
Latency-Insensitive Design and Central Repetitive Scheduling ∗

Julien Boucaron
INRIA

Sophia-Antipolis

Robert de Simone
INRIA

Sophia-Antipolis

Jean-Vivien Millo
INRIA

Sophia-Antipolis

Abstract

The theory of latency-insensitive design (LID) was re-
cently invented to cope with the time closure problem in
otherwise synchronous circuits and programs. The idea is
to allow the inception of arbitrarily fixed (integer) latencies
for data/signals traveling along wires or communication
media. Then mechanisms such as shell wrappers and relay-
stations are introduced to “implement” the necessary back-
pressure congestion control, so that data with shorter travel
duration can safely await others with which they are to be
consumed simultaneously by the same computing element.
These mechanisms can themselves be efficiently represented
as synchronous components in this global, asynchronously-
spirited environment.

Despite their efficient form, relay-stations and back-
pressure mechanisms add complexity to a system whose be-
haviour is ultimately very repetitive. Indeed, the ”slow-
est” data loops regulate the traffic and organize the traf-
fic to their pace. This specific repetitive scheduling has
been extensively studied in the past under the name of
“Central Repetitive Problem”, and results were established
proving that so-called k-periodic optimal solutions could
be achieved. But the “implementation” using typical syn-
chronous circuit elements in the LID context was never
worked out.

We deal with these issues here, using explicit represen-
tation of schedules as periodic words on {0, 1}? borrowed
from the recently theory of N-synchronous systems.

1 Introduction

Today’s SoC design faces the problem of timing clo-
sure and clock synchronization. Latency Insensitive The-
ory [14, 13, 12, 4] was introduced to tackle the timing
closure issue. It does so by defining specific storage ele-
ments to install along the wires, which then divide signal

∗Work supported by STMicroelectronics grants in the context of the
french regional PACA CIM initiative and PS17 Project

and data transport according to necessary latencies. Dy-
namic scheduling schemes to avoid data congestion are im-
plemented by additional signals. They slow down the faster
traffic routes to the pace of others.

On the other hand, the general theory of weighted
marked graph teaches us that there exist static repetitive
scheduling for such computational behaviors [6, 1]. Such
static k-periodic schedulings have been applied to software
pipelining problems [10, 15], and later to SoC LID design
in [5]. But these solutions pay in general little attention to
the form of buffering elements that are holding values in the
scheduled system, and their adequacy for hardware circuit
representation. For instance in [5] the basic clock has to be
divided further into multiphases, a solution which we find
undesirable here. Also, in these solutions the precise ac-
tivity allocation of clock cycles to computation nodes is not
explicit (except in the restricted case of nested loop graphs).

Expressing an explicit precise static scheduling that uses
predictable synchronous elements is desirable for a number
of issues. It could easily be synthesized of course, but could
also be evaluated for power consumption, by attempting to
interleave as much as possible the computation phases with
the transportation phases. It could also be used as a basis for
the introduction of control modes with alternative choices
that are currently absent of the model (it performs over and
over the same computations in a partial order). We shall
not consider these issue here, but they are looming over our
approach to modeling static schedules.

Our contributions Our main objective is to provide a
statically scheduled version of relaxed synchronous com-
putation networks with mandatory latencies. It can be
thought of as trying to add more latencies to the already
imposed ones, in order to slow down tokens to exactly reg-
ulate the traffic. The new latencies are somehow virtual, as
they are not uniquely defined and could be swallowed by
more relaxed redesign of computation elements. The goal
is to equalize all travel times (counted in clock cycles) in
a relaxed synchronous firing rule, so that all flow-control
back-pressure mechanisms can be done without, and relay-
stations are simplified to mere single-slot registers. But

sadly this is not always feasible, due to the fact that ex-
act solutions would require sometime rational (rather than
integer) delays to be inserted.

Our goal will be to introduce firstly “as many” integer
latencies as possible, and then only deal with the extra frac-
tional parts that may still resist prefect equalization. It will
be done by inserting specific fractional register modeling
elements. These should also be represented by hardware
components, were relay-stations and shell wrappers. Pre-
liminary attempts were conducted in [5], but they need to
divide clock cycles into smaller phase, and we do not want
this. We need to introduce elements that “capture” tokens
to hold them less than each time. The pattern of hold-ups
thus has to be made explicit.

