
Some algebraic tools

The SIROPA Maple library

Guillaume Moroz (INRIA - Nancy)

&

Fabrice Rouillier (INRIA - Paris)



Using Computer algebra in applications

Warning : exact computations ! A result is wrong or true, never close to be
true or close to be true. For example, a real root is NOT a complex root with
a small imaginary part.

• sensitive to the modelization : not for stability reasons but for efficiency
reasons.

• several algebraic objects/algorithms with precise (and sometimes com-
plicated) geometrical meanings.

The SIROPA library (G. Moroz), makes default choices for you for some
selected problems in robotics.



Algebraic Modeling : From Robots To Polynomials

Conception parameters :
d1, d2, d3
Control parameters : ρ1, ρ2, ρ3
Pose variables : B1x , B1y , α

Passive variables : θ1, θ2, θ3
3 degrees of freedom






B1x 2 + B1y 2 − ρ12 = 0
(B1x + 17.04 cos(α) − 15.91)2 + (B1y + 17.04 sin(α))2 − ρ22= 0
(B1x + 10.82 cos(α) − 13.16 sin(α) − 2)2+

(B1y + 13.16 cos(α) + 10.82 sin(α) − 5)2 − ρ32 = 0
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Algebraic Modeling : Trigonometric Functions

2 possible strategies :

A (cos(θ), sin(θ)) �→ (1−t2
1+t2 , 2t

1+t2 ) where t = tan( θ
2)

B (cos(θ), sin(θ)) �→ (c , s) with c2 + s2 = 1

Case A

θ = π for t = ∞
Spurious complex

component

Case B

2 variables

1 additional equation

Siropa toolbox :

Provides automatic trigonometric/algebraic conversion

Extends solving functions from polynomials to trigonometric

expressions
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Algebraic Modeling : Spatial Rotation
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Euler angles

R =





cφ cθ cψ − sφ sψ −cφ cθ sψ − sφ cψ cφ sθ

sφ cθ cψ + cφ sψ −sφ cθ sψ + cφ cψ sφ sθ

−sθ cψ sθ sψ cθ





Quaternions

R =




q2

1 + q2
2 q2q3 − q1q4 q2q4 + q1q3

q2q3 + q1q4 q2
1 + q2

3 q3q4 − q1q2
q2q4 − q1q3 q3q4 + q1q2 q2

1 + q2
4





and q2
1 + q2

2 + q2
3 + q2

4 = 1
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Some Mechanisms in Siropa Toolbox

Mechanisms
Parallel_3RPR

Parallel_3RPR_full

Parallel_3PRR

ParallelPRP2PRR

Parallel_RPRRP

Parallel_RR_RRR

Parallel_PRRP

Orthoglide

ParallelRPR2PRR
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Solving ???

E = {p1, , pr},F = {f1, , fl}, with pi, fi∈Q[U , X]

U = U1, , Ud⇒parameters

X = Xd+1, , Xn⇒ indeterminates

V = {y ∈Cn, p1(y) = 0, , pr(y) = 0}

C = {y ∈Cn, p1(y)= 0, , pr(y) = 0, f1(y) 0, , fs(y) 0}

S = {y ∈Rn, p1(y)= 0, , pr(y) = 0, f1(y) > 0, , fs(y)> 0}

Definition : given A ∈ Cn, the Zariski Closure of A denoted by Ā is the
smallest algebraic set (complex solutions of a system of equations) s.t. A⊂A.

Définition : 〈p1, , pr〉=
{

∑

i=1
r

qi pi, qi ∈Q[U , X]
}

is the ideal of Q[U , X]
generated by {p1, , pr}.



Gröbner Bases

Given a monomial ordering < (a total order on the monomials
U1

e1 Ud
edXd+1

ed+1 Xn
en which is compatible with the multiplication : m1<m2⇒

mm1<mm2,∀m), one can extend the classical univariate euclidean division to
the division of a multivariate polynomial by a set of multivariate polynomials.

