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Abstract

We study a class of size-structured, ODE models of growth in the chemostat, that take into account cell
maintenance and substrate dependent cell mortality. Unlike most classical chemostat models, they are
supposed to be non-conservative, in the sense that they do not verify the mass conservation principle.
However, using a change of time scale, we are able to obtain qualitative results. Then, using a Lyapunov
functional, we prove the global stability of the non-trivial equilibrium. Some examples of the possible
structure of the models are given to finish with. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Chemostat; Size-structured models; Non-conservative models; Cellular death; Maintenance

1. Introduction

Consider the classical two-dimensional Monod model [1]

dx
dt

¼ lðsÞx� dx; ð1aÞ

ds
dt

¼ �lðsÞxþ dðsin � sÞ; ð1bÞ

which describes the growth of a species (bacteria, phytoplankton) whose concentration is noted
x, feeding on a substrate at a concentration s, in a device called a chemostat. The latter is a
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continuous culture experimental apparatus consisting of a well-mixed closed vessel, inside which
the organisms are located. Nutrients are fed into this vessel at a rate d (called the dilution rate) and
a concentration sin. In order to keep the volume of liquid constant in the vessel, there is an outflow
of matter. Hence organisms and substrate alike are washed out of the device at the dilution rate d.
Inside the culture vessel, organisms absorb the nutrient to grow. In the Monod model, this up-
take of nutrient is supposed to take place at a rate lðsÞ, which is called the uptake rate (a non-
linear function of s). This uptake results in the growth of organisms at the same rate (this
equality assumes that the units for the organisms and the substrate are the same, as will be dis-
cussed later).

There have been numerous modifications and improvements [1] of this basic model. Most
classical chemostat analysis rely on the fact that systems like (1a) and (1b) verify a property called
the mass conservation principle: in (1a) and (1b) and its sequels, the sum of the biomass and
substrate is governed by the differential equation

dðxþ sÞ
dt

¼ d sinð � ðxþ sÞÞ:

Using this property, one can show that the sum of the biomass and of the substrate tends to a
fixed quantity (the input nutrient concentration sin). Hence the non-linearity of the system is
‘tamed’, rendering the analysis easier. Indeed, in the x-limit set, one can substitute (for example) s
by sin � x, thereby reducing (1a) and (1b) to a one-dimensional system.

From a biological point of view, however, the Monod model is a little too simple. Indeed, it
describes the total biomass in the system, without any distinction between cells. While this is
sufficient if the goal of the analysis is, for example, the prediction of the total biomass that will
result of the use of a certain dilution rate or input substrate concentration, it comes short for the
description of more specific cellular processes. One of the shortcomings is the description of the
size of the cells. Indeed, nowadays much of the data obtained, be it from laboratory chemostats or
in the sea, is size-structured, because of the prevailing use of optical particle counters, which are
able to produce structured data of good quality in almost continuous time (see e.g., the device
described in [2]). As the data is size-structured, and that manipulations of the data can yield errors
[3], it is therefore important to use it in models able to generate the same sort of ‘output’, i.e., in
size-structured models.

However, there have been very few attempts to describe a chemostat using physiologically
structured population models. Most of these works use partial differential equations [1,4–6]. There
have also been works using a discrete-time model [7–9]. All of these models verify the mass
conservation principle, and use it in a fundamental way in the proofs. There are several points that
we want to assess in this paper. First, we wish to introduce a system of ordinary differential
equations modelling a size-structured population growing in a chemostat. The use of a system of
ODEs to model a structured population is usually restricted to stage-structured populations de-
scription [10]. Hofmann in [11] briefly discusses size-structured ODE models of phytoplankton–
zooplankton interaction in the sea. However, these models are simulatory models, onto which no
thorough mathematical analysis has been conducted.

