \rightarrow C \) be the function that gives the right clock involved in a relation. Let \(\text{op} : \text{Rel} \rightarrow \text{RelOp} \) be the function that gives the operator involved in a relation.

The first two relations are synchronous. They force clocks to tick or not to tick depending on whether another clock ticks or not. Subclocking prevents a subclock \(c_1 \) from ticking when its super clock \(c_2 \) does not tick. In other words, \(c_1 \) is a subclock of \(c_2 \) for a given schedule iff \(c_1 \) only ticks when \(c_2 \) ticks. Exclusion prevents two clocks from ticking simultaneously. Synchrony forces two clocks to tick always simultaneously. Their satisfaction rules are given below.

Definition 6 (Synchronous relations): The satisfaction rules for the synchronous constraints with regards to a given schedule \(\sigma \) are:

\[
\sigma \models_{\text{ccsl}} c_1 \prec c_2 \text{ iff } \forall n \in \mathbb{N}_{\geq 0}, \quad (\text{Subclocking})
\]

\[
c_1 \in \sigma(n) \implies c_2 \in \sigma(n) \quad (1a)
\]

\[
\sigma \models_{\text{ccsl}} c_1 \# c_2 \text{ iff } \forall n \in \mathbb{N}_{\geq 0}, \quad (\text{Exclusion})
\]

\[
c_1 \notin \sigma(n) \lor c_2 \notin \sigma(n) \quad (1b)
\]

Note that by definition, Subclocking is a pre-order on \(C \), i.e., it is reflexive and transitive.

The latter two relations are asynchronous. They forbid clocks to tick depending on what has happened on other clocks in the earlier steps. Causality requires a clock \(c_1 \) to be always in advance on another clock \(c_2 \) but allows the case where the two clocks tick synchronously. Precedence is a stronger form that forbids pure synchrony and requires \(c_1 \) to be strictly in advance on \(c_2 \).

Definition 7 (Asynchronous relations): The satisfaction rules for the asynchronous constraints with regards to a given schedule \(\sigma \) are:

\[
\sigma \models_{\text{ccsl}} c_1 \prec c_2 \text{ iff } \forall n \in \mathbb{N}, \quad (\text{Causality})
\]

\[
\chi_\sigma(c_1, n) - \chi_\sigma(c_2, n) \geq 0 \quad (2a)
\]

\[
\sigma \models_{\text{ccsl}} c_1 \# c_2 \text{ iff } \forall n \in \mathbb{N}, \quad (\text{Precedence})
\]

\[
(\chi_\sigma(c_1, n) = \chi_\sigma(c_2, n)) \implies c_2 \notin \sigma(n+1) \quad (2b)
\]

Note: Causality is another pre-order on \(C \).

Proposition 8 (Precedence implies causality): The Precedence is a stronger form of causality:

\[
\sigma \models_{\text{ccsl}} c_1 \prec c_2 \implies \sigma \models_{\text{ccsl}} c_1 \# c_2
\]

The proof is given in [10].

2) Clock definitions: A clock definition is of the form \(c \triangleq e \) where \(c \in C \) and \(e \) is a clock expression. We consider two kinds of expressions the binary expressions and the unary expressions.

Definition 9 (Primitive CCSL binary expressions): The primitive binary expressions are \(\text{BinExpr} : C \times \text{ExprOp} \times C \), where \(\text{ExprOp} = \{\oplus, \#, \prec, \supsets\} \).

Let \(\text{first} : \text{BinExpr} \rightarrow C \) be the function that gives the first clock involved in a binary expression.

Let \(\text{second} : \text{BinExpr} \rightarrow C \) be the function that gives the second clock involved in a binary expression.

Let \(\text{op} : \text{BinExpr} \rightarrow \text{ExprOp} \) be the function that gives the operator involved in a binary expression.

The first two clock expressions are based on Subclocking. Union builds the slowest super clock of two given clocks. Intersection builds the fastest clock that is a subclock of two given clocks.

Definition 10 (Union and intersection): The satisfaction rules of Union and Intersection for a given schedule \(\sigma \) are:

\[
\sigma \models_{\text{ccsl}} u \triangleq c_1 \oplus c_2 \text{ iff } \forall n \in \mathbb{N}_{\geq 0}, \quad (\text{Union})
\]

\[
u \in \sigma(n) \iff c_1 \in \sigma(n) \lor c_2 \in \sigma(n) \quad (3a)
\]

\[
\sigma \models_{\text{ccsl}} i \triangleq c_1 \# c_2 \text{ iff } \forall n \in \mathbb{N}_{\geq 0}, \quad (\text{Intersection})
\]

\[
i \in \sigma(n) \iff c_1 \in \sigma(n) \land c_2 \in \sigma(n) \quad (3b)
\]

The following clock expressions are based on Causality. Infimum builds the slowest clock that is faster than two given clocks. Supremum builds the fastest clock that is slower than two given clocks.