THE Gröbner basis, for a given ordering, of an ideal < p1, , pr > is a set
of polynomials g1, , gr ′ such that 〈p1, , pr〉= 〈g1, , gr ′〉 and such that the
division of a polynomial by

{

g1, , gr
′
}

is “canonical”. The division is then
named the NormalForm modulo the Gröbner basis.

In particular : {y ∈ Cn, g1(y) = 0, , gr ′(y) = 0} = {y ∈ Cn, p1(y) = 0, ,
pr(y) = 0}



Elimination Orderings

Let G= {g1, , gr ′} be a Gröbner basis of 〈E 〉= 〈p1, , pr〉⊂Q[U , X ].

Any monomial ordering such that Ui < Xj , ∀i = 1 d, ∀j = d + 1 n is an
ordering that “eliminates” the variables Xj.

For example, the lexicographic ordering U1 < < Ud < Xd+1 < < Xn

Given an ordering that eliminates Xj, 〈E 〉 ∩Q[U ] = 〈gi1, , gir
〉 where the gij

are elements of G that do not depends on the variables Xi, i = d + 1 n.

〈E 〉 ∩Q[U ] ???? What’s this ?

V (〈E 〉) = {(y)∈Cn, p1(y)= 0, , pr(y)= 0}

V (〈E 〉 ∩ Q[U ]) = ΠU(V (〈E 〉)) ⊂ Cd is the Zariski closure (.) of the
projection onto the parameter’s space (ΠU) of the zeroes of 〈E 〉.

Interpretation :

For almost all the u ∈ V (〈E 〉 ∩Q[U ]), there exists (at least) one x such that
(u, x)∈V (〈E 〉).



An Example

E = {U1 X2− 1}, V (〈E 〉)= {(x, y)∈Cn, x y − 1 = 0} is an hyperbola.

ΠU1(〈E 〉) =C \ {0} (almost all the complex values)

G = {U1X2− 1} is a Gröbner basis of 〈E 〉 for any ordering.

Also 〈E ∩Q[U1]〉= {0} and thus V (〈E ∩Q[U1]〉)=C (all the complex values)

Remark :

When n = d + 1, say U = U1, , Ud and X = Xd+1, the resultant of 2
polynomials “eliminates” 1 variable.

r1,2 =Resultant(p1, p2, Xd+1) we then have V (r1,2) = ΠU(V (〈p1, p2〉))



Over the reals

One example : p = X2
2 + U1

2

The Zariski closure of the projection of
{

(u, x)∈C2, p(u, x) = 0
}

onto the U1

axis (C) is the U1 axis itself.

This means that for almost (in the present case all) all the complex values of
U1, the “system” p

(

u, X2
2
)

= 0 has (at least) one solution.

BUT the system
{

(u,x)∈R2, p(u,x)=0
}

has only one solution in R2 ((0,0))
so that the Zariski closure of the projection of

{

(u, x)∈R2, p(u, x) = 0
}

onto
the U1 axis is reduced to 0.

So it is wrong that for almost all the real values of U1, the “system” p
(

u,
X2

2
)

= 0 has (at least) one solution.

In the general case : ΠU(V (E))∩Rd ΠU(V (E) ∩Rn)∩Rd and thus, the
elimination of variables (Zariski closure of some projection) is not sufficient
for “solving” a system over the reals, whatever “solving” means.



Over the reals

One example : p = X2
2 + U1

The Zariski closure of the projection of
{

(u, x)∈C2, p(u, x) = 0
}

onto the U1

axis (C) is the U1 axis itself. Also ΠU(V (E)) =C.

This means that for almost (in the present case all) all the complex values of
U1, the “system” p

(

u, X2
2
)

= 0 has (at least) one solution.

BUT the system
{

(u, x)∈R2, p(u, x) = 0
}

has solutions in R2 if and only if

U1 ! 0. Also, ΠU

(

V (E)∩R2
)

=R− and ΠU

(

V (E)∩R2
)

∩R=R.

In the general case : even if ΠU(V (E)) ∩ Rd = ΠU(V (E) ∩ Rn) ∩ Rd, the
elimination of variables (Zariski closure of some projection) is absolutely not
sufficient for “solving” a system over the reals, whatever “solving” means.