The second point that we wish to consider here is the metabolic activity (or maintenance) of
cells. The lðsÞ terms that appear in (1a) and (1b) result from two assumptions: x and s are
evaluated using the same units (for example using the mass of carbon atoms), hence no conversion
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coefficient is needed; and all of the substrate that is uptaken by a cell is used for its growth. While
the first assumption is not a problem, the second one is less obvious. Indeed, in order to ‘stay
alive’, cells indulge in activities other than growth, respiration being the most vital. Kooijman
defines [12, p. 76] maintenance as ‘‘the (mean) energy requirement of an organism, excluding the
production processes of growth, reproduction and development’’. The Dynamic Energy Budgets
approach of Kooijman [12] is very detailed, but produces models that are hard to analyse
mathematically.

Finally, we will consider cell mortality. Some authors (e.g., [13]) have shown (using Lyapunov
stability theory) that using different dilution rates for the substrate and the biomass to account for
cell mortality (using different values of d in (1a) and (1b), say respectively d1 and d0, with d1 P d0),
does not fundamentally modify the behaviour of the system provided the mortality is not too
important. Here, we will show that substrate dependent mortality can be dealt with.

The model that we introduce thus has the following characteristics: it is size-structured, ac-
counts for cell maintenance and substrate dependent cell mortality. Therefore, it does not verify
the mass conservation principle. However, using an approach different of the one used when mass
conservation is present, we are able to study it.

This paper is organised as follows. In Section 2, we state the model. We then study it in Section
3, the main result of this paper being stated in Section 3.2. Finally, in Section 4, we give a few
examples of possible applications of the method: a model with simple cellular division, a model
with inhomogeneous cellular division and a model with asymmetric cellular division.

2. Model formulation

Let us begin by a few notational conventions. Uppercase letters are used throughout this text
for vectors, vector-valued functions and matrices; T is the transpose operator. Lowercase letters
denote real values or real valued functions. If V 2 Rn is a vector, then 1TV (with 1 ¼ ð1; . . . ; 1ÞT) is
the sum of the elements of V (and a norm of V), while 1TM is the column sum of the n� n-matrix
M. Concerning order relations on Rn, we use the standard notations (see e.g., [14]). Let V and W
be two vectors in Rn. We note V 6W if vi 6wi for all i, V < W if V 6W and vi < wi for some i, and
V � W if vi < yi for all i. If a vector V is such that V 	 0 (i.e., that V 2 intRn

þ), one says that it is
strongly positive.

We suppose that the system under consideration is a well-stirred chemostat. We consider the
structured model (2a) and (2b), where X 2 Rn and s 2 R are the state variables, X ¼ ðx1; . . . ; xnÞT
representing the total cellular biomass in each of n size classes, and s the substrate concentration.

dX
dt

¼ lðsÞAX � d1ðsÞX ð2aÞ

ds
dt

¼ �lðsÞCTX þ d0ðsin � sÞ ð2bÞ

where d1ðsÞ is the dilution rate that apply to cells, A is a n� n-matrix describing the fluxes of
biomass between the different size classes, and C is a vector denoting the consumption of substrate
resulting of cell growth. We use d1ðsÞ as a combination of dilution and mortality, defining

J. Arino, J.-L. Gouz�ee / Mathematical Biosciences 177&178 (2002) 127–145 129



d1ðsÞ ¼ d0 þ dðsÞ
where dðsÞP 0 is the mortality rate, which we suppose to be a decreasing monotone function of s:
dð0Þ ¼ dmax, dd=ds < 0, and lims!1 dðsÞ ¼ dmin P 0. To avoid the case of a chemostat in batch
mode, we suppose that the dilution rate d0 > 0.

The specific growth rate lðsÞ is such that lð0Þ ¼ 0, dl=ds > 0 and lims!1 lðsÞ ¼ lmax.
In order to remain as general as possible, we do not give a precise form of the flow matrix A.

We do however make a few structural hypotheses. We suppose that it is irreducible (i.e., that its
associated connection graph is strongly connected, one can move from one class to any other in
a finite number of steps). We furthermore suppose that A is quasi-positive (as termed in [14], or
essentially non-negative, as termed in [15]): its off-diagonal elements are non-negative. The last
assumption we make concerning A is the following:

1TA6CT ð3Þ

Remember that s and X are measured using the same units. This assumption says that the sub-
strate that is uptaken by cells is not entirely allocated to cell growth: there is a disappearance due
to cell maintenance.

