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Numerical approaches to

singularity analysis,

singularity index and new

concepts
J-P. Merlet
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You have already seen:
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You have already seen:
• an algebraic approach to singularity analysis
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You have already seen:
• an algebraic approach to singularity analysis
• a geometrical approach to singularity analysis
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What you will see now:
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What you will see now:
• a numerical approach of singularity analysis
• what should not be used as "distance" to

singularity
• another approach to singularity analysis

want to see a motion from one solution of

the forward kinematics to another one without

singularity crossing ?
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Interval analysis

. – p.3/16



3/2

Interval analysis

Interval X = [x, x], width w(X ) = x− x
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Interval analysis

Interval X = [x, x], width w(X ) = x− x

• a function f(x)

• interval evaluation of f when x ∈ X : a range [F , F ] such
that

∀ x ∈ X we have : F ≤ f(x) ≤ F

. – p.3/16



3/2

Interval analysis

How to construct an interval evaluation ? the simplest one
is the natural evaluation:

substitute each mathematical operator by its interval equiv-

alent
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Interval analysis

Example: F = x2 + cos(x), x ∈ [0, 1]

Problem: find [A,B] such that: A ≤ F (x) ≤ B ∀ x ∈

[0, 1]
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Interval analysis

F = [0, 1]2 + cos([0, 1])
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Interval analysis

F = [0, 1]2 + cos([0, 1])
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0, 1] + cos([0, 1])
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0, 1] + cos([0, 1])
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0, 1] + [0.54, 1]
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0,1]+[0.54,1]
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0,1]+[0.54,1] = [0.54,2]
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0,1]+[0.54,1] = [0.54,2]

• 0 not included in [0.54,2] ⇒ F 6= 0 ∀ x ∈ [0, 1]
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Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0,1]+[0.54,1] = [0.54,2]

• 0 not included in [0.54,2] ⇒ F 6= 0 ∀ x ∈ [0, 1]

• F > 0 ∀ x ∈ [0, 1]

• ∀ x ∈ [0, 1] we have 0.54 ≤ F ≤ 2 (global
optimization)

. – p.3/16



3/2

Interval analysis

F = [0, 1]2 + cos([0, 1]) = [0,1]+[0.54,1] = [0.54,2]

We have calculated an interval evaluation of F for

the range [0,1]
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Properties
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Properties

• can be implemented to take into account round-off errors
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Properties

• can be implemented to take into account round-off errors

• Overestimation of F, F but decreases with the size of
the ranges
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Example: singularity checking

A crucial problem for parallel robot: no singularity in a
given workspace W

C

O

x
y

z
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Example: singularity checking

• τ : force/torque in the actuated joints

• F : external forces/torques applied on the platform
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Example: singularity checking

• τ : force/torque in the actuated joints

• F : external forces/torques applied on the platform

Mechanical equilibrium: F = J(X,P)τ
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Example: singularity checking

• τ : force/torque in the actuated joints

• F : external forces/torques applied on the platform

Mechanical equilibrium: F = J(X,P)τ

linear system in τ

τi =
| . . . |

|J|

if |J| → 0 possibly τi → ∞
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Example: singularity checking

Checking if a workspace W is singularity free:

∀X ∈ W |J(X,P))| 6= 0
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Example: singularity checking

Checking if a workspace W is singularity free:

∀X ∈ W |J(X,P))| 6= 0

• consider an arbitrary point M1 in W

• compute the sign of |J(M1)|, say > 0 (use IA to certify)
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Example: singularity checking

Checking if a workspace W is singularity free:

∀X ∈ W |J(X,P))| 6= 0

• consider an arbitrary point M1 in W

• compute the sign of |J(M1)|, say > 0 (use IA to certify)

• if we find a pose M2 with |J(M2)| < 0
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Example: singularity checking

Checking if a workspace W is singularity free:

∀X ∈ W |J(X,P))| 6= 0

• consider an arbitrary point M1 in W

• compute the sign of |J(M1)|, say > 0 (use IA to certify)
• if we find a pose M2 with |J(M2)| < 0

⇓

then any path from M1 to M2 crosses a singularity
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Example: singularity checking

Checking if a workspace W is singularity free:

∀X ∈ W |J(X,P))| 6= 0

• consider an arbitrary point M1 in W

• compute the sign of |J(M1)|, say > 0 (use IA to certify)
• if we find a pose M2 with |J(M2)| < 0

⇓

W includes a singularity
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Singularity checking with IA
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Singularity checking with IA

Objective: find a box B for which |J(B)| < 0
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Singularity checking with IA

Objective: find a box B for which |J(B)| < 0

Evaluation function: compute the sign of |J(B)|
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Singularity checking with IA

Objective: find a box B for which |J(B)| < 0

Evaluation function: compute the sign of |J(B)|

• minor expansion

• Gaussian elimination
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Singularity checking with IA

Objective: find a box B for which |J(B)| < 0
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Singularity checking with IA