Definition 11 (Infimum and Supremum): The satisfaction rules of Infimum and Supremum for a given schedule \(\sigma \) are:

\[
\sigma \models_{\text{ccsl}} \inf \triangleq c_1 \land c_2 \text{ iff } \forall n \in \mathbb{N}, \quad (\text{Infimum})
\]

\[
\chi_\sigma(\inf, n) = \max(\chi_\sigma(c_1, n), \chi_\sigma(c_2, n)) \quad (4a)
\]

\[
\sigma \models_{\text{ccsl}} \sup \triangleq c_1 \lor c_2 \text{ iff } \forall n \in \mathbb{N}, \quad (\text{Supremum})
\]

\[
\chi_\sigma(\sup, n) = \min(\chi_\sigma(c_1, n), \chi_\sigma(c_2, n)) \quad (4b)
\]
All the unary expressions are bounded, we only consider here one of them, the Delay: \(c := c \land \delta \), where \(d \in \mathbb{N} \). This expression models a pure delay. It is used to produce a clock that is always a given number of ticks \(d \) late compared to its original clock. \(d \) is a positive integer.

Definition 12 (Delay): The satisfaction rule of Delay for a given schedule \(\sigma \) and for a given natural number \(d \in \mathbb{N} \) is:

\[
\sigma =_{ccsl} del \triangleq c \land \delta \text{ iff } \forall n \in \mathbb{N}, \\
\chi_\sigma(del, n) = \max(\chi_\sigma(c, n) - d, 0)
\] (5)

To help the reader understand the semantics of the expressions, Figure 1 gives an example of schedule \(\sigma \) that satisfies several expressions. Check marks represent the steps where a given clock ticks.

<table>
<thead>
<tr>
<th>step</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(c_2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(u \triangleq c_1 + c_2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(i \triangleq c_1 \land c_2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(inf \triangleq c_1 \land c_2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(sup \triangleq c_1 \lor c_2)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(d \triangleq c_2 \land \delta)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Fig. 1. An example of schedule \(\sigma \)

B. State-based representation of CCSL constraints

The time model gives a base to reason on clocks. CCSL constraints are predefined patterns often encountered in system specifications. The semantics of those constraints can be defined using predicate logics (as in the previous subsection), as a Structural Operational Semantics (SOS) or equivalently as transition systems [10]. The latter is used to support verification of properties on CCSL specifications through model-checking.

The encoding as transition systems shows that some constraints can be encoded using finite-state transition systems. Others require the use of transition systems with an infinite number of states. A CCSL constraint that can be represented by a transition system with a finite number of state is called a bounded constraint. Other constraints are unbounded.

1) **Relations:** Subclocking (Eq. 1a, Figure 2(a)) and exclusion (Eq. 1b, Figure 2(b)) are bounded constraints. They only impose conditions on what can happen during the current step, without depending on what has happened in the previous steps, i.e., they are stateless. Transitions are labeled with a tuple in \(2^\mathbb{N} \). The initial state is drawn with a double line. In Figure 2(a), for a given schedule \(\sigma \) and \(\forall s \in \mathbb{N}_{>0} \), there are three solutions:

- \(\langle c_1, c_2 \rangle \): \(c_1 \) and \(c_2 \) tick together, \(c_1 \in \sigma(s) \land c_2 \in \sigma(s) \);
- \(\langle c_2 \rangle \): \(c_2 \) ticks alone, \(c_1 \notin \sigma(s) \land c_2 \in \sigma(s) \);
- \(\emptyset \): none of the clocks tick.

On the contrary, Precedence (Eq. 2b) and Causality (Eq. 2a, Figure 3) are unbounded constraints. Those constraints require counting the difference of occurrences between the two clocks, i.e., \(\delta = \chi_\sigma(c_1, n) - \chi_\sigma(c_2, n) \). The definitions of those constraints impose \(\delta \) to be positive or null, but \(\delta \) can be arbitrarily big. Each state encodes a different value of \(\delta \). Since \(\delta \) can take any value in \(\mathbb{N} \), then there are an infinite number of states.

2) **Expressions:** Union (Eq. 3a, Figure 4(a)), Intersection (Eq. 3b, Figure 4(b)) and Delay (Eq. 5) are bounded expressions.

On the contrary, Infimum (Eq. 4a, Figure 5) and Supremum (Eq. 4b) are unbounded CCSL expressions. Here again, we need an unbounded integer counter to count \(\delta = \chi_\sigma(c_1, n) - \chi_\sigma(c_2, n) \). The main difference with Precedence here is that \(\delta \) can be positive or negative \(\delta \in \mathbb{Z} \), but it is still unbounded.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Example of schedule \(\sigma \).}
\end{figure}
III. COMPOSITION AND SAFETY ISSUES

The previous section has given the semantics of each constraint. We consider now a whole specification and we consider more closely the notions of boundedness and safety. We also finally state the problem and propose a solution.

A. Composition

Definition 13 (CCSL specification satisfaction): A schedule \(\sigma \) satisfies a CCSL specification \(SPEC \), if it satisfies all of its constraints: \(\sigma \models_{ccsl} SPEC \iff (\forall r \in Rel, \sigma \models_{ccsl} rel) \land (\forall def \in Def, \sigma \models_{ccsl} def) \)

Definition 14 (Bounded CCSL relations): For a given CCSL specification \(SPEC \), a relation \(r \in Rel \) is bounded iff \((\sigma \models_{ccsl} SPEC) \implies (\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, |\chi(\text{left}(r), n) - \chi(\text{right}(r), n)| \leq m) \).

Note that, by definition of Causality and because of Proposition 8 we always have \(op(r) \in \{<, \leq, =\} \implies \forall n \in \mathbb{N}, \chi(\text{left}(r), n) - \chi(\text{right}(r), n) \geq 0 \), so we do not have to worry about finding a lower bound.

