

Numerical approaches to singularity analysis, singularity index and new concepts J-P. Merlet

You have already seen:

You have already seen:

• an algebraic approach to singularity analysis

You have already seen:

- an algebraic approach to singularity analysis
- a geometrical approach to singularity analysis

• a numerical approach of singularity analysis

- a numerical approach of singularity analysis
- what should not be used as "distance" to singularity

- a numerical approach of singularity analysis
- what should not be used as "distance" to singularity
- another approach to singularity analysis

want to see a motion from one solution of the forward kinematics to another one without singularity crossing ?

Interval $\mathcal{X} = [\underline{x}, \overline{x}]$, width $w(\mathcal{X}) = \overline{x} - \underline{x}$

Interval $\mathcal{X} = [\underline{x}, \overline{x}]$, width $w(\mathcal{X}) = \overline{x} - \underline{x}$

- a function f(x)
- interval evaluation of f when $x \in \mathcal{X}$: a range $[\underline{F},\overline{F}]$ such that

$$\forall x \in \mathcal{X} \text{ we have } : \underline{F} \leq f(x) \leq \overline{F}$$

How to construct an interval evaluation ? the simplest one is the natural evaluation:

substitute each mathematical operator by its interval equivalent

Example: $F = x^2 + \cos(x)$, $x \in [0, 1]$ **Problem: find** [A, B] such that: $A \leq F(x) \leq B \forall x \in [0, 1]$

$$F = [0,1]^2 + \cos([0,1])$$

$$F = ([0,1]^2) + \cos([0,1])$$

$F = [0,1]^2 + \cos([0,1]) = [0,1] + \cos([0,1])$

 $F = [0,1]^2 + \left(\cos([0,1])\right) = [0,1] + [0.54,1]$

$F = [0,1]^2 + \cos([0,1]) = [0,1]+[0.54,1]$

$F = [0,1]^2 + \cos([0,1]) = [0,1]+[0.54,1] = [0.54,2]$

$$F = [0,1]^2 + \cos([0,1]) = [0,1]+[0.54,1] = [0.54,2]$$

• 0 not included in [0.54,2] $\Rightarrow F \neq 0 \forall x \in [0,1]$

$F = [0,1]^2 + \cos([0,1]) = [0,1]+[0.54,1] = [0.54,2]$

- 0 not included in [0.54,2] $\Rightarrow F \neq 0 \forall x \in [0,1]$
- $F > 0 \quad \forall \ x \in [0, 1]$
- $\forall x \in [0, 1]$ we have $0.54 \le F \le 2$ (global optimization)

$$F = [0,1]^2 + \cos([0,1]) = [0,1]+[0.54,1] = [0.54,2]$$

We have calculated an interval evaluation of F for the range [0,1]

Properties

Properties

• can be implemented to take into account round-off errors

Properties

- can be implemented to take into account round-off errors
- Overestimation of $\underline{F}, \overline{F}$ but decreases with the size of the ranges

A crucial problem for parallel robot: no singularity in a given workspace \mathcal{W}

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

Mechanical equilibrium: $\mathcal{F} = \mathbf{J}(\mathbf{X}, \mathbf{P})\tau$

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

Mechanical equilibrium: $\mathcal{F}=\mathbf{J}(\mathbf{X},\mathbf{P})\tau$ linear system in τ

$$\tau_i = \frac{|\dots|}{|\mathbf{J}|}$$

if $|\mathbf{J}| \to 0$ possibly $\tau_i \to \infty$

Checking if a workspace $\ensuremath{\mathcal{W}}$ is singularity free:

 $\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$

Checking if a workspace $\ensuremath{\mathcal{W}}$ is singularity free:

$$\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$$

 \bullet consider an arbitrary point $\mathbf{M_1}$ in $\mathcal W$

Checking if a workspace \mathcal{W} is singularity free:

 $\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$

- \bullet consider an arbitrary point $\mathbf{M_1}$ in $\mathcal W$
- compute the sign of $|\mathbf{J}(\mathbf{M_1})|$, say > 0 (use IA to certify)

$$\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$$

- \bullet consider an arbitrary point $\mathbf{M_1}$ in $\mathcal W$
- compute the sign of $|\mathbf{J}(\mathbf{M_1})|$, say > 0 (use IA to certify)
- \bullet if we find a pose $\mathbf{M_2}$ with $|\mathbf{J}(\mathbf{M_2})| < 0$

Checking if a workspace \mathcal{W} is singularity free:

$$\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$$

- \bullet consider an arbitrary point $\mathbf{M_1}$ in $\mathcal W$
- compute the sign of $|\mathbf{J}(\mathbf{M_1})|$, say > 0 (use IA to certify)
- \bullet if we find a pose $\mathbf{M_2}$ with $|\mathbf{J}(\mathbf{M_2})| < 0$

then any path from $\mathbf{M_1}$ to $\mathbf{M_2}$ crosses a singularity

 \downarrow

Checking if a workspace \mathcal{W} is singularity free:

