Numerical approaches to

 singularity analysis,
singularity index and new

concepts
 J-P. Merlet

I $N_{\text {sorman }} R I A$

You have already seen:

You have already seen:

- an algebraic approach to singularity analysis

You have already seen:

- an algebraic approach to singularity analysis
- a geometrical approach to singularity analysis

What you will see now:

What you will see now:

- a numerical approach of singularity analysis

What you will see now:

- a numerical approach of singularity analysis
- what should not be used as "distance" to singularity

What you will see now:

- a numerical approach of singularity analysis
- what should not be used as "distance" to singularity
- another approach to singularity analysis
want to see a motion from one solution of the forward kinematics to another one without singularity crossing ?

Interval analysis

Interval analysis

Interval $\mathcal{X}=[\underline{x}, \bar{x}]$, width $w(\mathcal{X})=\bar{x}-\underline{x}$

Interval analysis

Interval $\mathcal{X}=[\underline{x}, \bar{x}]$, width $w(\mathcal{X})=\bar{x}-\underline{x}$

- a function $f(x)$
- interval evaluation of f when $x \in \mathcal{X}$: a range $[\underline{F}, \bar{F}]$ such that

$$
\forall x \in \mathcal{X} \text { we have }: \underline{F} \leq f(x) \leq \bar{F}
$$

Interval analysis

How to construct an interval evaluation? the simplest one is the natural evaluation:
substitute each mathematical operator by its interval equivalent

Interval analysis

Example: $F=x^{2}+\cos (x), x \in[0,1]$
Problem: find $[A, B]$ such that: $A \leq F(x) \leq B \forall x \in$ $[0,1]$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])
$$

Interval analysis

Interval analysis

Interval analysis

Interval analysis

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

- 0 not included in $[0.54,2] \Rightarrow F \neq 0 \forall x \in[0,1]$

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

- 0 not included in $[0.54,2] \Rightarrow F \neq 0 \forall x \in[0,1]$
- $F>0 \forall x \in[0,1]$
- $\forall x \in[0,1]$ we have $0.54 \leq F \leq 2$ (global optimization)

Interval analysis

$$
F=[0,1]^{2}+\cos ([0,1])=[0,1]+[0.54,1]=[0.54,2]
$$

We have calculated an interval evaluation of F for the range $[0,1]$

Properties

Properties

- can be implemented to take into account round-off errors

Properties

- can be implemented to take into account round-off errors
- Overestimation of \underline{F}, \bar{F} but decreases with the size of the ranges

Example: singularity checking

A crucial problem for parallel robot: no singularity in a given workspace \mathcal{W}

Example: singularity checking

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

Example: singularity checking

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

Mechanical equilibrium: $\mathcal{F}=\mathbf{J}(\mathbf{X}, \mathbf{P}) \tau$

Example: singularity checking

- τ : force/torque in the actuated joints
- \mathcal{F} : external forces/torques applied on the platform

Mechanical equilibrium: $\mathcal{F}=\mathbf{J}(\mathbf{X}, \mathbf{P}) \tau$ linear system in τ

$$
\tau_{i}=\frac{|\ldots|}{|\mathbf{J}|}
$$

if $|\mathbf{J}| \rightarrow 0$ possibly $\tau_{i} \rightarrow \infty$

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

- consider an arbitrary point M_{1} in \mathcal{W}

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

- consider an arbitrary point M_{1} in \mathcal{W}
- compute the sign of $\left|\mathbf{J}\left(\mathbf{M}_{1}\right)\right|$, say >0 (use IA to certify)

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

- consider an arbitrary point M_{1} in \mathcal{W}
- compute the sign of $\left|\mathbf{J}\left(\mathbf{M}_{1}\right)\right|$, say >0 (use IA to certify)
- if we find a pose $\mathbf{M}_{\mathbf{2}}$ with $\left|\mathbf{J}\left(\mathbf{M}_{\mathbf{2}}\right)\right|<0$

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

- consider an arbitrary point M_{1} in \mathcal{W}
- compute the sign of $\left|\mathbf{J}\left(\mathbf{M}_{1}\right)\right|$, say >0 (use IA to certify)
- if we find a pose $\mathbf{M}_{\mathbf{2}}$ with $\left|\mathbf{J}\left(\mathbf{M}_{\mathbf{2}}\right)\right|<0$
\Downarrow
then any path from M_{1} to M_{2} crosses a singularity