Definition 15 (Bounded CCSL expressions): For a given CCSL specification \(SPEC \), a binary expression \(e \in \text{BinExpr} \) is bounded iff \((\sigma \models_{ccsl} SPEC) \implies (\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, |\chi(e, n)| \leq m) \). Unary expressions are always bounded.

In [6], we have shown that the behavior of a CCSL specification was captured by the synchronized product of the transition systems for each constraint. Obviously, when all the composed transition systems are finite, then the result is necessarily finite. However, the result can also be finite when some of the composed transition systems have an infinite number of states. This is because we only consider the states that are reachable. So safety amounts to having only a finite number of states in the product reachable from the initial state. This is equivalent to being able to bound the counters used in unbounded constraints.

Let us illustrate that on a simple example. Consider, for instance the following CCSL specification: \((c_1 < c_2) \land (c_1' = c_1 < 1) \land (c_2 < c_1') \). In this specification, the second constraint (Delay) is bounded, but the two others are unbounded. However, the result is still considered to be safe since there is only a finite number of reachable states in the synchronized product as shown in Figure 6. This comes from the fact that counters used in the two Precedences are bounded by the Delay of the second constraint. This particular composition pattern is frequently used and is called Alternation.

Definition 16 (Safe CCSL specification): A CCSL specification is safe iff \(\forall \sigma, \sigma \models_{ccsl} SPEC \):

- all the relations are bounded: \(\forall r \in Rel, r \text{ is bounded} \)
- all the binary expressions within a clock definition are bounded: \(\forall e \in \text{BinExpr}, e \text{ is bounded} \)

Definition 17 (Bounded precedence): We define a new composite CCSL constraint called Bounded precedence by the following satisfaction rule \((n \in \mathbb{N}) \):

\[
\sigma \models_{ccsl} c_1 \sim_n c_2 \text{ iff } \sigma \models_{ccsl} c_1 < c_2 \\
\land \sigma \models_{ccsl} c_1' = c_1 \text{ } \land \text{ } n \\
\land \sigma \models_{ccsl} c_2 < c_1'
\]

We call alternation the case where \(n = 1 \):

\[
\sigma \models_{ccsl} c_1 \sim_1 c_2 \equiv \sigma \models_{ccsl} c_1 < c_2 \text{ (Alternation)}
\]

Proposition 18 (The bounded precedence is safe): Let \(c \equiv c_1 < c_2 \), constraint \(c \) is safe.

Proof of Proposition 18: Let us take a \(\sigma \) such that \(\sigma \models_{ccsl} c_1 < c_2 \). The first constraint gives \(\forall n \in \mathbb{N}, \chi(c_1(n)) - \chi(c_2(n)) \geq 0 \). The third one gives \(\forall n \in \mathbb{N}, \chi(c_1(n)) - \chi(c_1'(n)) \leq 0 \), so \(\forall n \in \mathbb{N}, \chi(c_1(n)) - \chi(c_1'(n)) \leq 0 \).

For the specification to be bounded, we need to show that \(\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, |\chi(c_1(n)) - \chi(c_1'(n))| \leq m \).

If \(\chi(c_1(n)) \leq d \), then Eq. 5 gives \(\chi(c_1'(n)) = 0 \) and therefore \(\chi(c_1(n)) - \chi(c_1'(n)) \leq d \).

If \(\chi(c_1(n)) \geq d \), then Eq. 5 gives \(\chi(c_1'(n)) = \chi(c_1(n)) - d \) and also \(\chi(c_1(n)) - \chi(c_1'(n)) \leq d \).

Here, the axiomatic definitions of CCSL constraints give us the result on safety. What we propose in the following is a sufficient condition and an algorithm to decide that a given CCSL specification is safe.

B. Safety issues

We consider an abstraction of the CCSL specification that we call a causality clock graph. Indeed, Causality is the foundational construct that introduces unbounded integers in a CCSL specification. Then, we use this abstraction to show that counters included in Precedence, Causality, Infimum and Supremum constraints are bounded. For that purpose, we consider the causal relations includes in a CCSL specification, but we also consider causal relations induced by other constraints. The causality clock graph captures all the causal relations, whether directly specified or induced. The remainder of this subsection discusses the induced causal relations.

Definition 19 (Causality clock graph): A causality clock graph (CCG) is a directed graph \(D = (C, A, \Delta) \). \(C \) is a set of nodes denoting clocks. \(A \subset C \times C \) is a set of arcs (directed edges). \(\Delta \subset C \times C \) is a set of counter-arcs between two clocks.

In a CCG, an arc \(a = (c_1, c_2) \) is directed from \(c_1 \) to \(c_2 \) and denotes a causality \(c_1 < c_2 \). A counter-arc \(\delta = (c_1, c_2) \) is used to identify a constraint that would generate an infinite graph.
number of states if left unbounded. To each counter-arc \(\delta = (c_1, c_2) \), we associate a function \(\delta^2_{c_1} \):
\[
\delta^2_{c_1} : \mathbb{N} \to \mathbb{N}
\]
\[
n \mapsto \chi(n) - \chi(c_2, n)
\]

The safety analysis must show that for each counter-arc, for each schedule \(\sigma \), \(\exists m \in \mathbb{N} \), \(\forall n \in \mathbb{N}, |\delta^2_{c_1}(n)| \leq m \).