 $\forall \mathbf{X} \in \mathcal{W} \quad |\mathbf{J}(\mathbf{X}, \mathbf{P}))| \neq 0$

- \bullet consider an arbitrary point $\mathbf{M_1}$ in $\mathcal W$
- compute the sign of $|\mathbf{J}(\mathbf{M_1})|$, say > 0 (use IA to certify)
- \bullet if we find a pose $\mathbf{M_2}$ with $|\mathbf{J}(\mathbf{M_2})| < 0$

 ${\cal W}$ includes a singularity

 \downarrow

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})| < 0$

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})| < 0$

Evaluation function: compute the sign of $|\mathbf{J}(\mathcal{B})|$

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})| < 0$

Evaluation function: compute the sign of $|\mathbf{J}(\mathcal{B})|$

- minor expansion
- Gaussian elimination

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})| < 0$

Ingredients of the algorithm:

- a box: a set of ranges for $x, y, z, \psi, \theta, \phi$
- a list S = {B₁, B₂, ...} of boxes. Initially S = {W} but boxes will be added
- an *index* i to indicate which box in S is processed

Algorithm

1. $F = [\underline{F}, \overline{F}]$ =interval evaluation of $|\mathbf{J}(B_i)|$

Algorithm

- 1. $F = [\underline{F}, \overline{F}]$ =interval evaluation of $|\mathbf{J}(B_i)|$
- **2.** <u>*F*</u> > 0: no **x** in B_i with $|\mathbf{J}(\mathbf{X})| < 0$, i = i + 1, goto **1**

Algorithm

- 1. $F = [\underline{F}, \overline{F}]$ =interval evaluation of $|\mathbf{J}(B_i)|$
- **2.** <u>*F*</u> > 0: no **x** in B_i with $|\mathbf{J}(\mathbf{X})| < 0$, i = i + 1, goto **1**
- 3. $\overline{F} < 0$: for all **x** in B_i negative determinant, SINGULARITY

Algorithm

- 1. $F = [\underline{F}, \overline{F}]$ =interval evaluation of $|\mathbf{J}(B_i)|$
- **2.** <u>*F*</u> > 0: no **x** in B_i with $|\mathbf{J}(\mathbf{X})| < 0$, i = i + 1, goto **1**
- 3. $\overline{F} < 0$: for all **x** in B_i negative determinant, SINGULARITY
- 4. $\underline{F} < 0, \overline{F} > 0$: split the box in two, add the 2 new boxes at the end of the list, i = i + 1, goto 1

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

• Theorem 1: if the determinants of all 2^{n^2} extremal matrices have same sign \Rightarrow no singular matrices in J

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

- Theorem 1: if the determinants of all 2^{n^2} extremal matrices have same sign \Rightarrow no singular matrices in J
- Theorem 2: only 2^{2n-1} such matrices must be checked (Rohn, Rex)

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

- Theorem 1: if the determinants of all 2^{n^2} extremal matrices have same sign \Rightarrow no singular matrices in J
- Theorem 2: only 2^{2n-1} such matrices must be checked (Rohn, Rex)

Rohn test can be used as a filter

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

• computation time to show that \mathcal{W} is singularity-free: **0.01s**

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

• computation time to show that \mathcal{W} is singularity-free: **0.01s**

the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

• computation time to show that \mathcal{W} is singularity-free: |0.01s|

the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)

• \pm 0.1 uncertainties on the location of the anchor points: |515s

Example: robot with base radius 13, platform radius 8 Workspace: $x, y \in [-15, 15], z \in [45, 50], \psi, \theta, \phi \in [-15^{\circ}, 15^{\circ}]$

• computation time to show that W is singularity-free: 0.01s

the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)

• \pm 0.1 uncertainties on the location of the anchor points: |5155

meaning that ALL robots in this family are singularity-free

How can can we define a singularity index ?

How can can we define a singularity index ?

• that is invariant with units choice

How can can we define a singularity index ?

- that is invariant with units choice
- that has a physical meaning

Classical indices rely on the jacobian of the robot

Example: manipulability ellipsoid

possible accuracy index I: σ_{max}

In fact $\Delta \Theta$ bounded means: $|\Delta \Theta_i| \leq 1$

- each $\Delta \Theta_i$ is independent
- the possible region for $\Delta \Theta$ is a square
- the linear mapping induced by J⁻¹ transforms this square into a tilted rectangle

• σ_{max} is not the maximal positioning error

Another example: condition number

Another example: condition number

$$\mathbf{J^{-1}}(\mathbf{X})\mathbf{\Delta X} = \mathbf{\Delta \Theta}$$

$$\frac{||\Delta \mathbf{X}||}{||\mathbf{X}||} \le ||\mathbf{J}^{-1}||||\mathbf{J}||\frac{||\Delta \Theta||}{||\Theta||}$$

condition number κ : $||\mathbf{J}^{-1}||||\mathbf{J}|| \Rightarrow$ relative amplification factor

Condition number:

- local index
- has usually no closed-form
- value changes with the norm choice
- usual norms: 2-norm, Frobenius norm $\Rightarrow \kappa \in [1,\infty]$
- $1/\kappa$ often used, $1/\kappa \in [0,1]$, 0 at a singularity
- meaning when the robot has both translation and orientation d.o.f. ?