In short : in the general case, eliminating variables does not provide neither
sufficient nor necessary conditions for “solving” systems over the reals. One
has to work a little bit more ....



Degree and Dimension

Dimension : “number of free complex variables”.

Geometrical Degree : “maximum number of complex solutions once all the
free variables are set to generic values”

Algebraic degree : “maximum number of complex solutions counted with
multiplicities once all the free variables are set to generic values”

Dimension and Algebraic degree can be computed through the Hilbert func-
tion from a Gröbner basis for any monomial ordering.

Systems of dimension 0 are systems without “free” variables. Their complex
solutions define a finite set of points.

Remark : a system can be of dimension > 0 but may have a finite number
of solutions. Example : X2 + Y 2 = 0 has dimension 1 in C.

Real dimension ? Real degree ? : too difficult to compute.



Zero-dimensional Systems

E ⊂Q[Y1, , Yn] and G a Gröbner basis of 〈E 〉 for any monomial ordering < .

〈E 〉 is zero-dimensional if and only if

∀i,∃gi∈G such that the leading coefficient of gi for < is a pure power of Yi..

Degree=number of monomials that are not reducible modulo G (you can “read”
then on a Gröbner basis for any ordering)=number of complex roots counted
with multiplicities.

(In fact :
Q[Y1, , Yn]

I
is a Q-vector space of dimension D (the degree of 〈E 〉)

and the set of irreducible monomials is a basis).



Zero-dimensional Systems

Performing some linear algebra in
Q[Y1, , Yn]

I
, one can then compute a so called

Rational Univariate Representation [Rouillier 1999] :

A linear form t, n+2 univariate polynomials with rational coefficients ft, gt,1,
gt,Y1

, gt,Yn
such that the following bijection :

V (〈E 〉) ≈ V (〈ft〉)
α = (α1, , αn) → t(α)

(
gt,X1

(β)

gt,1(β)
, ,

gt,Xn(β)

gt,1(β)
) ← β

preserves also the multiplicities and the real roots.

So, solving a zero-dimensional system remains to solving a univariate problem.



Zero-dimensional Systems

Using the so called Descartes’ rule of signs together with interval arithmetic,
one can isolate efficiently all the real roots of a univariate polynomial with
rational coefficients [Rouillier, Zimmermann 2003].

Input : a polynomial with rational coefficients

Output : intervals with rational bounds that isolate all the real roots of the
polynomial.

(this algorithm is used in Maple 14 instead of numerical algorithms in the
function fsolve).



Zero-dimensional Systems

The (default) implementation :

1 - compute a Gröbner basis (F4 algorithm by JC Faugere, available in Maple
version > 11)

2 - compute a rational univariate representation (ft, gt,1, gt,Y1
, gt,Yn) (RUR

algorithm by F. Rouillier, available in Maple version > 11)

3 - Isolate (and eventually refine) the real roots of ft (USPENSKY algorithm
by F. Rouillier and P. Zimmermann, available in Maple version > 11)

4 - For each real root (interval) β of ft, compute the box (
gt,X1

(β)

gt,1(β)
, ,

gt,Xn(β)

gt,1(β)
)

using multiprecision interval arithmetic, and you get isolating boxed for all
the real solutions of the system.

Note : for refining the roots up to an arbitrary precision, it is sufficient to
refine the isolating intervals obtaines at step 3 and run again step 4.



Zero-dimensional Systems

Efficiency and influence of the modelization :

“On solving the direct kinematics problem for parallel robots”

JC Faugère JP Merlet, F. Rouillier - INRIA Research report RR-5923 (2006).

From a 3-point “classical” modelization to an ad-hoc quaternion based mod-
elization the speed up is about 1000.

The later allows to verify the 40 real positions of Dietmaier’s general parallel
platform as well as well as slight deformations in few seconds.

In fact we could observe that one can cut to 18 digits the floating point
numbers used by Dietmaier for discribing the geometry of his robot without
loosing positions, and that the number of positions falls to 38 when using 16
digits... very unstable ...