Example: singularity checking

Checking if a workspace \mathcal{W} is singularity free:

$$
\forall \mathbf{X} \in \mathcal{W} \quad \mid \mathbf{J}(\mathbf{X}, \mathbf{P})) \mid \neq 0
$$

- consider an arbitrary point M_{1} in \mathcal{W}
- compute the sign of $\left|\mathbf{J}\left(\mathbf{M}_{1}\right)\right|$, say >0 (use IA to certify)
- if we find a pose $\mathbf{M}_{\mathbf{2}}$ with $\left|\mathbf{J}\left(\mathbf{M}_{\mathbf{2}}\right)\right|<0$
\Downarrow
\mathcal{W} includes a singularity

Singularity checking with IA

Singularity checking with IA

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})|<0$

Singularity checking with IA

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})|<0$
Evaluation function: compute the sign of $|\mathbf{J}(\mathcal{B})|$

Singularity checking with IA

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})|<0$
Evaluation function: compute the sign of $|\mathbf{J}(\mathcal{B})|$

- minor expansion
- Gaussian elimination

Singularity checking with IA

Objective: find a box \mathcal{B} for which $|\mathbf{J}(\mathcal{B})|<0$

Singularity checking with IA

Ingredients of the algorithm:

- a box: a set of ranges for $x, y, z, \psi, \theta, \phi$
- a list $\mathcal{S}=\left\{B_{1}, B_{2}, \ldots\right\}$ of boxes. Initially $\mathcal{S}=\{\mathcal{W}\}$ but boxes will be added
- an index i to indicate which box in \mathcal{S} is processed

Singularity checking with IA

Algorithm

1. $F=[\underline{F}, \bar{F}]=$ interval evaluation of $\left|\mathbf{J}\left(B_{i}\right)\right|$

Singularity checking with IA

Algorithm

1. $F=[\underline{F}, \bar{F}]=$ interval evaluation of $\left|\mathbf{J}\left(B_{i}\right)\right|$
2. $\underline{F}>0$: no \mathbf{x} in B_{i} with $|\mathbf{J}(\mathbf{X})|<0, i=i+1$, goto 1

Singularity checking with IA

Algorithm

1. $F=[\underline{F}, \bar{F}]=$ interval evaluation of $\left|\mathbf{J}\left(B_{i}\right)\right|$
2. $\underline{F}>0$: no \mathbf{x} in B_{i} with $|\mathbf{J}(\mathbf{X})|<0, i=i+1$, goto 1
3. $\bar{F}<0$: for all \mathbf{x} in B_{i} negative determinant, SINGULARITY

Singularity checking with IA

Algorithm

1. $F=[\underline{F}, \bar{F}]=$ interval evaluation of $\left|\mathbf{J}\left(B_{i}\right)\right|$
2. $\underline{F}>0$: no \mathbf{x} in B_{i} with $|\mathbf{J}(\mathbf{X})|<0, i=i+1$, goto 1
3. $\bar{F}<0$: for all \mathbf{x} in B_{i} negative determinant, SINGULARITY
4. $\underline{F}<0, \bar{F}>0$: split the box in two, add the 2 new boxes at the end of the list, $i=i+1$, goto 1

Singularity checking with IA

Improvement
Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

- Theorem 1: if the determinants of all $2^{n^{2}}$ extremal matrices have same sign \Rightarrow no singular matrices in J

Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

- Theorem 1: if the determinants of all $2^{n^{2}}$ extremal matrices have same sign \Rightarrow no singular matrices in J
- Theorem 2: only $2^{2 n-1}$ such matrices must be checked (Rohn, Rex)

Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements either the lower or upper bound of the corresponding elements in J

- Theorem 1: if the determinants of all $2^{n^{2}}$ extremal matrices have same sign \Rightarrow no singular matrices in J
- Theorem 2: only $2^{2 n-1}$ such matrices must be checked (Rohn, Rex)

Rohn test can be used as a filter

Computation time

Computation time

Example: robot with base radius 13, platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

Computation time

Example: robot with base radius 13 , platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

Computation time

Example: robot with base radius 13, platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

- computation time to show that \mathcal{W} is singularity-free: 0.01 s

Computation time

Example: robot with base radius 13 , platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

- computation time to show that \mathcal{W} is singularity-free: 0.01 s
the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)

Computation time

Example: robot with base radius 13 , platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

- computation time to show that \mathcal{W} is singularity-free: 0.01 s
the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)
$\bullet \pm 0.1$ uncertainties on the location of the anchor points: 515 s

Computation time

Example: robot with base radius 13 , platform radius 8
Workspace: $x, y \in[-15,15], z \in[45,50], \psi, \theta, \phi \in\left[-15^{\circ}, 15^{\circ}\right]$

- computation time to show that \mathcal{W} is singularity-free: 0.01 S
the algorithm is able to handle uncertainty in the location of the anchor points (+36 variables)
- ± 0.1 uncertainties on the location of the anchor points: 515 s
meaning that ALL robots in this family are singularity-free

Singularity index

Singularity index

How can can we define a singularity index ?