Validity of the condition number Xľ V Ζ V X

3 reference poses P_1, P_2, P_3

 $\left|\Delta\Theta^a\right| \le 1$

$$\Delta X_{x,y,z,\theta_x,\theta_y,\theta_z} = \sum_{k=1}^{k=6} |J_{x,y,z,\theta_x,\theta_y,\theta_z}^k|$$

ranking according to accuracy: $P_1 \gg P_2 > P_3$

Not really consistent with accuracy ranking !

. — p.9/1

Global conditioning indices

To characterize the dexterity over a given workspace \boldsymbol{W}

$$GCI = \frac{\int_{W} \left(\frac{1}{\kappa} \right) dW}{\int_{W} dW}$$

Problem: how to compute it ?

- sample each W axis, step $l \to m$ poses, GCI = $\frac{\sum \kappa_i}{m}$,
- computation time: $O(l^6)$, error ?
- assumption: if $\frac{\operatorname{GCI}(m+50) \operatorname{GCI}(m)}{\operatorname{GCI}(m+50)} \leq 0.5\%$, then $\frac{|\operatorname{GCI} \operatorname{GCI}(m+50)|}{\operatorname{GCI}} \leq 0.5\%$ wrong!

Counter example: planar 2R robot

condition number only function of θ_2 :

GCI can be calculated exactly

 $\frac{{\rm GCI}(60)-{\rm GCI}(50)}{{\rm GCI}(60)}=0.3768\%$ while

$$rac{|\text{GCI}-\text{GCI}(60)|}{\text{GCI}} = 1.7514\%$$

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

 $|\mathbf{J}^{-\mathbf{T}}| = 0$ leads to a problem ...

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

 $|\mathbf{J}^{-\mathbf{T}}| = 0$ leads to a problem ... except if we have also $|\mathbf{M}| = 0$

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

 $|\mathbf{J}^{-\mathbf{T}}| = 0$ leads to a problem ...

except if we have also $|\mathbf{M}| = 0$

At a singularity we may still have finite articular forces

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

 $|\mathbf{J}^{-\mathbf{T}}| = 0$ leads to a problem ...

except if we have also $|\mathbf{M}| = 0$

At a singularity we may still have finite articular forces but in the vicinity of a singularity we may have very large articular forces

$$\tau_j = \frac{|\mathbf{M}|}{|\mathbf{J}^{-\mathbf{T}}|}$$

 $|\mathbf{J}^{-\mathbf{T}}| = 0$ leads to a problem ...

except if we have also $|\mathbf{M}| = 0$

At a singularity we may still have finite articular forces but in the vicinity of a singularity we may have very large articular forces

Hence we have to consider also the vicinity of a singularity

• we define a maximal force/torque τ_{max} for the kinematic chains

- we define a maximal force/torque τ_{max} for the kinematic chains
- the closeness to a singularity is defined as

$$d = Min(\tau_{max} - |\tau_j|)$$

- we define a maximal force/torque τ_{max} for the kinematic chains
- the closeness to a singularity is defined as

$$d = Min(\tau_{max} - |\tau_j|)$$

- $d \ge 0$ if $|\tau_j| \le \tau_{max}$
- $d < 0 \Rightarrow$ breakdown of the mechanism

- we define a maximal force/torque τ_{max} for the kinematic chains
- the closeness to a singularity is defined as

$$d = Min(\tau_{max} - |\tau_j|)$$

- $d \ge 0$ if $|\tau_j| \le \tau_{max}$
- $d < 0 \Rightarrow$ breakdown of the mechanism

closeness is unit invariant, has a physical meaning

Static workspace

Static workspace: location of the EE such that $d \ge 0$

Static workspace

Static workspace: location of the EE such that $d \ge 0$ \downarrow no breakdown of the mechanism

Static workspace: location of the EE such that $d \ge 0$

How can we compute the static workspace ?

Static workspace

Static workspace: location of the EE such that $d \ge 0$

How can we compute the static workspace ?

- for a given load
- for a set of loads

- for a 2 dof robot
- for a given load

- for a 2 dof robot
- for a given load

we can calculate in closed-form part of analytic curves that will be part of the border of the static workspace

- for a *n* dof robot
- for a set of loads
- with uncertainties on the robot's geometry

- for a *n* dof robot
- for a set of loads
- with uncertainties on the robot's geometry

Interval analysis algorithm allows to obtain an accurate approximation of the static workspace

Example: cross-section of a 6D static workspace

Conclusion

- checking if a singularity is present in a given workspace is feasible efficiently
- just forget about so-called singularity, dexterity indices
- the best singularity index is the one that will prohibit your robot to do its job