Considering (2a), one realizes that we make the assumption that the growth rate lðsÞ is a fac-
tor of all possible flows. This is the strongest hypothesis in this model, and will be discussed in
Section 5.

Examples of the type of application that we bear in mind introducing such a system, in par-
ticular, forms of the transition matrix A, are given in Section 4.

3. Model behaviour

Since mass conservation is not verified by system (2a) and (2b), we cannot apply the classical
framework of chemostat analysis. We will however be able to study the system. The steps that we
follow in order to do so are:

• Begin by considering a new system, consisting of a sort of ‘proportion ratio’ obtained by nor-
malising the original system.

• This new system can be shown to have the same asymptotic behaviour as the linear system
n0 ¼ ðA� kIÞn, where k is the dominant eigenvalue of A.

• Since the matrix A is irreducible, the behaviour of the linear system is governed by the Perron
root of A.

• Then we study the two-dimensional system consisting of the normed ‘sum’ of the cellular bio-
mass, and of the substrate. We show that the non-trivial equilibrium of this system is globally
stable, using a Lyapunov function.

• Finally, plugging this knowledge into the original system, we are able to deduce the behaviour
of (2a) and (2b).

Before we proceed to this analysis, we need to establish two technical results concerning system
(2a) and (2b), that will be used later.
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Lemma 3.1. The closed positive orthant is positively invariant for the flow of (2a) and (2b). Fur-
thermore, solutions of (2a) and (2b) are bounded.

Proof. First let us show that the positive orthant is positively invariant for the flow of (2a) and
(2b).

Suppose that 9t1 P 0 such that sðt1Þ ¼ 0. Two cases are possible: t1 ¼ 0 and t1 > 0. If t1 ¼ 0,
then we have dsð0Þ=dt ¼ d0sin > 0, so for small t > 0, sðtÞ > 0. Now suppose that s0 > 0 and that
t1 > 0 is the first t such that sðtÞ ¼ 0. Then we have dsðt1Þ=dt ¼ d0sin > 0, but also that

ds
dt

ðt1Þ ¼ lim
t!t1
t<t1

sðt1Þ � sðtÞ
t1 � t

6 0

which is a contradiction. Therefore, there cannot exist a t1 > 0 such that sðt1Þ ¼ 0.
Now since A is quasi-positive, the components of X can be written, for all i ¼ 1; . . . ; n,

dxi
dt

¼ lðsÞ
Xn

j¼1; j6¼i

ai;jxj � lðsÞai;ixi � d1ðsÞxi

with ai;j P 0 for all i and j. Therefore for all i ¼ 1; . . . ; n, dxi=dtP 0.
Therefore, the closed positive orthant is invariant for the flow of (2a) and (2b). Hence the

variables X and s are positive for positive initial conditions X0 and s0.
Let us now show that the solutions of (2a) and (2b) are bounded

dð1TX þ sÞ
dt

¼ lðsÞ 1TAX
�

� CTX
�
� d1ðsÞ1TX þ d0ðsin � sÞ

¼ lðsÞ 1TAX
�

� CTX
�
þ d0 sin

�
� ð1TX þ sÞ

�
� dðsÞ1TX

6 d0 sin
�

� ð1TX þ sÞ
�
: ð4Þ

The last inequality results from inequality (3). Hence the total mass is bounded uniformly with
respect to time. Remark that this last inequality is linked to the mass conservation principle
(which would hold if both quantities were equal). �

Now we can (and need to) be a little more precise concerning s. This is the object of the fol-
lowing lemma.

Lemma 3.2. There exists an e > 0 such that for all ðX0; s0Þ, there exists a sP 0 such that for all
tP s, sðtÞ > �.