Systems depending on parameters

E = {p1, , pr},F = {f1, , fl}, with pi, fi∈Q[U , X]

U = U1, , Ud⇒parameters

X = Xd+1, , Xn⇒ indeterminates

C = {x∈Cn, p1(x)= 0, , pr(x)= 0, f1(x) 0, , fs(x) 0}

S = {x∈Rn, p1(x) = 0, , pr(x)= 0, f1(x) > 0, , fs(x) > 0}

ΠU:Cn Cd the canonical projection onto the parameters’ space

• Exists parameters values u s.t. C |U=u
∅ or S |U=u

∅ ?

• Number of complex (resp. real) points of C |U=u
or S |U=u

?

• ”Simple” description of C or S wrt ΠU ?



Well-behaved systems

Most systems comming from applications (outside mathematics) are s.t. :

• for almost all u∈Rd, the real roots of E |U=u=0 can be computed (real
roots) by a basic version of Newton’s method

Most of them verify the following conditions (well-behaved systems)

• #E = n− d;

• ΠU(V (〈E 〉)) =Cd = ΠU(C);

• 〈E |U=u
〉⊂C[X] is radical and zero-dimensional for allmost all u∈Cd.

We suppose from now that the systems are well behaved (this can be checked
during the computations).



The study of C={x∈Cn, p = 0, f 0, p∈ E , f ∈F}

If one wants (at least) to discuss the number of roots, one needs to characterize

parameter’s subsets U ⊂ΠU(C) st #
(

ΠU
−1(u)∩ C

)

is constant on U .

”bad” parameters (U ∩ {bad parameters}= ∅) :

X

U

Discriminant variety



Points “going” to infinity

X

U

roots over this point
Infinite number of

No roots over this point

O∞ = {u ∈ Cd, for any compact neightborhood V . u, ΠU
−1(V) ∩ C is not

compact}.

U can not intersect properly O∞ : U ∩O∞ = ∅ orU



Critical values of the projection and projection of singular points :

X

U

Critical points of the projection

X

U

Projections of singular points

Oc = {critical values ofΠU onReg(C)}∪ {projections of singular points of C}

U can not intersect Oc : U ∩Oc = ∅



Components of small dimension

X

U

Projection of a component of small dimension

Osd= {projection - by ΠU - of the components of ”small” dimension}

U can not intersect Osd : U ∩Osd= ∅



Inequations !

X

U

Points removed by the inequations

Projections of the points removed by the inequations

A "proper" intersection

X

U

A component "removed" by an inequation

A non "proper" intersection

Study C̄ = V
(

〈E 〉:
(

∏

f∈F f
)∞)

= V (〈E 〉) \V
(

∏

f∈F f
)

.

OF = ΠU

(

V
(

∏

f∈F f
)

∩ C̄
)

U can not intersect properly Of : U ∩OF = ∅ or U



Solving ???

Summary : if U is s.t. u #ΠU
−1(u) is constant on U , then U can not

intersect properly O∞∪Oc∪Osd∪OF with

O∞ = {u ∈ ΠU(C̄), for any compact neightborhood V . u, ΠU
−1(V) ∩ C̄ is not

compact}

Oc = {critical values of ΠU} ∪ {singular points of C}

Osd= projection of the components of C of dimension less than dim (ΠU(C))

OF=ΠU

(

C̄ ∩V
(

∏

f∈F f
))

Proposition [Lazard,Rouillier 2007] : If U ⊂ ΠU(C) is any submanifold

which does not meet O∞ ∪ Oc ∪ Osd ∪ OF, then ΠU: C ∩ ΠU
−1(U) U is a

(analytic) covering.

In particular, the number of roots of C is constant over U and we have
a “simple” description of C over U .

⇒ Definition of “solving” a parametric system independently from any com-
putational strategy.



Complex Discriminant Varieties

Definition and theorem [Lazard, Rouillier 2007] : WD =O∞∪Oc∪Osd∪OF

is an algebraic variety named theminimal discriminant variety of C w.r.t. ΠU.