In order to represent the explicit scheduling of compu-
tation node activities we borrow from the theory of N -
synchronous processes [7], where such notions were intro-
duced. We identify a number of interest in relative phenom-
ena occurring when loops with rates that do not match (for
instance involving prime numbers) are present. We shall
also face the issues of the initialization phase, and of the
recognition of the stationary cases.

Paper structure: In the next section we recall the model-
ing framework of computation nets and its semantics vari-
ations over the firing rules. We start with a recap of the
now classical fully synchronous and fully asynchronous se-
mantics. The introduction of weights (or latencies brings
an intermediate model that lags in-between (retimed asyn-
chronous or relaxed synchronous), with some slight distinc-
tions remaining between them. We provide syntax to ex-
press explicit schedules, borrowed from the new theory of
N -synchronous processes. It helps us phrase the problem of
general equalization of latencies that we want to tackle. We
end the section with a summary of important known results
on k-periodic static schedules for Weighted Event graphs.

The following section describes our approach and the
sequence of algorithmic steps of analysis required to in-
troduce integer latencies, compute the schedules over the
initialization and the stationary periodic phases of the vari-
ous computation nodes, and identify locations where to add
extra fractional latencies to even out fully the various data
routes between computations. The goal is to maintain the
throughput of the slowest loop cycle, which is the best at-
tainable anyway. A formal synchronous description of the
Fractional Registers involved is provided, with conditions
on their application. Matters in efficient implementation are
also mentioned (while we are currently building a tool pro-
totype around these implementation ideas, it was not fully
operational by submission time).

We provide a number of examples to highlights the cur-
rent difficulties, and we end up with considerations on fur-
ther topics.

2 The Modeling Framework

2.1 Computation nets

We shall loosely call computation net scheme a graph
structure consisting of computation nodes, linked together
by directed arcs. In such a simple model computations
should consist in repeatedly consuming input values from
incoming arcs, and producing output values on outgoing
ones. There are also primary input and output arcs (with-
out a source or target node respectively), and possibly loops
in the graph. Behaviors do not in fact depend on actual data
values, but only on their availability to computing nodes.
They can be abstracted as presence token. The number of
tokens in a loop stays invariant across computations.

The model is incomplete without a description of the fir-
ing rule, which enforces the precise semantics for triggering
computations. The way token may (or may not) be stored
at arcs between computations is an important part of these
potential semantics. (Partial) computation orderings should
enforce obvious properties: informally stated, production
and consumption of data should ultimately match in rates.
No data should be lost or overwritten by others, deadlocks
(data missing) and congestions (data accumulated in excess)
should be avoided altogether. Figure 1(a) displays a simple
computation net scheme.

2.2 Synchronous, asynchronous and
relaxed-synchronous semantics

There are two obvious starting points for possible se-
mantics: the fully synchronous approach, in which all com-
putations are performed at each cycle of a global clock,so
that data are uniformly flowing; the fully asynchronous ap-
proach, with infinite buffers to store as many data as needed
in between independent computations. The first approach is
represented in the theory of synchronous circuits and syn-
chronous reactive languages [2], the second in the theory of
Event/Marked graphs[8]. Both lead to a profusion of theo-
retical developments in the past. In both case there is a sim-
ple correctness assumption to guarantee safety and liveness:
the existence of (at least) a unit delay element in each loop
in the synchronous case, the existence of (at least) a token
in each loop in the asynchronous case. Recall that the num-
ber of data cannot blow up inside loops in the asynchronous
case, as it remains invariant.