Definition 20 (Complete causality clock graph): Given a CCSL specification \(\text{SPEC} \), a causality clock graph \(D_{\text{SPEC}} \) is complete with regards to \(\text{SPEC} \) when all the causal relations implied by SPEC are captured in the graph and only those relations. \(\forall \sigma, \sigma \models_{ccsl} \text{SPEC}, \forall (c_1, c_2) \in C \times C, (\exists d \in \mathbb{N}, \forall n \in \mathbb{N}, \delta^2_{c_1}(n) \geq -d \iff (c_1, c_2) \text{ is an arc in } D_{\text{SPEC}}) \)

The notion of completeness is necessary to show that no causal relation has been ‘forgotten’ in the graph. It means that as soon as a constraint implies that the counter between two clocks can be bounded (either with a lower or an upper bound) then (and only then) there should be a counter-arc in the causality clock graph. Indeed, if arcs are missing, then the safety analysis might conclude that a graph is not safe, while a CCSL specification is actually safe.

C. Building the causality clock graph

Obviously, the constraint \(c_1 \ll c_2 \) always induces a lower bound. For the CCSL specification to be bounded, we need to establish an upper bound. An arc from \(c_1 \) to \(c_2 \) denotes that we have a lower bound \((\forall n \in \mathbb{N}, \delta^2_{c_1}(n) \geq 0) \). A counter-arc between \(c_1 \) and \(c_2 \) denotes that we need to establish the upper bound. More formally, for a given CCSL specification SPEC, we build the causality clock graph \(D_{\text{SPEC}} = (C, A, \Delta) \) such that \(\forall r \in \text{Rel}, op(r) = \ll \implies (\text{left}(r), \text{right}(r)) \in A \land (\text{left}(r), \text{right}(r)) \in \Delta \).

Building arcs only for these relations would lead to an incomplete graph. Other bounds are indeed indirectly induced by most CCSL constraints. The first obvious example is given by Proposition 9. Hence, every Precedence also leads to an arc and a counter-arc in the CCG. \(\forall r \in \text{Rel}, op(r) = \ll \implies (\text{left}(r), \text{right}(r)) \in A \land (\text{left}(r), \text{right}(r)) \in \Delta \).

In the remainder of this section, the other implied causality relations are discussed. All the proofs are available in the Appendix.

The first family of implications comes from the relationship between Subclocking and Causality.

Proposition 21 (Subclocking implies causality): When \(c_1 \) is a subclock of \(c_2 \) then \(c_2 \) is faster than \(c_1 \):
\[
\sigma \models_{ccsl} c_1 \ll c_2 \implies \sigma \models_{ccsl} c_2 \ll c_1
\]

From Proposition 21, we deduce that we need to build an arc in the CCG from \(c_2 \) to \(c_1 \) every time we find a constraint of the form \(c_1 \ll c_2 \). However, because this constraint is bounded (see Definition 14), we do not build any counter-arc in that case.

All the expressions based on Subclocking, i.e., Union and Intersection, also imply some causality relations. Here again, the constraints are bounded relations and consequently, no counter-arc is added to the CCG. Let us show these implications.

Proposition 22 (Union and subclocking): A clock is always a subclock of the union of itself with any other clock:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad \sigma \models_{ccsl} c_1 \ll \sigma \models_{ccsl} c_2
\]

Corollary 23 (Union and causality): The union of two clocks is faster than both clocks:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad (\sigma \models_{ccsl} c_1 \ll c_2)
\]

The corollary comes directly from Propositions 21 and 22.

Proposition 24 (Intersection and subclocking): The intersection of two clocks is a subclock of both clocks:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad (\sigma \models_{ccsl} c_1 \ll c_2) \land (\sigma \models_{ccsl} c_1 \ll c_2)
\]

Corollary 25 (Intersection and causality): The intersection of two clocks is always slower than both clocks:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad (\sigma \models_{ccsl} c_1 \ll c_2)
\]

To be complete, one should also show that Union (resp. Intersection) does not imply any causality relations between the clocks themselves but only between the union clock \(u \) (resp. the intersection clock \(i \)) and the clocks \(c_1 \) and \(c_2 \). To do so, consider a schedule, where \(c_1 \) would tick alone. None of the binary relations can prevent \(c_1 \) from ticking and thus, the distance between \(c_1 \) and \(c_2 \) can grow infinitely large, thus preventing from having an upper bound. If now, we consider a schedule were \(c_2 \) ticks alone and \(c_1 \) never ticks, then such a schedule does not violate an union or intersection constraint and still prevents us from having a lower bound.

The next step is to determine what causality relations are implied by expressions Infimum and Supremum.

Proposition 26 (Infimum and causality): The infimum of two clocks is always faster than both clocks:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad (\sigma \models_{ccsl} c_1 \ll c_2) \land (\sigma \models_{ccsl} c_1 \ll c_2)
\]

Proposition 27 (Supremum and causality): The supremum of two clocks is always slower than both clocks:
\[
\sigma \models_{ccsl} c_1 \ll c_2 \quad \Rightarrow \quad (\sigma \models_{ccsl} c_1 \ll c_2)
\]

The same reasoning as for the Union and Intersection can be used again to show that there is no causality relation between \(c_1 \) and \(c_2 \) imposed by either Infimum or Supremum. However, these binary expressions are unbounded (see Definition 15), then we need to add a counter-arc \((c_1, c_2) \) in the CCG (see Figure 7). We know that \(inf \) is faster than both \(c_1 \) and \(c_2 \) but we need to bound the counter \(\delta^2_{c_1} \) between \(c_1 \) and \(c_2 \). Similarly, we know that both \(c_1 \) and \(c_2 \) are faster than \(sup \).