Proof. From (4) in the proof of Lemma 3.1, we deduce that

ð1TX þ sÞðtÞ6 sin þ e�d0t ð1TX0

�
þ s0Þ � sin

�
¼ ð1� e�d0tÞsin þ e�d0tð1TX0 þ s0Þ ð5Þ

and therefore

ð1TX þ sÞðtÞ6 maxðsin; 1TX0 þ s0Þ: ð6Þ
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Let us suppose that 1TX0 þ s0 6 2sin. Inequality (6) implies that ð1TX þ sÞðtÞ6 2sin is true for all
t > 0. Therefore for all t > 0, 1TX ðtÞ6 2sin. Hence we can deduce a lower bound for ds=dt in Eq.
(2b)

ds
dt

P � 2klðsÞsin þ d0ðsin � sÞ;

where k is defined, from the equivalence of norms in Rn, by CTX 6 k1TX for X P 0.
Therefore, since lðsÞ is continuous and lð0Þ ¼ 0, there exists an e > 0 such that 8 s, 06 s6 e,

d0ðsin � sÞ � 2klðsÞsin > 0. As a consequence

8 sðtÞ 2 ½0; e�; ds
dt

> 0

and thus the solution exits ½0; e� at some time s, and cannot reenter this interval for all later times.
Now using inequality (5) allows us to settle the case of ‘large’ initial conditions. Indeed, suppose

that 1TX0 þ s0 > 2sin. Then (5) implies that 9s > 0 such that for all t > s, ð1TX þ sÞðtÞ6 2sin,
which takes us back to the previously treated case. �

These lemmas being stated, we now turn to system (2a) and (2b), concerning which we can then
formulate the following proposition, the main result of this section.

Proposition 3.1. Let vlp be a left eigenvector corresponding to the eigenvalue of A with maximal real
part kp. Then, for all solutions of (2a) and (2b) such that X0 P 0, we have

X
vlTp X

! vrp as t ! 1; ð7Þ

where vrp is a right eigenvector of A corresponding to the eigenvalue kp with maximal real part, chosen
such that 1Tvrp ¼ 1 and vlTp v

r
p ¼ 1.

Proof. Let vlTp be a left eigenvector of A corresponding to the eigenvalue kp with maximal real part,
i.e., a vector such that

vlTp A ¼ kpvlTp : ð8Þ

Since A is quasi-positive and irreducible, we know from a corollary of the Perron–Frobenius
theorem [14, Corollary 3.2, p. 60], that vlp 	 0. We state here the normalisation choice, although it
will only be used later: we suppose that the right eigenvector vrp 	 0 associated to kp is such that
1Tvrp ¼ 1, and that both these eigenvectors verify vlTp v

r
p ¼ 1.

Let us introduce the following variable:

Z ¼ X
vlTp X

: ð9Þ

We have Z 2 Rn. Of course, Z is only defined if X 6¼ 0. We have

vlTp Z ¼ 1: ð10Þ

Then taking the derivative of Z, we have
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dZ
dt

¼ X 0

vlTp X
�
X ðvlTp X Þ0

ðvlTp X Þ
2
¼ X 0

vlTp X
�
ZvlTp X

0

vlTp X
: ð11Þ

Now substituting (2a) in (11) and using (10) and (8) yields

dZ
dt

¼ lðsÞAZ � d1ðsÞZ � ZvlTp
lðsÞAX � d1ðsÞX

vlTp X

¼ lðsÞ AZ
h

� ZvlTp AZ
i
þ d1ðsÞZvlTp Z � d1ðsÞZ ¼ lðsÞ AZ

�
� kpZ

�
¼ lðsÞ½A� kpI �Z; ð12Þ

where I is the identity matrix. Hence the dynamics of Z is independent of d1ðsÞ. Furthermore, lðsÞ
is in factor of the term in Z. From Lemma 3.2, one can find a positive quantity e such that, after
an eventual short time s, the substrate concentration s is strictly superior to e. Since l is con-
tinuous and increasing, we therefore have lðsÞ > lðeÞ after an eventual short time s.