Fully synchronous and fully asynchronous semantics are
somehow extreme endpoints on the semantic constraint
scale. As a middle point proposals have been made to in-
troduce explicit latencies on arcs to represent mandatory
travel. In such a simple model what matters most is the po-
tential time for data/tokens. Starting from the asynchronous
side, this lead to the theory of Weighted Event/Marked

(a) (b)

1

1

2

3

(c) (d)

00’1’1‘01(0’1101)*

110011(01011)* 011100(11010)*

111001(10101)*

110011(01011)*

100110(10110)*

Figure 1. (a) An example of computation net,
(b) with token marking and latency features,
(c) with relay-stations dividing arcs accord-
ing to latencies, (d) with explicit schedules

Graphs (WEM graphs), extensively studied in the past
[1, 6] to model production systems. Starting from the syn-
chronous side, this led to the theory of Latency-Insensitive
Design (LID) [4], which attempts to solve the so-called Tim-
ing Closure issue in circuits where electric wires can no
longer be assumed to propagate in unit time.

Figure 1(b) displays a computation network annotated
with latencies. Figure 1(c) refines this description by mak-
ing explicit the successive stages in the travel and the places
where tokens may reside while on travel (the smaller rectan-
gles can be thought of as motion nodes, similar to the com-
putation nodes as they consume and produce token from
one travel section to the next). For the sake of simplicity
we shall assume for now that all places following a com-
putation nodes are marked by a token (and only them), as
shown on figure 1(c). Weaker assumptions can be taken,

reflecting only the needs expressed previously (at least one
token on every loop cycle).

Definition 1 (Rates and critical cycles). Let G be a
Weighted Marked graph, and C a cycle in this graph.
The rate r of the cycle is equal to T

L
, where T is the number

of tokens in the loop (which is constant), and L is the sum
of latencies labeling its arcs.
The throughput of the graph is defined as the min of rates
over all cycles.
A cycle is called critical if its rate is equal (i.e, as slow) as
the graph throughput.

2.3 Dynamic and static scheduling

Studies on both LID networks and WEM graphs both at-
tempt at providing synchronous execution rules to the com-
putation nets, in the sense that all computation nodes fire as
soon as possible, possibly simultaneously. Their setting and
motivations still differ in several ways:

• In LID theory [13, 12] the buffering places are replaced
by so-called relay-stations, and the computation nodes
are surrounded by shell wrappers. The purpose of
these components, which are described as additional
synchronous elements [3], is to implement a dynamic
on-line scheduling scheme: it regulates data traffic to
the point that never more than two tokens accumulate
in any relay-station. Computations require all input to-
kens, but also free space in output relay-stations. In
the example of figure 1 (c), in the second step of the
initialization phase the relay-station in the grey place
would need to hold two token values (while the token
on the right arc travels up).

• Research conducted on WEM graphs attempts to ob-
tain static repetitive scheduling, based on the fact that
a synchronous firing of computation nodes leads to a
deterministic behavior, which is bound to repeat itself
with a given period because of the finiteness of pos-
sible token distributions. But the scheduling does not
pay much attention to the distribution of token in be-
tween places (and thus the buffer sizes). The founda-
tions of the theory of static and k-periodic scheduling
for Weighted Marked Graphs is to be found in [6, 1]. In
[6] the authors named it as Central Repetitive Problem
(CRP).

In fact, it can easily be seen that the dynamic scheduling
governing the synchronous firing rules of both LID and
WEM lead toultimately repetitive behaviors, thus amenable
to static scheduling whenever they can be computed off-
line. Indeed, the lack of control in the (choice-free) sys-
tems ensures determinism. Each instantaneous configura-
tion leads to a unique next one by firing simultaneously all

possible computation and transportation nodes (here we call
configuration an allocation of tokens to the buffers or relay-
stations); the set of possible configurations is finite (remem-
ber that we assume our nets are strongly-connected graphs,
which guarantees an invariant token numbers on each loop);
then the system is bound to retrieve an already visited state
after a finite initialization sequence, and the behavior will
be identical from now on than the first sequence past this
state.

So, a synchronous LID or WEM system behaviour con-
sists of a transitory initialization part, followed by a station-
ary periodic one. Importantly, the same period length ap-
plies to all the computation nodes of the system, and inside
the period the number of firing is also the same for all nodes
(this is called the periodicity); So one can talk of the period
and the periodicity of the graphs. See [6, 1] for details in
the case of WEM graphs.