The last step is to consider the unary expression Delay.
Proposition 28 (Delay and causality): A clock is always faster than any clock that is delayed from it: \(\forall d \in \mathbb{N}, \sigma \models_{ccsl} del \triangleq c \overset{d}{\Rightarrow} \sigma \Leftrightarrow 0 \geq \delta_{del} \geq -d \)

Proof of Proposition 28. If \(\chi_{\sigma}(c,n) \leq d \) then Eq. 5 \(\Rightarrow \chi_{\sigma}(del,n) = 0 \). Otherwise, \(\chi_{\sigma}(del,n) = \chi_{\sigma}(c,n) - d \).

In both cases, \(0 \geq \delta_{del} \geq -d \).

From Proposition 28 we can deduce that we have both a lower and an upper bound, therefore we must add two arcs: one from \(c \) to \(del \) and one from \(del \) to \(c \). Since the constraint is bounded, no counter-arc must be added in the CCG.

In the following section, we use the complete causality graph to decide whether the CCSSL specification is safe.

IV. Marked Graphs

A Marked Graph (MG) is a graph where vertices can have two types: transitions and places. A place can store tokens. Each place has exactly one incoming and one outgoing arc. All places are connected via undirected arcs.

A. Structure

Definition 29 (Marked Graph): A marked graph is a structure \(G = \langle T, P, F \rangle \) where

- \(T \) is a set of transitions;
- \(P \) is a set of places. \(T \cap P = \emptyset \);
- \(F \subseteq (T \times P) \cup (P \times T) \) is a set of arcs. If \(t \in T \) and \(p \in P \), \((t,p)\) and \((p,t)\) are two arcs resp. from \(t \) to \(p \) and from \(p \) to \(t \);
- Each place has exactly one incoming and one outgoing arc: \(\forall p \in P, |\{(t,p) \mid \forall t \in T\}| = 1 \).

The constraint on the number of place inputs and outputs guarantees that a token can be used by only one transition. Consequently, the MG is said to be conflict free or deterministic. Figure 8 presents a MG with 4 transitions (rectangles) and 5 places (ovals).

![Fig. 8. An example of a MG.](image)

Notation 30 (Predecessor, successor): Let \(G \) be a MG, \(t \in T \) and \(p \in P \). We note:

- \(^\star t \) is the preset of \(t \), \(^\star t = \{ p \mid (p,t) \in F \} \);
- \(^\star t \) is the postset of \(t \), \(^\star t = \{ p \mid (t,p) \in F \} \);
- \(^\star p \) is the transition entering \(p \), \(^\star p = t \iff (t,p) \in F \);
- \(^\star p \) is the transition exiting \(p \), \(^\star p = t \iff (p,t) \in F \).

A MG is connected if there exists a path, in the underlying undirected graph, relating any pair of vertices. When it is not connected, every part is called a partition. It is strongly connected if there exists a path, in the MG itself, relating any pair of vertices. A strongly connected component (SCC) of a MG is a sub-graph that is strongly connected (a sub-graph of a MG is a composed of a subset of \(T \), a subset of \(P \), and a subset of \(F \)); A cycle is a path from a transition to itself. It is called elementary if all the transitions of the cycle are different. A Direct Acyclic Component (DAC) is a sub-graph that does not contain any cycle.

B. Execution semantics

Definition 31 (Marking): The marking of a MG is the number of tokens in the places. \(M : P \rightarrow \mathbb{N} \) is a marking. \(M_0 \) usually denotes the initial marking.

We define an execution semantics of a MG based on a logical time with a synchronous semantics. At the instant 0, the MG is in its initial marking. Then, an execution step leads to another marking at instant 1 and so on. During a single execution step, several firable transitions can be fired simultaneously (synchronously) but each transition can be fired only once.

Definition 32 (Firable transition at a marking \(M \) in a MG): In a MG \(G \), a transition \(t \in T \) is firable at a marking \(M \) if \(\forall p \in ^\star t, M(p) > 0 \). A source is always firable. \(F_M \) is the set of firable transitions at a marking \(M \).

Definition 33 (Execution model of a MG): Let \(G \) be a MG and \(M \) its current marking. An execution step is a transition relation from \(M \) to \(M' \), denoted \(M \overset{FT}{\rightarrow} M' \) with \(FT \subseteq F_M \), \(\forall p \in P, M'(p) = M(p) + FT^\star(p) - FT(p^\star) \).

An execution (Exec) of a MG is a finite or infinite sequence of execution steps: \(Exec = M_0 \overset{FT_1}{\rightarrow} M_1 \overset{FT_2}{\rightarrow} M_2 \overset{FT_3}{\rightarrow} \cdots \overset{FT_{t}}{\rightarrow} M_t \cdots \). Where \(FT_t \subseteq F_{M_{t-1}} \).

Definition 34 (Scheduling and schedule): Let \(G \) be a MG with an execution Exec. Let \(t \in T \) be a transition of \(G \). The schedule of \(t \) is the binary word relating the activity of \(t \): \(Sched(t,i) = FT_1(t), FT_2(t) \cdots FT_t(t) \). In case of infinite execution, \(Sched(t,\infty) \) is noted \(Sched(t) \).

The scheduling of \(G \) for an execution Exec is the mapping \(t \rightarrow Sched(t) \mid \forall t \in T \).

The successive steps of an execution can be deduced from its scheduling. Consequently, a scheduling defines an execution and vice versa.