Ingredients of the algorithm:

• a box: a set of ranges for x, y, z, ψ, θ, φ

• a list S = {B1, B2, . . .} of boxes. Initially S = {W} but
boxes will be added

• an index i to indicate which box in S is processed
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Singularity checking with IA

Algorithm

1. F = [F, F ]=interval evaluation of |J(Bi)|
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Singularity checking with IA

Algorithm

1. F = [F, F ]=interval evaluation of |J(Bi)|

2. F > 0: no X in Bi with |J(X)| < 0, i = i+ 1, goto 1
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Singularity checking with IA

Algorithm

1. F = [F, F ]=interval evaluation of |J(Bi)|

2. F > 0: no X in Bi with |J(X)| < 0, i = i+ 1, goto 1

3. F < 0: for all X in Bi negative determinant,
SINGULARITY
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Singularity checking with IA

Algorithm

1. F = [F, F ]=interval evaluation of |J(Bi)|

2. F > 0: no X in Bi with |J(X)| < 0, i = i+ 1, goto 1

3. F < 0: for all X in Bi negative determinant,
SINGULARITY

4. F < 0, F > 0: split the box in two, add the 2 new boxes
at the end of the list, i = i+ 1, goto 1
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Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements
either the lower or upper bound of the corresponding
elements in J
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Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements
either the lower or upper bound of the corresponding
elements in J

• Theorem 1: if the determinants of all 2n2

extremal
matrices have same sign ⇒ no singular matrices in J
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Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements
either the lower or upper bound of the corresponding
elements in J

• Theorem 1: if the determinants of all 2n2

extremal
matrices have same sign ⇒ no singular matrices in J

• Theorem 2: only 22n−1 such matrices must be checked
(Rohn, Rex)
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Singularity checking with IA

Improvement

Extremal matrices: all scalar matrices with as elements
either the lower or upper bound of the corresponding
elements in J

• Theorem 1: if the determinants of all 2n2

extremal
matrices have same sign ⇒ no singular matrices in J

• Theorem 2: only 22n−1 such matrices must be checked
(Rohn, Rex)

Rohn test can be used as a filter

. – p.6/16



7/2

Computation time
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Computation time

Example: robot with base radius 13, platform radius 8
Workspace: x, y ∈ [−15, 15], z ∈ [45, 50], ψ, θ, φ ∈ [−15◦, 15◦]
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Computation time

Example: robot with base radius 13, platform radius 8
Workspace: x, y ∈ [−15, 15], z ∈ [45, 50], ψ, θ, φ ∈ [−15◦, 15◦]

• computation time to show that W is singularity-free: 0.01s
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Computation time

Example: robot with base radius 13, platform radius 8
Workspace: x, y ∈ [−15, 15], z ∈ [45, 50], ψ, θ, φ ∈ [−15◦, 15◦]

• computation time to show that W is singularity-free: 0.01s

the algorithm is able to handle uncertainty in the location of the anchor
points (+36 variables)
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Example: robot with base radius 13, platform radius 8
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• computation time to show that W is singularity-free: 0.01s

the algorithm is able to handle uncertainty in the location of the anchor
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• ± 0.1 uncertainties on the location of the anchor points: 515s

. – p.7/16



7/2

Computation time

Example: robot with base radius 13, platform radius 8
Workspace: x, y ∈ [−15, 15], z ∈ [45, 50], ψ, θ, φ ∈ [−15◦, 15◦]

• computation time to show that W is singularity-free: 0.01s

the algorithm is able to handle uncertainty in the location of the anchor
points (+36 variables)

• ± 0.1 uncertainties on the location of the anchor points: 515s

meaning that ALL robots in this family are singularity-free
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Singularity index
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Singularity index

How can can we define a singularity index ?
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Singularity index

How can can we define a singularity index ?

• that is invariant with units choice
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Singularity index

How can can we define a singularity index ?

• that is invariant with units choice

• that has a physical meaning
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Singularity index

. – p.9/16



9/2

Singularity index

Classical indices rely on the jacobian of the robot
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Singularity index

Example: manipulability ellipsoid
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Singularity index

Example: manipulability ellipsoid
∆Θ

T
∆Θ ≤ 1 ⇒ ∆X

TJ−TJ−1
∆X ≤ 1

∆Θ1

∆Θ2

∆x

∆y

J−TJ−1

σmin

σmax
possible accuracy index I: σmax
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Singularity index

In fact ∆Θ bounded means: |∆Θi| ≤ 1

• each ∆Θi is independent

• the possible region for ∆Θ is a square

• the linear mapping induced by J−1 transforms this
square into a tilted rectangle
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Singularity index

∆Θ1

∆Θ2

∆x

∆y

J

σmin
σmax

• σmax is not the maximal positioning error
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Singularity index

Another example: condition number
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Singularity index