Singularity index

How can can we define a singularity index ?

- that is invariant with units choice

Singularity index

How can can we define a singularity index ?

- that is invariant with units choice
- that has a physical meaning

Singularity index

Singularity index

Classical indices rely on the jacobian of the robot

Singularity index

Example: manipulability ellipsoid

Singularity index

Example: manipulability ellipsoid
$\boldsymbol{\Delta} \boldsymbol{\Theta}^{T} \boldsymbol{\Delta} \boldsymbol{\Theta} \leq 1 \quad \Rightarrow \quad \boldsymbol{\Delta} \mathbf{X}^{T} J^{-T} J^{-1} \boldsymbol{\Delta} \mathbf{X} \leq 1$

possible accuracy index I : $\sigma_{\max }$

Singularity index

In fact $\Delta \Theta$ bounded means: $\left|\Delta \Theta_{i}\right| \leq 1$

- each $\Delta \Theta_{i}$ is independent
- the possible region for $\Delta \Theta$ is a square
- the linear mapping induced by J^{-1} transforms this square into a tilted rectangle

Singularity index

- $\sigma_{\max }$ is not the maximal positioning error

Singularity index

Another example: condition number

Singularity index

Another example: condition number

$$
\mathbf{J}^{-\mathbf{1}}(\mathbf{X}) \Delta \mathbf{X}=\Delta \Theta
$$

$$
\frac{\|\Delta \mathbf{X}\|}{\|\mathbf{X}\|} \leq\left\|\mathbf{J}^{-\mathbf{1}}\right\|\|\mathbf{J}\| \frac{\|\Delta \Theta\|}{\|\Theta\|}
$$

condition number $\kappa:\left\|\mathbf{J}^{\mathbf{- 1}}| || | \mathbf{J}\right\| \Rightarrow$ relative amplification factor

Singularity index

Condition number:

- local index
- has usually no closed-form
- value changes with the norm choice
- usual norms: 2 -norm, Frobenius norm $\Rightarrow \kappa \in[1, \infty]$
- $1 / \kappa$ often used, $1 / \kappa \in[0,1], 0$ at a singularity
- meaning when the robot has both translation and orientation d.o.f.?

Singularity index

Validity of the condition number

3 reference poses P_{1}, P_{2}, P_{3}

$$
\left|\Delta \Theta^{a}\right| \leq 1
$$

$$
\Delta X_{x, y, z, \theta_{x}, \theta_{y}, \theta_{z}}=\sum_{k=1}^{k=6}\left|J_{x, y, z, \theta_{x}, \theta_{y}, \theta_{z}}^{k}\right|
$$

ranking according to accuracy: $P_{1} \gg P_{2}>P_{3}$

Singularity index

larger error

$C_{d}: \quad\left|\mathbf{J}^{-1}\right|$ (manipulability) $\quad C_{2}: \quad \kappa$, 2-norm
$C_{2}^{n}: \quad \kappa$, 2-norm, normalized $\mathbf{J}^{-1} \quad C_{F}: \quad \kappa$, Frobenius
$C_{F}^{n}: \quad \kappa$, Frobenius, normalized \mathbf{J}^{-1}
$M_{t}: \quad \kappa$, translation part $J \quad M_{o}: \quad \kappa$, orientation part J

Singularity index

Not really consistent with accuracy ranking!

Singularity index

Global conditioning indices
To characterize the dexterity over a given workspace W

$$
\begin{aligned}
\mathrm{GCI}= & \frac{\int_{W}\left(\frac{1}{\kappa}\right) d W}{\int_{W} d W}
\end{aligned}
$$

Problem: how to compute it ?