C. Classical results

Definition 35 (Liveness): A MG is live if there exists an execution where every transition is fired infinitely often.

F. Commoner et al. [11] show that the number of tokens on a cycle remains constant through execution. They deduce a MG is live iff all its cycles contain at least one token. Moreover, the maximum number of tokens in a place is bounded by the number of tokens in the cycle in which the place belongs. Thus every place of a SCC is bounded.
As a corollary, J. Carlier and P. Chrétienne [12] prove that the relative execution rates of two transitions from the same SCC is bounded. Let \(t_1 \) and \(t_2 \) be two transitions from the same SCC, at some point during the execution, \(t_1 \) can execute more than \(t_2 \) but eventually \(t_1 \) will be stuck until \(t_2 \) catches up.

Property 36 (Bounded relative execution rate): Let \(G \) be a MG that contains at least one SCC and \(\text{Exec} \) one execution of \(G \). \(t_1 \) and \(t_2 \) are two transitions from the same SCC. \(\exists n_0 \in \mathbb{N} \) such that:
\[
\forall i \in \mathbb{N}, -n_0 \leq |\text{Sched}(t_1, i)| - |\text{Sched}(t_2, i)| \leq n_0
\]
where \(|u|_1 \) returns the number of 1 in the binary word \(u \).

V. DETECTING SAFE CCSL SPECIFICATIONS

The purpose of this section is to present rules to transform a CCSL specification into a Marked-Graph (MG) and express a sufficient condition on the MG that implies the safety of the original specification. We present the transformation rules and we show that the exact semantics of a Causality relation in CCSL (\(\leq \)) is captured by a place in MG. Then, we explain the condition to declare a CCSL specification safe and how classical algorithms from graph theory allows for automating the analysis.

A. From CCSL to MG

Definition 37 (Transformation from CCSL to MG): Let \(\langle C, A, \Delta \rangle \) be the clock causality graph extracted from a CCSL specification where \(C \) is a set of clocks and \(A \) be the set of CCSL causality relations that can be derived from all the relations and expressions in the original CCSL specification (as it is presented in Section III). \(\Delta \) is the list of \(\delta \) counter-arcs. A CCSL causality relation \(a \in A \) is modeled as an element of \(C \times C \) such as \(c_1 \leq c_2 \) gives \(a = (c_1, c_2) \) where \(c_1, c_2 \in C \), \(a \in A \). Similarly, a \(\delta \) counter is modeled as a pair \((c_1, c_2) \in C \times C \).

The CCSL specification \(\langle C, A, \Delta \rangle \) is transformed as follows. Let \(G \) be a MG with \(G = \langle C, P, F \rangle \) where
- \(C = C \): one transition for each clock;
- \(P = A \): one place for each arc;
- \(\forall p \in P \) where \(p = (c_1, c_2) \Leftrightarrow (c_1, p) \in F \) and \((p, c_2) \in F \).

The MG presented in Figure 8 is the MG transformation of the following CCSL specification:
\[
B \parallel C \mid U \cong A \parallel B \mid U \parallel C
\]
(6)

The first constraint leads to a place between \(B \) and \(C \). \(U \) is the clock representing the union \(\langle A \parallel B \rangle \). The alternation is translated in the two places from \(U \) to \(C \) and vice-versa (see Proposition 18). The two last places are derived from the definition of union expression (see Proposition 23). Figure 12 shows the corresponding clock causality graph.

According to the execution semantics of a MG, a transition is fireable when every incoming place holds at least a token. This reflects the fact that a clock can tick only when the causality constraints are satisfied. Then the transition produces one token in every place in output of the transition. Similarly, when a clock ticks, it releases the causality constraints for which it is the source.

Causality \((c_1 \leq c_2) \) is encoded as \(\forall n \in \mathbb{N}, \delta^{c_2}_c (n) \geq 0 \) (see Proposition 23). Definition 27 transforms each Causality into a place \(p \) from transition \(c_1 \to c_2 \). Initially, \(M_0 (p) = 0 \) \((\delta^{c_2}_c (0) = 0 \) and \(c_2 \) is not fireable. \(c_1 \) can tick any time and if it ticks \(n \) times, it produces \(n \) tokens in \(p \) and \(c_2 \) can tick no more than \(n \) times because a marking is never negative. So the semantics of Causality is preserved and \(\forall n \in \mathbb{N}, M_n (p) = \delta^{c_2}_c (n) \).

B. Boundedness

In a SCC of a MG, every transition indirectly depends upon every other transition. The relative execution rate of any two transitions is bounded (Property 36). We deduce that for a given \(\delta^{c_2}_c \in \Delta \), \(c_1 \) and \(c_2 \) belongs to the same SCC if and only if \(\delta^{c_2}_c \) is bounded. Consequently, the original CCSL specification that is captured by the SCC can be expressed as a finite transition system.

Concerning Figure 8, the CCSL union expression has a state based semantics composed of only one state. So the addition of this expression to an existing specification does not turn it into unbounded if it was bounded. However, the relation \(B \leq C \) introduces a \(\delta^{c_2}_c \) counter but this counter is bounded since \(B \) and \(C \) belongs to the same SCC composed of the transition \(B, C, \) and \(U \). One should also note that the place between \(U \) and \(A \) is unbounded in the usual sense of MG, i.e., it exists an execution where the number of tokens in that place goes to infinity. However, there is no \(\delta^{c_2}_c \) counter-arc and so the original CCSL specification remains bounded.