Definition 1. An algebraic variety W is a (large) discriminant variety of C
w.r.t. ΠU iff:

• WD ⊂W ! ΠU(C)

• W = ΠU(C) iff C |U=u is infinite or empty for almost all u∈ΠU(C);

A D.V. is an algebraic variety W such that :

• ΠU(C) \ W = ∪i=1
k Ui is a finite union of submanifolds of dimension

dim (ΠU(C)).

• ΠU: ΠU
−1(Ui)∩ C Ui is a (analytic) cover ∀i.



Discriminant Varieties in the Real case

If WD is the minimal discriminant variety for C wrt ΠU, then either WD∩Rd is
a (non necessarilly minimal) discriminant variety for S wrt ΠU or WD contains
ΠU(S).

In the second case, we simply replace S by S ∩ WD and compute again (the
dimension of the projection then decreases).

Note that this correspond tho the case where the dimension of the real coun-
terpart of the main components (those of dimension δ whose projection is not
contained in WD) differ from the “complex” dimension.

To detect this : S |U=u has no solutions ∀u∈ΠU(C)∩Rd \WD

The “real” version of the minimal discriminant variety is a semi-algebraic set.



Discriminant Varieties in the Real case

Over each connected component of ΠU(S) \WD :

• the number of real roots is constant;

• the sheets are locally diffeomorphic to the connected components;

For “solving“ the initial problem, one needs to describe the connected compo-
nents of ΠU(C)∩Rd \WD (we “eliminated“ n− d variables).

• Compute one point on each C.C. + solving a zero-dimensional system :
qualitative information.

• Compute a Cylindrical Algebraic Decomposition adapted to the poly-
nomials defining the discriminant variety : full description.

• In practice : we use a “partial” CAD - avoid most projections as well as
computations with algebraic numbers. In short : do not decompose WD.

[optional] : For a full description : apply the algorithm on S ∩WD.



OF

• 〈E 〉: (
∏

f∈F f)∞ =
(

〈E 〉+ 〈T
(

∏

f∈F f
)

− 1〉
)

∩Q[U , X ]

• C̄ = V
(

〈E 〉: (
∏

f∈F f)∞
)

= V (〈E 〉) \ (∪f∈F V (〈f 〉))

Known result : If G is a Gröbner basis for any product of orderings <U,X =
(<U ,<X ) with Ui <U,X Xj ,∀i, j, then G∩Q[U ] is a Gröbner basis for <U of
〈G〉 ∩Q[U ].

In particular ΠU(V (G))=V (〈G〉 ∩Q[U ]) so that we can “efficiently” compute
an ideal IF such that V (IF) = OF.



O∞

G a Gröbner basis of 〈E 〉 wrt a DRL-block ordering <U,X .

Theorem 2. if E0 = G
⋂

Q[U ]. Then:

• E0 is a Gröbner basis of I
⋂

Q[U ] w.r.t. <U ;

• Set Ei
∞ = E0∪ E i

∞ for i = d + 1 n

• E i
∞ is a Gröbner basis of some ideal Ii

∞⊂Q[U ] w.r.t. <U ;

• W∞=
⋃

i=d+1
n

V (Ii
∞)

Nothing to “compute“ when G is known !

Remark : valid for any parametric systems



Computing Oc and Osd

The main computational problems :

• Jacobian criteria are independant from the equations in the case of
radical and equi-dimensional ideals.

In such cases Oc = V
((

〈E 〉+ JacX
n−δ(E)

)

∩Q[U ]
)

.

• In the general case, V
((

〈E 〉+ JacX
n−δ(E)

)

∩Q[U ]
)

→ may give too much points (non radical ideals, embeeded components)

→ may miss some points (components of small dimension)

→ may be of same dimension than ΠU(C) (non radical ideals)

• We want to avoid as most as possible to compute a decomposition of the ideal into

radical and/or equi-dimensional components (avoid also primary decompositions)



In the case of well-behaved systems

One can not suppose, even in practice, that 〈E 〉 is radical or equidi-
mensional

artefacts from modelizations (from fractions to polynomials, changes of coordinates like t=
tan(α/2), etc.) often introduce primary but not prime components of arbitrary dimensions.