Note that in general there is no guarantee that the actual
computation rate will match the one indicated by the local
user-provided latencies. Data traveling on non-critical paths
may have to wait for others on slower routes to join at com-
putation nodes. In that sense the latencies indicated form
a floor value to the effective ones, at least on non-critical
paths.

[1] provides bounds for the period and periodicity sizes
A bound for periodicity k is established as the periodic-
ity of Gc, where Gc represents the restriction of G to its
critical cycles. The periodicity of Gc is equals to the lcm
(Least Common Multiple) of the periodicity of each SCC
(Strongly Connected Component) of Gc. The periodicity of
a SCC of Gc is equals to the gcd (Greatest Common Divi-
sor) of the token count of all its cycles. The period can be
computed in the same way, considering the latencies count
over a cycle instead of the token count. In figure 1(c), the
graph is 3 periodic with a period 5 (as its critical size is the
rightmost loop with a total of 5 latencies and 3 tokens).

In contrast to these results on the stationary periodic
phase, little is known on the length of the initialization
phase that leads to it.

2.4 Explicit schedules

It will be important in the sequel to use an explicit syn-
tactic notation for handling schedules as modeling objects.
We borrowed this notational idea from the theory of N -
synchronous processes [7], where it is used to type pro-
grams with their schedule (that is, an expression represent-
ing the sequence of their firing instants). We use it in a
slightly different way, to provide the schedules for each
computation and transportation nodes in the Computation
Net. As in their work, we focus on periodic schedules, as
we are dealing with periodic behaviors.

Definition 2 (Schedules). A schedule for a computation

net is a function N → wN assigning an infinite word
wN ∈ {0, 1}ω to every computation and transportation
node of the net. The intuition is that a schedule forces activ-
ity at instants where it holds a “1”, and inactivity when “0”.
A schedule is said to be periodic when each such word w is
of the form w = u(v)ω where u, v ∈ {0, 1}?. u is called
the initial part, and v the periodic one. We call the length
of v (noted |v|) the period of w, and the number of 1s in v,
noted |v|1, the periodicity of w.
Assuming that for all computation/transportation nodes, all
wN have identical period and periodicity, we note respec-
tively p and k as the period and periodicity of the net. The
rate r can then be defined as k

p
.

A schedule is admissible if the wN are mutually related in
a way that respects the firing rule semantics of the model
(from any given initial configuration of tokens there is only
one admissible scheduling, following the deterministic syn-
chronous semantics).

As an example, figure 1(d) shows the use of such sched-
ule notation (we note u(v) instead of u.vω to keep to ASCII
notations). All local firing sequences are displayed, such as
obtained by running our simple computation net. As was to
be expected, the periodic parts are of length 5 (the period)
and contain each 3 occurrences of symbol 1 (the periodic-
ity). The explicit schedule allows in addition to these figures
to visualize also the distribution of firings inside the period
at each node. Ideally, if the system was well-balanced on
latencies, the schedule of a given computation nodes should
exactly be the one of its predecessor shifted right by one
position (in a modulo fashion). But when data do not arrive
synchronously at a given computation nodes and some have
to be stalled at the entry, it is not the case. In our example
this can occur only at the topmost computation nodes. Here
we prefixed some of the inactivity 0 marks by a symbol to
indicate that inaction is due to a lack of input token from the
right (’), or on the left (‘).

3 Equalization Process

We now seek a very specific type of static periodic
scheduling, obtained by inserting extra additional latencies
on travel sections that are faster than others. The goal is
to try and make the various travel paths as even as possible
in terms of latency durations, so that data arrive simultane-
ously at their common destination. This should not further
penalize the global speed of the net, which originally oper-
ates at the rate of its slowest loop cycle.

The extra latencies are virtual, in the sense that they do
not correspond to physical lay-out demands, as the former
are supposed to. In a methodological framework they could
be used to redesign some of the components, for instance
absorbing them as part of a more relaxed versions of com-
puting elements.