Another example: condition number

J
−1(X)∆X = ∆Θ

||∆X||

||X||
≤ ||J−1||||J||

||∆Θ||

||Θ||

condition number κ: ||J−1||||J|| ⇒ relative amplification factor
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Singularity index

Condition number:

• local index

• has usually no closed-form

• value changes with the norm choice

• usual norms: 2-norm, Frobenius norm ⇒ κ ∈ [1,∞]

• 1/κ often used, 1/κ ∈ [0, 1], 0 at a singularity

• meaning when the robot has both translation and orientation

d.o.f. ?
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Singularity index

Validity of the condition number

x y

z

xr
yr

zr

3 reference poses P1, P2, P3

|∆Θa| ≤ 1

∆Xx,y,z,θx,θy,θz
=

∑k=6
k=1 |J

k
x,y,z,θx,θy ,θz

|

ranking according to accuracy: P1 ≫ P2 > P3
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Singularity index

Cd

P2

P3

C2

P2

P3

Cn
2

P2

P3

CF

P2

P3

Cn
F

P2

P3

Mt

P2

P3

Mo

P2

P3

larger error

Cd: |J−1| (manipulability) C2: κ, 2-norm

Cn
2 : κ, 2-norm, normalized J

−1 CF : κ, Frobenius

Cn
F : κ, Frobenius, normalized J

−1

Mt: κ, translation part J Mo: κ, orientation part J
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Singularity index

Not really consistent with accuracy ranking !
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Singularity index

Global conditioning indices

To characterize the dexterity over a given workspace W

GCI =

∫

W

(

1
κ

)

dW

∫

W

dW

Problem: how to compute it ?
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Singularity index

• sample each W axis, step l → m poses, GCI =
P

κi

m
,

• computation time: O(l6), error ?

• assumption: if GCI(m+50)−GCI(m)
GCI(m+50)

≤ 0.5%, then
|GCI−GCI(m+50)|

GCI
≤ 0.5% wrong!
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Singularity index

Counter example: planar 2R robot

θ1

θ2

condition number only function of θ2:
GCI can be calculated exactly
GCI(60)−GCI(50)

GCI(60)
= 0.3768% while |GCI−GCI(60)|

GCI
= 1.7514%
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Another approach
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Another approach

τj =
|M|

|J−T|
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Another approach

τj =
|M|

|J−T|

|J−T| = 0 leads to a problem . . .

except if we have also |M| = 0

At a singularity we may still have finite articular forces

but in the vicinity of a singularity we may have very large
articular forces
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Another approach

τj =
|M|

|J−T|

|J−T| = 0 leads to a problem . . .

except if we have also |M| = 0

At a singularity we may still have finite articular forces

but in the vicinity of a singularity we may have very large
articular forces

Hence we have to consider also the vicinity of a singularity
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• we define a maximal force/torque τmax for the
kinematic chains
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• we define a maximal force/torque τmax for the
kinematic chains

• the closeness to a singularity is defined as

d = Min(τmax − |τj|)
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• we define a maximal force/torque τmax for the
kinematic chains

• the closeness to a singularity is defined as

d = Min(τmax − |τj|)

• d ≥ 0 if |τj| ≤ τmax

• d < 0 ⇒ breakdown of the mechanism
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• we define a maximal force/torque τmax for the
kinematic chains

• the closeness to a singularity is defined as

d = Min(τmax − |τj|)

• d ≥ 0 if |τj| ≤ τmax

• d < 0 ⇒ breakdown of the mechanism

closeness is unit invariant, has a physical meaning
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Static workspace
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Static workspace

Static workspace: location of the EE such that d ≥ 0
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Static workspace

Static workspace: location of the EE such that d ≥ 0

⇓

no breakdown of the mechanism
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Static workspace

Static workspace: location of the EE such that d ≥ 0

How can we compute the static workspace ?
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Static workspace

Static workspace: location of the EE such that d ≥ 0

How can we compute the static workspace ?

• for a given load

• for a set of loads
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Static workspace: 2D case
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Static workspace: 2D case

• for a 2 dof robot

• for a given load
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Static workspace: 2D case

• for a 2 dof robot

• for a given load

we can calculate in closed-form part of analytic curves that

will be part of the border of the static workspace
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Static workspace: 2D case

–20

–10

0
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20

y

–30 –20 –10 0 10 20

x
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Static workspace: 2D case

–20

–10

0

10

20

y

–10 –5 0 5 10 15 20 25

x
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Static workspace: general case
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Static workspace: general case

• for a n dof robot

• for a set of loads

• with uncertainties on the robot’s geometry
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Static workspace: general case

• for a n dof robot

• for a set of loads

• with uncertainties on the robot’s geometry

Interval analysis algorithm allows to obtain an accurate ap-

proximation of the static workspace
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Static workspace: general case

Example: cross-section of a 6D static workspace
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Conclusion

• checking if a singularity is present in a given
workspace is feasible efficiently

• just forget about so-called singularity,
dexterity indices

• the best singularity index is the one that will
prohibit your robot to do its job
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