Singularity index

- sample each W axis, step $l \rightarrow m$ poses, $\mathrm{GCI}=\frac{\sum \kappa_{i}}{m}$,
- computation time: $O\left(l^{6}\right)$, error ?
- assumption: if $\frac{\operatorname{GCI}(m+50)-\mathrm{GCI}(m)}{\operatorname{GCI}(m+50)} \leq 0.5 \%$, then

$$
\frac{|\mathrm{GCI}-\mathrm{GCI}(m+50)|}{\mathrm{GCI}} \leq 0.5 \% \quad \text { wrong! }
$$

Singularity index

Counter example: planar 2 R robot

condition number only function of θ_{2} :
GCl can be calculated exactly
$\frac{\mathrm{GCI}(60)-\mathrm{GCI}(50)}{\mathrm{GCI}(60)}=0.3768 \%$ while $\quad \frac{|\mathrm{GCI}-\mathrm{GCI}(60)|}{\mathrm{GCI}}=1.7514 \%$

Another approach

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

$\left|\mathbf{J}^{-\mathbf{T}}\right|=0$ leads to a problem \ldots

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

$\left|\mathbf{J}^{-\mathbf{T}}\right|=0$ leads to a problem \ldots
except if we have also $|\mathbf{M}|=0$

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

$\left|\mathbf{J}^{-\mathbf{T}}\right|=0$ leads to a problem \ldots
except if we have also $|\mathbf{M}|=0$
At a singularity we may still have finite articular forces

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

$\left|\mathbf{J}^{-\mathbf{T}}\right|=0$ leads to a problem...
except if we have also $|\mathbf{M}|=0$
At a singularity we may still have finite articular forces
but in the vicinity of a singularity we may have very large articular forces

Another approach

$$
\tau_{j}=\frac{|\mathbf{M}|}{\left|\mathbf{J}^{-\mathbf{T}}\right|}
$$

$\left|\mathbf{J}^{-\mathbf{T}}\right|=0$ leads to a problem \ldots
except if we have also $|\mathbf{M}|=0$
At a singularity we may still have finite articular forces
but in the vicinity of a singularity we may have very large articular forces

Hence we have to consider also the vicinity of a singularity

- we define a maximal force/torque $\tau_{\max }$ for the kinematic chains
- we define a maximal force/torque $\tau_{\max }$ for the kinematic chains
- the closeness to a singularity is defined as

$$
d=\operatorname{Min}\left(\tau_{\max }-\left|\tau_{j}\right|\right)
$$

- we define a maximal force/torque $\tau_{\max }$ for the kinematic chains
- the closeness to a singularity is defined as

$$
d=\operatorname{Min}\left(\tau_{\max }-\left|\tau_{j}\right|\right)
$$

- $d \geq 0$ if $\left|\tau_{j}\right| \leq \tau_{\max }$
- $d<0 \Rightarrow$ breakdown of the mechanism
- we define a maximal force/torque $\tau_{\max }$ for the kinematic chains
- the closeness to a singularity is defined as

$$
d=\operatorname{Min}\left(\tau_{\max }-\left|\tau_{j}\right|\right)
$$

- $d \geq 0$ if $\left|\tau_{j}\right| \leq \tau_{\text {max }}$
- $d<0 \Rightarrow$ breakdown of the mechanism
closeness is unit invariant, has a physical meaning

Static workspace

Static workspace

Static workspace: location of the EE such that $d \geq 0$

Static workspace

Static workspace: location of the EE such that $d \geq 0$

\Downarrow
 no breakdown of the mechanism

Static workspace

Static workspace: location of the EE such that $d \geq 0$
How can we compute the static workspace?

Static workspace

Static workspace: location of the EE such that $d \geq 0$
How can we compute the static workspace?

- for a given load
- for a set of loads

Static workspace: 2D case

Static workspace: 2D case

- for a 2 dof robot
- for a given load

Static workspace: 2D case

- for a 2 dof robot
- for a given load
we can calculate in closed-form part of analytic curves that will be part of the border of the static workspace

Static workspace: 2D case

Static workspace: 2D case

RI INRIA

Static workspace: general case

Static workspace: general case

- for a n dof robot
- for a set of loads
- with uncertainties on the robot's geometry

Static workspace: general case

- for a n dof robot
- for a set of loads
- with uncertainties on the robot's geometry

Interval analysis algorithm allows to obtain an accurate approximation of the static workspace

Static workspace: general case

Example: cross-section of a 6D static workspace

Conclusion

- checking if a singularity is present in a given workspace is feasible efficiently
- just forget about so-called singularity, dexterity indices
- the best singularity index is the one that will prohibit your robot to do its job