Therefore, using a change in velocity ([16, p. 92], stated as Theorem A.1 in Appendix A), one
concludes that the following linear system:

dn
dt

¼ ðA� kpIÞn; ð13Þ

with nðtÞ 2 Rn, has the same asymptotic behaviour and the same geometric phase portrait as (12).
Hence we now turn our attention to system (13). Since A is an irreducible quasi-positive matrix,

A� kpI is also an irreducible, quasi-positive matrix. Therefore, still from [14, Corollary 3.2, p. 60],
it admits a dominant eigenvalue, that is equal to 0 since kp is the dominant eigenvalue of A. We
denote by vrp the associated strictly positive eigenvector of A� kpI. Note that vrp is also the ei-
genvector associated to kp, and remember that we chose vrp such that 1Tvrp ¼ 1 and that vlTp v

r
p ¼ 1.

Then we have

n
vlTp n

! vrp as t ! 1

because A is irreducible and quasi-positive, and therefore

X
vlTp X

! vrp as t ! 1: ð14Þ

This concludes the proof. �

Using this, we will be able to derive the behaviour of the system in the x-limit set, provided that
we study the behaviour of vlTp X .

3.1. The two-dimensional system

We now consider the system in vlTp X and s. For convenience, we note fðtÞ ¼def vlTp X ðtÞ 2 Rþ. In the
x-limit set, Eq. (14) implies that we have X ðtÞ ¼ fðtÞvrp. Hence in the x-limit set, the system is
written

df
dt

¼ lðsÞvlTp Afvrp � d1ðsÞf; ð15aÞ
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ds
dt

¼ �lðsÞCTfvrp þ d0ðsin � sÞ: ð15bÞ

Now since vlp is a left eigenvector of A, we have v
lT
p A ¼ kpvlTp . We can choose vlp such that vlTp v

r
p ¼ 1.

So (15a) is equivalent to

df
dt

¼ lðsÞkpf � d1ðsÞf: ð16Þ

Hence the system under consideration is

df
dt

¼ lðsÞkpf � d1ðsÞf; ð17aÞ

ds
dt

¼ �lðsÞCTvrpf þ d0ðsin � sÞ: ð17bÞ

Theorem 3.1. Consider the two-dimensional system (17a) and (17b). Then either one of the fol-
lowing holds.

1. If one of the following conditions is verified:
(a) kplmax 6 d0 þ dmin,
(b) s�, unique solution of the equation d1ðsÞ ¼ kplðsÞ, is such that s� P sin,

then the system (17a) and (17b) admits a single, globally asymptotically stable trivial equilibrium
ð0; sinÞ.
2. Suppose that kplmax > d0 þ dmin, and that s�, unique solution of the equation d1ðsÞ ¼ kplðsÞ, is
such that s� < sin. Then the system (17a) and (17b) admits two equilibrium points: an unstable triv-
ial equilibrium ð0; sinÞ; a globally asymptotically stable non-trivial equilibrium, given by

d0kp

d1ðs�ÞCTvrp
ðsin

 
� s�Þ; s�

!
; ð18Þ

where s� is the unique solution of d1ðsÞ ¼ kplðsÞ.

Proof. The nullclines of (17a) are given by f ¼ 0 and d1ðsÞ=lðsÞ ¼ kp. Using f ¼ 0 in (17b) yields
s ¼ sin, which is the trivial equilibrium of (17a) and (17b). Now consider

d1ðsÞ ¼ kplðsÞ:

Since d1 is monotonically decreasing and l is monotonically increasing on Rþ, if there exists a s�

verifying this relation, it is unique. Fig. 1 illustrates the two possible cases. If such a value of s does
not exist, i.e., if kplmax 6 d0 þ dmin, then we are back in the trivial equilibrium case. This is con-
dition (a) of Case 1. Note that the case kp 6 0 is part of this case: kplðsÞ is decreasing and
kplðsÞ < 0 since lð0Þ ¼ 0.