Unfortunately, as our example of figure 1(b) shows, ex-
act latency equalization is not always possible, at least with
integer latency values. The leftmost loop is of rate 2/3, and
the (slower) rightmost one is of rate 3/5. But adding one
extra integer latency to the left loop brings its rate down to

2

3+1
= 1/2, strictly slower than the former slowest one.

Our approach will consist in inserting first as many inte-
ger delays as feasible, and then only add specific fractional
register (FR) synchronous elements at appropriate places
to correct the few equalization mismatches. FR elements
should hold back temporarily “some” tokens (but not each
one each turn). Our belief is that the preliminary integer
completion, together with the smoothing effect of the ini-
tialization phase, are instrumental in spreading the token
distribution even. If so, FR elements are reduced to simple,
partially transparent latches (see next section on correctness
issues).

In our running example of figure 1 (d) an intermediate
FR element would be needed at the grey location on the
leftmost loop, to hold back a token each time the topmost
computation node indicates a 0′ schedule activity, meaning
at in this very instant the rightmost channel is not ready to
deliver its value yet.

Next, we shall describe the successive algorithmic steps
involved in the process of equalization. These steps are:
determining the expected global throughput; computing a
maximal set of integer latencies (to add corresponding ele-
ments to the system description; computing the transitory
and stationary schedules (by linear state space construc-
tion); adding the fractional latency elements. These steps
rely most of the time on well-known graph-theoretical and
operational research techniques, but they sometimes have
to be adapted to our goals. In the future other (optional)
algorithmic techniques can be studied, mostly to shorten
the initialization sequence of computation and transporta-
tion steps, making it asynchronous.

We describe the successive steps:

Global throughput evaluation. We need to compute the
best feasible global rate, which is the slowest rate (noted R)
amongst individual loop cycles. For this we do enumerate
all elementary cycles, this is known as the Minimal Cost-to-
Time Ratio Cycle problem [11, 9].

Integer latency insertion. This is solved by linear pro-
gramming techniques. Linear equation systems are built to
express that all elementary cycles, with possible extra vari-
able latencies on arcs, should now be of rate R, the previ-
ously computed global throughput. The equations are also
formed while enumerating the cycles in the previous phase.
An additional requirement entered to the solver can be that
the sum of added latencies be minimal (so they are inserted
in a best factored fashion).

Rather than computing a rational solution and then extract-
ing an integer approximate value for latencies, the particu-
lar shape of the equation system lends itself well to a direct
greedy algorithm, stuffing incremental additional integer la-
tencies into the existing systems until completion. This was
confirmed by our prototype implementations.

The following example of figure 2 shows that our integer
completion does not guarantee that all elementary cycles
achieve a rate very close to the extremal, as explained in
the caption. But this is here because a cycle “touches” the
slowest one in several distinct locations.

4

4

44

1

1
1

1
‘0‘0‘01(00001000010000‘01) 00’01(000010000‘0100001)

00’0’1(0000‘010000100001)0000(00‘01000010000100)

Figure 2. An example where no integer la-
tency insertion can bring all the cycle rates
very close to the global throughput. While
the global throughput is of 3

16
, given by the

inner cycle, no integer latency can be added
to the outside cycle to bring its rate to 1

5
from

1

4
. Instead four fractional latencies should be

added (in each arc of weight 1).

Schedule computation (using state space construction).
In order to compute the explicit schedules of the initial and
stationary phases we currently need to simulate the system’s
behavior. We also need to store visited state, as a termina-
tion criterion for the simulation whenever an already visited
state is reached. The purpose is to build (simultaneously
or in a second phase) the schedule patterns of computation
nodes, including the quote marks (’) and (‘), so as to deter-
mine where residual fractional latency elements have to be
inserted.
In a synchronous run each state will have only one succes-
sor, and this process stops as soon as a state already encoun-
tered is reached back. The main issue here consists in the
state space representation (and its complexity). In a naive
approach each place may hold T tokens, where T is the
minimal sum of tokens over all elementary cycles that use
this place. But with the extra latencies now added, we can
use LID modeling, with relay-stations and back-pressure
mechanisms. Then each place can hold at most two tokens,
encoded by two boolean values. Then a global state is en-
coded as 2n boolean variables, where n is the sum all all
latencies over the arcs. Further simplification of the state

space in symbolic BDD model-checking fashion is also pos-
sible due to the fact that, in between the two values describ-
ing a relay-station state, one can be filled only if the other
one already is. Internal implementation details are out of
the scope of this paper.