Theorem 38 (Safe CCSL specification): Let \(\langle C, A, \Delta \rangle \) be the causality clock graph extracted from a CCSL specification. Let \(G \) be the MG derived from \(\langle C, A, \Delta \rangle \).
\[
\forall \delta^{c_2}_c \in \Delta,
(1) \exists n_0 \in \mathbb{N} \text{ such that } -n_0 \leq \delta^{c_2}_c \leq n_0
(2) c_1 \text{ and } c_2 \text{ belongs to the same SCC.}
(1) \text{ is equivalent to (2)}
\]

Proof: Property 36 proves this result. □

Figure 10 presents the MG representation of the following specification:
\[
B \parallel C \mid I \parallel A \parallel B \mid I \parallel C \mid A \parallel C
\]
(7)
The second example (B) is similar but \(S = A \lor B \) replaces \(I = A \land B \). In both cases, the \(\Delta = \{ \delta_1^{C}, \delta_2^{C}, \delta_3^{C} \} \).

The first specification is safe because the MG is strongly connected but the second is not because the transition \(A \) and \(C \) (as well as \(B \) and \(C \)) are not in the same SCC.

\[
\begin{align*}
\Delta = \{ \delta_1^{C}, \delta_2^{C}, \delta_3^{C} \}.
\end{align*}
\]

Algorithm 1 Safety analysis

```
INPUT: \( (C, P, \Delta) \) \{a causality clock graph.\}
OUTPUT: \( \Delta_u \) \{The list of unbounded counters.\}
\( \Delta_u = \emptyset \)
\( G = \text{buildMG from Causality Clock Graph}((C, P, \Delta)) \)
\( SCCs = \text{computeStrongly Connected Components}(G) \)
for all \( \delta_i^{C} \in \Delta \) do
    if \( SCCs(c_1) \neq SCCs(c_2) \) then
        \( SCCs(c) \) returns the SCC of \( c \)
        \( \Delta_u = \Delta_u \cup \{ \delta_i^{C} \} \)
    end if
end for
return \( \Delta_u \) \{if \( \Delta_u = \emptyset \), the CCSL specification is safe.\}
```

VI. EXAMPLE: CCSL FOR CAPTURING THE ARCHITECTURE, APPLICATION AND ALLOCATION

To illustrate the approach, we take an example inspired by [14], that was used for flow latency analysis on AADL\(^3\) specifications [15]. However, with CCSL we are conducting different kinds of analyses, section VII discusses common points.

Figure 11 considers a simple application described as a UML activity. This application captures two inputs \(in1 \) and \(in2 \), performs some calculations (\(step1, step2 \) and \(step3 \)) and then produces a result \(out \). This application has the possibility to compute \(step1 \) and \(step2 \) concurrently depending on the chosen execution platform. This application runs in a streaming-like fashion by continuously capturing new inputs and producing outputs.

\[
\begin{align*}
in1 & \preceq step1 \land step1 \preceq step3 \quad (8) \\
in2 & \preceq step2 \land step2 \preceq step3 \quad (9) \\
step3 & \preceq out \quad (10)
\end{align*}
\]

Eq. 8 specifies that \(step1 \) may begin as soon as an input \(in1 \) is available. Executing \(step3 \) also requires \(step1 \) to have produced its output. Eq. 9 is similar for \(in2 \) and \(step2 \). Eq. 10 states that an output can be produced as soon as \(step3 \) has executed. Note that CCSL precedence is well adapted to capture infinite FIFOs denoted on the figure as object nodes. Such a specification is clearly not safe. One way to reduce the state-space is to bound the drift between the inputs and the outputs. This means limiting the parallelism by slowing down the production of outputs when several computations are still on-going. This can easily be done by adding a CCSL constraint like Eq. 11.

\[
\begin{align*}
(in1 \lor in2) & \sim out \quad (11)
\end{align*}
\]

However, results from the previous section shows that this new specification is still not safe because bounds on \(\text{Supremum} \) do not imply bounds on both \(in1 \) and \(in2 \). Figure 12 gives the corresponding clock causality graph. None of the counters are bounded.

To have a complete finite system, we can for instance replace Eq. 11 by Eq. 12.

\[
\begin{align*}
(in1 \lor in2) & \sim out \quad (12)
\end{align*}
\]

This time, the specification becomes safe (see Figure 13) since all the counters are bounded. The most difficult to
establish is δ_{in2}^{in}, which is not directly implied by any causality relation. This example is further discussed in [10].

Exhaustive analysis of CCSL through a transformation into labeled transition systems has already been attempted in [5], [4]. However, in those attempts, the CCSL operators were bounded because the underlying model-checkers cannot deal with infinite labeled transition systems. The purpose of this work is to deal with unbounded operators and provide an algorithm to decide that a CCSL specification is safe.

In [17], there was an initial attempt to provide a data structure suitable to capture infinite transition systems based on a lazy evaluation technique. A similar structure could be used in our case except that we consider clocks with only two states (instead of three): tick or stall. Clock death is still to be further explored.

The kind of applications addressed with CCSL is very close to models usually used in real-time scheduling theories. However, such theories usually rely on task models that abstract real applications. Originally they were rather simple (e.g., independent periodic tasks only for Rate Monotonic Analysis). Always more sophisticated models now appear in the literature. They are all based on numerous distinct parameters, providing numerical constraint values for timing aspects (dispatch time, period, deadline, jitter drift...). Tasks are considered as iterations of jobs (or jobs as instances of tasks). In our view, the successive timing values for characteristic feature of successive jobs can each be seen as a logical clock, and the time constraint relations between such clocks are usually expressed as simple equalities and bounded inequalities that fall well into the range of CCSL constructs descriptive power.