Now suppose that condition (a) of Case 1 is violated, i.e., that such a s� exists. Then substituting
lðs�Þ ¼ d1ðs�Þ=kp in (17b) gives
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f� ¼ d0kp

d1ðs�ÞCTvrp
ðsin � s�Þ:

For this equilibrium to be meaningful, we must have s� < sin, hence condition (b) of Case 1, or 2.
We now turn to the question of the stability of these equilibria. To show the stability of the

interior equilibrium and the instability of the trivial equilibrium, we make use of a Lyapunov
function used in the predator–prey context by Harrison [17]. Indeed, a chemostat can be con-
sidered as a predator–prey system, the substrate being the prey and the organisms the predator.
For readability, we postpone the proof of this result to Appendix B. �.

3.2. The result for the general system

We can now turn our attention back to the general system (2a) and (2b), using the preceding
results. We have the following theorem, which is the main result of this paper.

Theorem 3.2. Consider the general ðnþ 1Þ-dimensional system (2a) and (2b). Then either one of the
following two cases holds.

1. If one of the following conditions is verified:
(a) kplmax 6 d0 þ dmin,
(b) s�, unique solution of the equation d1ðsÞ ¼ kplðsÞ, is such that s� P sin,

then the system (2a) and (2b) admits a single, globally asymptotically stable trivial equilibrium
ð0; . . . ; 0; sinÞ.
2. Suppose that kplmax > d0 þ dmin, and that s�, unique solution of the equation d1ðsÞ ¼ kplðsÞ, is
such that s� < sin. Then the system (2a) and (2b) admits two equilibria: an unstable trivial equilib-
rium ð0; . . . ; 0; sinÞ; a globally asymptotically stable, non-trivial equilibrium, given by

X � ¼ d0kp

d1ðs�ÞCTvrp
ðsin � s�Þvrp ð19Þ

Fig. 1. The two possible cases: (a) s� exists; (b) s� does not exist.
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and

s ¼ s�;

where vrp is the strongly positive eigenvector associated to the dominant eigenvalue kp of A.

Proof. Theorem 3.1 rules the behaviour of the two-dimensional limit system of (2a) and (2b),
namely (17a) and (17b). Depending on the behaviour of the limit system (17a) and (17b), the
behaviour of the (nþ 1)-dimensional system (2a) and (2b) can be deduced.

Case 1. The two-dimensional system has the unique trivial equilibrium ð0; sinÞ. Since vlp 	 0, we
have vlTp X ¼ 0 if, and only if, X � 0.
Case 2. The equation d1ðsÞ ¼ kplðsÞ admits a unique solution s� < sin. Therefore Case 2 of

Theorem 3.1 holds, and the two-dimensional system (17a) and (17b) admits a globally asymp-
totically stable non-trivial equilibrium, and a trivial, unstable equilibrium. The value of the trivial
equilibrium follows from Case 1. Concerning the non-trivial, positive equilibrium, we have from
Eq. (14) that X � ¼ f�vrp. Thus (19).

The original system (2a) and (2b) can be equivalently written under the form of a system in
ðZðtÞ; fðtÞ; sðtÞÞ. Under the conditions of the theorem, Case 2, we have proved that Z converges to
vrp, and that ðf; sÞ has the globally (in the positive orthant) asymptotically stable equilibrium
ðf�; s�Þ. Using results such as [18, p. 263], we then have that the system in Z, f and s has the
globally (in the positive orthant) asymptotically stable non-trivial equilibrium ðZ�; f�; s�Þ. From
the equivalence to system (2a) and (2b), we thus have the result. �

4. A few examples

Up to now, we have discussed the system in its general form (2a) and (2b). In particular, we
have not given any example of the nature of the transition matrix A. In this section, we give three
possible characterisations of this matrix, corresponding to the description of three rather different
phenomena, depending on the type of description of the cellular division process that we make.
Before proceeding with the examples, let us discuss briefly the use of size-structured models in the
context of the chemostat, and more specifically, the use of size-structured models for the de-
scription of cellular division, since this will be the object of the three following examples. We
mentioned in the introduction the low number of papers devoted to the description of size-
structured chemostats. Among this already low number, the only examples that we know of that
consider cellular division process are the continuous time, continuous structure models in Metz
and Diekmann [4], as well as the models derived from these works [5,6]. Other PDE models [1], as
well as most discrete-time models [7–9], suppose that cell division occurs for cells of a predeter-
mined, constant size, and yields two equally sized daughter cells.