We are currently investigated (as “future work”) analytic
techniques so as to estimate these phases without relying on
this state space construction.

Fractional latencies. In an ideally equalized system,
the schedules of distinct computation/transportation nodes
should be precisely related: the schedule of the “next” node
should be that of the “previous” node shifted one slot right
(and the first schedule value of the target node is irrelevant
here, as it is initial and not computed form the previous
node). After we compute the effective schedules, one can
whether this is the case. If not, then extra fractional regis-
ters need to be inserted just after the regular register already
set between the nodes. This FR element should delay dis-
criminatorily some tokens (but not all).

We shall introduce a formal model of our FR elements in
the next subsection. The block diagram of its interfaces are
displayed in figure 3.

We conjecture that, after integer latency equalization,
such elements are only required just before computation
nodes to where cycles with different original rates recon-
verge. We prove in subsection 3.2 that this is true under
general hypothesis on smooth distribution of tokens along
critical cycles. In our prototypal approach we have decided
to allow them wherever the previous step indicated the need.

Computation
Node

Computation
Node

Register FR

nextprevious

Figure 3. Fractional register insertion in the
Network.

Optimized initialization. So far we have only considered
the case where all components did fire as soon as they could.
Sometimes delaying some computations or transportations
in the initial phase could lead faster to the stationary phase,
or even to a distinct stationary phase that may behave more
smoothly as to its scheduling. Consider in the example of
figure 1 (c) the possibility of firing the lower-right transport
node alone (the one on the backward up arc) in a first step.
By this one reaches immediately the stationary phase (in its
last stage of iteration).

Initialization phases may require a lot of buffering re-
sources temporarily, that will not be used anymore in the
stationary phase. Providing short and buffer-efficient ini-
tialization sequences is thus a challenge. We are cur-
rently experimenting with symbolic asynchronous simula-
tion (something akin to model-checking), trying to reach
a given state known to be a stationary source as soon as
possible. The asynchronous firing rule allows to perform
various computations independently, so that the tokens may
progress to better locations. Then a careful study of various
paths may help choose the ones that use the less buffering
resources. Other perspectives are open for future work here.

When applying these successive transformation and
analysis steps, which may look quite complex, it is pre-
dictable that simple sub-cases often arise, due to the well-
chosen numbers provided by the designer. Exact integer
equalization is such a case. The case when fractional ad-
justments only occur at reconvergence to a critical paths are
also noticeable. We built a prototype implementation of the
approach, which indicates that these specific cases are in-
deed often met in practice.

3.1 Fractional Register element (FR)

We now formally describe the specific FR synchronous
elements, both as a synchronous circuit in figure 4(b) and as
a corresponding Mealy FSM in figure 4(a).

The FR interface consists of two input wires TokenIn and
Hold, and one output wire TokenOut. Its internal state con-
sists of a register CatchReg. The register will be used to
“kidnap” the token (and its value in a real setting) for one
clock cycle whenever Hold holds. We note pre(CatchReg)
the (boolean) value of the register computed at the previous
clock cycle. It indicates whether the slot is currently occu-
pied or free.

It is possible that the same token is held several instants
in a row. But meanwhile there should be no new token arriv-
ing, as the FR element can store only one value; otherwise
this would cause a conflict.
It is also possible that a full sequence of consecutive to-
kens are held back one instant each in a burst fashion. But
then each token/value should leave the element in the very
next instant to be consumed by the subsequent computation
node; otherwise this would also cause a conflict.
Stated formally, when Hold ∧ pre(CatchReg) holds then
either TokenIn holds, in which case the new data token en-
ters and the current one leaves (by scheduling consistency
the computation nodes that consumes it should then be ac-
tive), or TokenIn does not hold, in which case the current
token remains (and, again by scheduling consistency, then
the computing node should be inactive). Furthermore the
two extra conditions are requested:

not(CatchReg) CatchReg

not (TokenIn)