Classical (non real-time) scheduling, on its side, provides generally models where the initial constraints are less on timing and more on dependencies or on exclusive resource allocation. But resulting schedules are almost always of modulo periodic nature, here again matching the CCSL expressiveness.

Usually, authors [18], [19], [20] rely on "physical-by-nature" timing, found in theoretical models such as Timed Automata [21]. The distinctive difference is that timed automata assume a global physical time. Timed events are then constrained by value relations between so-called clocks (a different notion from our logical clocks), which are devices measuring physical time as it elapses.

Our work also bears some similarity with previous attempts by Alur and Weiss [22], [23], which define schedules as infinite words expressed in regular expressions and then construct corresponding Büchi automata.

VIII. CONCLUSION AND FUTURE WORKS

The article presents a set of rules to derive CCSL causality relations from every CCSL constraint. These relations are used to abstract a CCSL specification as a MG where each clock becomes a transition and each causality relation a place. In addition, the δ counters are defined to be the only counters that need to be bounded in order to ensure the safety of the CCSL specification. Thanks to classical results from MG analysis, we express a sufficient condition to decide when a CCSL specification is safe while analyzing the representation of the δ counters in the MG. Finally we provide an algorithm based on Tarjan’s algorithm to automate the verification.

In future work, we plan to improve the transformation rules from a CCSL specification to MG so as to have a more accurate (less abstract) MG representation. The goal is to perform liveness analysis in addition to safety. Such an extension requires to have a closer look to the tokens in the MG.
and possibly to enrich the transformation with ratios à-la SDF in order to properly capture CCSL periodic expressions.

ACKNOWLEDGMENT

This work has been partially funded by ARTEMIS Grant Nº269362 – Project PRESTO. [Online]. Available: http://www.presto-embedded.eu

REFERENCES

APPENDIX PROOFS

Proof of Proposition 27: By recursion on χ_σ.

$HR(n) = \chi_\sigma(c_2, n) \geq \chi_\sigma(c_1, n)$.

$HR(0)$ is true since $\chi_\sigma(c_2, 0) = \chi_\sigma(c_1, 0) = 0$.

Assume $HR(n-1)$.

- If $c_1 \notin \sigma(n) \land c_2 \notin \sigma(n)$ then $HR(n)$. Assume $HR(n-1)$.

- If $c_1 \notin \sigma(n) \land c_2 \in \sigma(n)$ then $HR(n)$. Assume $HR(n-1)$.

- If $c_1 \in \sigma(n)$ then $c_2 \in \sigma(n)$ and $\chi_\sigma(c_1, n) = \chi_\sigma(c_1, n-1) \land \chi_\sigma(c_2, n) = \chi_\sigma(c_2, n-1)$ then $HR(n)$.

Eq. 1 forbids the fourth case.

Proof of Proposition 22: Let us assume $\sigma \models_{\text{ccsl}} u \triangleq c_1 \sqsubseteq c_2$.

$(c_1 \in \sigma(n) \implies (c_1 \in \sigma(n) \land c_2 \in \sigma(n)) \implies u \in \sigma(n)) \implies \sigma \models_{\text{ccsl}} c_1 \sqsubseteq u$.

$(c_2 \in \sigma(n) \implies (c_1 \in \sigma(n) \land c_2 \in \sigma(n)) \implies u \in \sigma(n)) \implies \sigma \models_{\text{ccsl}} c_2 \sqsubseteq u$.

Proof of Proposition 24: Let us assume $\sigma \models_{\text{ccsl}} i \triangleq c_1 \sqsubset c_2$.

$(i \in \sigma(n) \implies (c_1 \in \sigma(n) \land c_2 \in \sigma(n)) \implies c_1 \in \sigma(n)) \implies \sigma \models_{\text{ccsl}} i \sqsubseteq c_1$.

$(i \in \sigma(n) \implies (c_1 \in \sigma(n) \land c_2 \in \sigma(n)) \implies c_2 \in \sigma(n)) \implies \sigma \models_{\text{ccsl}} i \sqsubseteq c_2$.

Proof of Proposition 26: Let us assume $\sigma \models_{\text{ccsl}} \inf \triangleq c_1 \sqsubseteq c_2$.

$(\chi_\sigma(\inf, n) = \max(\chi_\sigma(c_1, n), \chi_\sigma(c_2, n)) \implies \chi_\sigma(\inf, n) \geq \chi_\sigma(c_1, n)) \implies \sigma \models_{\text{ccsl}} \inf \sqsubseteq c_1$.

Similarly, $\chi_\sigma(\inf, n) \geq \chi_\sigma(c_2, n) \implies \sigma \models_{\text{ccsl}} \inf \sqsubseteq c_2$.

Proof of Proposition 27: Let us assume $\sigma \models_{\text{ccsl}} \sup \triangleq c_1 \sqsupset c_2$.

$(\chi_\sigma(\sup, n) = \min(\chi_\sigma(c_1, n), \chi_\sigma(c_2, n)) \implies \chi_\sigma(c_1, n) \geq \chi_\sigma(c_2, n)) \implies \sigma \models_{\text{ccsl}} \sup \sqsupset c_2$.