It is our purpose here to show that ODEs can be used for the description of quite complex
division processes. The purpose of this paper is not to formulate precisely such models, but to
show that were such models precisely formulated, they could be studied. Hence what follows are
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rough approximations of the type of transition matrices that are intended as applications of the
method. A complete description of the process would require the precise definition of the size
classes, as well as of the growth function, the division proportions and so on. We refer the reader
to [19] where one derivation is done in the discrete-time discrete-structure case.

In all three cases, we suppose that the biomass of cells in the chemostat ranges from b1 to b2. We
divide the cells in size classes, i.e., that we divide the biomass into n biomass classes. Hence xiðtÞ is
the biomass of cells in biomass class i at time t. Suppose that the size classes are chosen so that all
cell growth in class i is immediately reported to class iþ 1. Therefore, the diagonal elements of A
are �1. This biomass then enters class iþ 1 at a rate 1þ ci, which is diminished of an amount
mi 2 ½0; 1� because of maintenance. Maintenance thus acts as follows: if mi is small (close to 0),
then only a small fraction of the uptaken nutrient is allocated to cellular growth, while as mi tends
to 1, most of the uptaken nutrient is allocated to growth.

4.1. Simple cellular division

In this first example, we suppose that cell division only occurs for cells in the last size class,
yielding two equally sized cells in the first class: we call this homogeneous––with respect to the size
of cells when they divide––symmetric––with respect to the size of the daughter cells––cellular
division. The structure of the system is then as depicted in Fig. 2. A version of this system with a
continuous size variable is given in [1], while a discrete-time, discrete-structure version can be
found in [7–9].

Matrix A then has the form

�1 0 0 ð1þ cnÞmn

ð1þ c1Þm1 �1 0 0

. .
. . .

.

�1 0
ð1þ cn�1Þmn�1 �1

2
666664

3
777775 ð20Þ

and the consumption vector is given by C ¼ ðc1; . . . ; cnÞ
T
.

Theorem 3.2 can obviously be applied to this system. Indeed, the matrix A is quasi-positive and
irreducible, has lðsÞ in factor of all flows, and inequality (3) holds. Writing the equation for the
left eigenvector,

vlTp A ¼ kpvlTp

and noting vlTp ¼ ðvl1; . . . ; vlnÞ, one finds that

Fig. 2. The simplest structure, with homogeneous and symmetric division.
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vl1 ¼
Qn

i¼1ð1þ ciÞmi

ð1þ kpÞn
vl1:

We thus have an expression of kp as a function of the cis

kp þ 1 ¼
Yn
i¼1

ð1
 

þ ciÞmi

!1=n

: ð21Þ

This expression can be evaluated if the cis and the mis are known, giving the sign of kp. If kp 6 0,
we need to proceed no further, since the only equilibrium of the system is the trivial one. If kp > 0,
then, from the equation for the right eigenvector, which we note vrp ¼ ðvr1; . . . ; vrnÞ

T
, we obtain after

some manipulations that

vri ¼
Qi�1

j¼0ð1þ cjÞmj

ð1þ kpÞi
vrn; ð22Þ

where indices are considered modulo n, i.e., that c0 ¼ cn and m0 ¼ mn. Using the fact that
1Tvrp ¼ 1, we also have that

Xn
i¼1

ð1þ ciÞmivri ¼ 1þ kp: ð23Þ

Using (22) in (23), we thus obtain that

vrn ¼
1þ kpPn

i¼1ð1þ ciÞmi

Qi�1

j¼0
ð1þcjÞmj

ð1þkpÞi

: ð24Þ

This expression can be evaluated since all its terms are known. Then the right eigenvector can
be expressed using (22), finally allowing one to express the non-trivial equilibrium point.