TokenIn & not (Hold)
/ TokenOut

TokenIn & Hold

not(TokenIn) & not(Hold) / TokenOut

not(TokenIn) & Hold

TokenIn / TokenOut

(a)

(b)

TokenIn

TokenOut

Hold

CatchReg

Figure 4. The automaton (a) and the interface
block-diagram of the FR element

[Hold ⇒ (TokenIn ∨ pre(CatchReg)):] if nothing can
be held, the scheduling does not attempt to;

[(TokenIn ∧ pre(CatchReg)) ⇒ Hold:] otherwise the
two tokens could cross the element and be output si-
multaneously.

The FR behavior amounts to the two equations:

[CatchReg = Hold:] the register slot is used only when
the scheduling demands;

[TokenOut = TokenOut1 ∨ TokenOut2 :]

• TokenOut1 = TokenIn ⊕ pre(CatchReg) ∧
¬Hold.

• TokenOut2 = TokenIn ∧ pre(CatchReg) ∧
Hold.

either a new value directly falls across, or an old one is
chased by a new one being held in its place.

Our main design problem is now to generate Hold signals
exactly when needed to respect the previous constraints. In
addition it should be generated from the schedules of the
source and target computation or transport nodes, to bridge
from the former to the latter.

Consider again figure 3, we shall name w the schedule
of the previous source node, and w′ the schedule of the
next target node. After the regular register delay the tokens
are produce to the FR entry on schedule 0.w (shifted one
slot/instant right). The fractional buffer should hold the to-
ken exactly when the kth active step at this entry is not the
kth activity step at its target node that must consume it. In

other words the FR element resynchronize its input and out-
put, which cannot be away be more than one activity step.
This last property is true as the schedules were computed
using the LID approach with relay-stations, which do not
allow more than one extra token in addition to the regu-
lar one on each arc between computation or transportation
nodes.

Stated formally, this property becomes: HOLD(n) =
1 IFF |0.wn|1 6= (|w′

n|1 − |w′

0|1). It says that at a given
instant n we should kidnap a value if the number of occur-
rences of 1 up to instant n on the previous node is different
than the number of occurrences of 1 on the next computa-
tion node. More precisely, the −|w′

0|1 term takes care of
a possible initial activity at the target node, not caused by
the propagation of tokens from the source node, that would
have to be removed.

HOLD

targetsource

error

Figure 5. Hold implementation.

Figure 5 shows a possible implementation computing
Hold from signals that would explicit provide the target and
source schedules as inputs. It also computes an Error out-
put, which allows us to prove by various model-checking
means that this particular signal can never be emitted.

3.2 Correctness issues

As already mentioned we still do not have a proof that in
the stationary phase it is enough to include such elements at
the entry points of computation nodes only, so they can be
installed in place of more relay-stations also. Furthermore
it is easy to find initialization phases where tokens in ex-
cess will accumulate at any locations, before the rate of the
slowest loop cycles distribute them in a smoother, evenly
distributed pattern. Still we have several hints that partially
deal with the issue. It should be remembered here that, even
without the result, we can equalize latencies (it just needs
adding more FR elements).

Definition 3 (Smoothness). A schedule is called smooth

if the sequences of successive 0 (inactive) instants in the
schedule in between two consecutive 1 cannot differ by
more than 1. The schedule (1001)? is not smooth since
they are two consecutive 0 between the first and second oc-
currences of 1, while there is none between the second and
the third.

Property 1. If all computation node schedules are smooth,
rates can be equalized using FR elements only at computa-
tion node entry points.

Proof. Suppose a vertex have token on standby in FR of
input(s), but some token on other input(s) are absent(s). So,
the maximal waiting time of absent token (n) is inferior or
equal to the minimal distance (in clock cycle) between a
present token and its following (n). In the worst case, when
the following arrive, all previous are present and fire the
transition. The condition of correctness on FR is preserved,
a storage capacity of 1 is enough.