BUT in the case of well-behaved systems :

• the components of dimension <n−d are ”embeeded” components since
#E = n− d (in particular Osd = ∅).

• the projection of the zero set of components of dimension > n− d are
in O∞

Theorem 3. (Well-behaved systems- Lazard,Rouillier 2007)

Osd= ∅ and :

WD = O∞∪OF ∪V
((

〈E 〉+ JacX
n−δ(E)

)

∩Q[U ]
)

= O∞∪OF ∪Oc



Discriminant Varieties

By computing few Gröbner bases for a well chosen monomial block ordering,
one gets a Discriminant Variety that defines a partition of the parameter’s
space into “cells”.

Over each cell, the number of complex (resp. real) roots is constant and,
the “leafs” of solution never meet.

We have “eliminated” all the indeterminates without loosing important infor-
mation.

Now, we have to describe this partition in practice ....



Robotic Singularities and Jacobien

f1 = 0, . . . , fk = 0

⊂
Q[T1, . . . , Tm, X1, . . . , Xn]

Parallel Singularities

Maximal minors of





∂f1
∂X1

· · · ∂f1
∂Xn... ...

... ...
∂fk
∂X1

· · · ∂fk
∂Xn
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Discriminant Variety

Discriminant Variety V of a parametric system S
V : variety in the parameter space

Path not crossing V =⇒ constant number of solutions for S
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CAD (Cylindrical Algebraic Decomposition)
CAD adapted to a polynomial P in n variables

Partition of Rn in cells

The projections of 2 cell are

either :

disjoint

equal

The sign of P is constant on

each cell

If P discriminant variety of S
Then S has a constant number of solutions on each n-dimensional cell
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The Cylindrical Algebraic Decomposition

Given a set of polynomials p1, , pr in R[U1, , Ud], decompose Rd in “cells”
where the polynomials have all a constant sign.

Remark : it computes more than required, but this “old” algorithm (Collins
1975) is unfortunately the only one able to provide us a description of the
partition of Rd defined by a discriminant variety.

As we are only interested by the cells of maximal dimension, the CAD can be
optimized and simplified.



The Cylindrical Algebraic Decomposition

For each polynomial : f ∈S1⊂Q[X2, ,Xn][X1], find conditions over [X2, ,
Xn] such that the number of real roots may change :

the projection of points at infinity (zeroes of LC(f , X1))

the critical values of the projection w.r.t. X1 (discriminant of f w.r.t X1)

For each couple (f , g)∈S1⊂Q[X1][X2, ,Xn] compute the projection of the
intersection V (f)∩V (g) : resultant(f , g) w.r.t. X1.

⇒ this generates a set S2 of polynomials in Q[X2, , Xn]

Then apply the same projection recursively to S2,S3, ,Sn−1.

At the end of the projection step, you have :

• Si ⊂Q[Xi, , Xn] induces a partition of Ri if we consider V (Si) and
the union of cells (simply connected components) that do not meet any
V (f), f ∈Si.

• Over each element of the above partition, the polynomials of Si−1 have
a constant sign.



CAD : the lifting step

Using the CAD, the cells are described recursively by the polynomials sets
Si, and the CAD computes one point on each cell by the following process :
by specializing the variables by the coordinates of the simple points, one then
computes the sign condition described by the cell.

Start with Sn ⊂ Q[Xn]: the cells of R “adapted“ to Sn−1 are the points of
V (Sn) and the intervals between them. We define the set of sample points as
V (Sn) and one point in each interval.

For each sample point, we specialize the Xn coordinate of the polynomials of
Sn−1, and do the same : we then obtain sample points in R2.
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Conclusion

Computer algebra ⇒ exact computations = > exhaustive classifications,
certifications of results, etc.

BUT

- global resolution and thus strong limitations in terms of degree/number of
varaibles.

- adding constraints and/or restrictions such as inequations makes the problem
more complicated in general

- Many black boxes / objects to consider for having a full algorithm, and many
possible ..... mistakes