4 Further Topics

We are currently implementing a prototype version.
While some of the graph-theoretic algorithms are well-
documented in the literature, the phase of symbolic sim-
ulation and state-space traversal needs careful attention to
the representation of states (as Binary Decision Diagrams
on variables encoding the local Relay-station states). Also
the representation of schedules must be tuned. They are
really strictly needed only at computation nodes, and can
be recovered on demand at other places (the transportation
nodes).

A number of important topics are left open for further
theoretical developments:

• We certainly would like to establish that FR elements
are needed only at computation nodes, minimizing
their number rather intuitively;

• Discovering short and efficient initial phases is also an
important issue here;

• The distribution of integer latencies over the arcs could
attempt to minimize (on average) the number of com-
putation nodes that are active altogether. In other
words transportation latencies should be balanced so
that computations alternate in time whenever possi-
ble. The goal is here to avoid “hot spots”. It could
be achieved by some sort of retiming/recycling tech-
niques;

• While we deal with transportation latencies, in gen-
eral there can also be computation latencies. It can be
encoded in our model with {begin/end} refined opera-
tions, but one could introduce “less constant” compu-
tation latencies and pipeline stages;

• Marked graphs do not allow for control-flow alterna-
tives and control modes. One reason is that, in a gen-
eralized setting such as full Petri Nets, it can no longer
be asserted that token are consumed and produced at
the same rate. But explicit “branch schedules” could
maybe help regulate the branching control parts simi-
larly to the way they control the flow rate.

Last but not least, we should soon conduct real case stud-
ies to validate the approach on industrial examples .

References

[1] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Syn-
chronization and Linearity. Wiley, 1992.

[2] Benveniste, Caspi, Edwards, Hallbwachs, L. Guernic, and
de Simone. The synchronous languages twelve years later.
IEEE and INRIA/IRISA, 2003.

[3] J. Boucaron, J.-V. Millo, and R. de Simone. Another glance
at relay stations in latency-insensitive designs. In FM-
GALS’05, 2005.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Latency insensitive protocols. In N. Halbwachs and L. .
D. Peled, editors, Proc. of the 11th Intl. Conf. on Computer-
Aided Verification (CAV), page 12. UC Berkeley, Cadence
Design Laboratories, July 1999.

[5] M. R. Casu and L. Macchiarulo. A new approach to latency
insensitive design. In DAC’2004, 2004.

[6] J. C. P. Chrétienne. Problème d’ordonnancement:
modélisation, complexité, algorithmes. Masson, Paris, 1988.

[7] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet. N-synchronous kahn networks. In POPL
2006 Proceedings, January 2006.

[8] F. Commoner, A. W.Holt, S. Even, and A. Pnueli. Marked
directed graph. Journal of Computer and System Sciences,
5:511–523, october 1971.

[9] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms. ACM Transactions on De-
sign Automation of Electronic Systems, 9(4):385–418, Octo-
ber 2004.

[10] V. H. V. Dongen, G. R. Gao, and Q. Ning. A polynomial
time method for optimal software pipelining. In Proceed-
ings of the Second Joint International Conference on Vector
and Parallel Processing: Parallel Processing, volume 634
of LNCS, pages p613–624, 1992.

[11] E. Lawler. Combinatorial Optimization: Network and Ma-
troids. Holt, Rinehart and Winston, 1976.

[12] L. P.Carloni, K. L.McMillan, and A. L.Sangiovanni-
Vincentelli. Theory of latency-insensitive design. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2001.

[13] L. P.Carloni, K. L.McMillan, A. Saldanha, and
A. L.Sangiovanni-Vincentelli. A methodology for
correct-by-construction latency insensitive design. In THE
BEST OF ICAD, 200x.

[14] L. P.Carloni and A. L. Sangiovanni-Vincentelli. Coping with
latency in soc design. IEEE Micro, 22(5):24–35, Septem-
ber/October 2002.

[15] F. R.Boyer, E. M. Aboulhamid, Y. Savaria, and M. Boyer.
Optimal design of synchronous circuits using software
pipelining. In Proceedings of the ICCD’98, 1998.