4.1.1. A simplified case
An interesting special case of the preceding model is the one where all the rates are equal: for all

i ¼ 1; . . . ; n, ci ¼ c and mi ¼ m. Indeed, in this case, we obtain from (21) that

kp ¼ ð1þ cÞm� 1:

This eigenvalue is positive if and only if

c >
1� m
m

: ð25Þ

Remark 4.1. From a biological point of view, if m is small (close to 0), then cells use a large part
of the uptaken nutrient for maintenance activities. The rate of passage of the biomass from one
class to the next then has to be high in order to avoid extinction of the population.

If (25) is not verified, then we are in the case where kp 6 0, and only the trivial equilibrium
exists. Let us now suppose that (25) be verified. Substituting the value of kp that we have found
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into the system of equations resulting from the right eigenvalue equation, one finds that all ele-
ments of vrp are necessarily equal. Since we choose vrp such that 1Tvrp ¼ 1, this implies that

vrp ¼
1=n

..

.

1=n

0
B@

1
CA:

Since C ¼ c1, we have CTvrp ¼ nðc=nÞ ¼ c. Thus by Theorem 3.2, the non-trivial equilibrium is
given by s� such that

kplðs�Þ ¼ d1ðs�Þ
and X � such that

X � ¼ ðð1þ cÞm� 1Þd0
ncd1ðs�Þ

ðsin � s�Þ1:

Hence the distribution of biomass is equal in all size classes.

Remark 4.2. The equilibrium that we have obtained is (to a constant) the same as the one ob-
tained by Gage et al. in their paper [7]. This is not surprising if one compares both systems.
Indeed, the progression of cells amongst the size classes is only function of the substrate, and
division only occurs for cells in the last size class. This is exactly the same hypotheses as the ones
used in [7].

4.2. Inhomogeneous cellular division

Now another type of transition matrix which could be considered would be one describing
inhomogeneous cellular division.

Consider Fig. 3. It supposes that the various cell sizes can be classified into three different types
of classes: classes where cells are born, classes where they grow, and finally, classes in which they
undergo division. Therefore, the matrix A given as a previous example is a particular case of this,
with the number of division and birth classes being equal to one. The transition matrix then has
the structure shown in Table 1, and the consumption vector is still C ¼ ðc1; . . . ; cnÞ

T
.

In the matrix of Table 1, the pis, with pi 2 ½0; 1�, represent the proportion of cells in a given
division class that undergo division, so that the remaining 1� pi cells continue growing. The last pi

Fig. 3. A size-structured model with inhomogeneous cell size at division. Here there are three division and three birth

classes.
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(here p3) is equal to one: all cells divide in the last class. A discrete-time version of this model was
analysed in [20].

4.3. Asymmetric cellular division

Suppose now that cell division is homogeneous, but asymmetric, i.e., that the division of a
mother cell produces two daughter cells with a biomass (size) that is not necessarily equal. Then
one has the sort of structure that is shown in Fig. 4: the division of a cell in class n can yield either
two cells of equal mass in class 2, or one smaller cell in class 1 and one larger cell in class 3.

To model this behaviour, one could use a transition matrix of the same form as (20), but where
the last column would be the following vector:

p1ð1þ cnÞmn

p2ð1þ cnÞmn

ð1� p1Þð1þ cnÞmn

0

..

.

0
�1

0
BBBBBBBB@

1
CCCCCCCCA
:

Table 1

Transition matrix for a model with inhomogeneous, symmetric cellular division

�1 0 p1ð1þ cn�2Þmn�2 0 0
ð1þ c1Þm1 �1 0 0 p2ð1þ cn�1Þmn�1 0

0 ð1þ c2Þm2 �1 0 0 ð1þ cnÞmn

0 ð1þ c3Þm3 �1

. .
. . .

.

�1 0
ð1� p1Þð1þ cn�2Þmn�2 �1 0

0 ð1� p2Þð1þ cn�1Þmn�1 �1

2
666666666666666664

3
777777777777777775

Here we suppose that there are three size classes in which cellular division can occur, and three classes in which cells are

born.

Fig. 4. A size-structured model with homogeneous, asymmetric cellular division. Here there are three birth classes.
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Instead of being allocated to the first element of this vector, the result of the division of cells in
class n is spread among the different birth classes (three in the case of the figure).

4.4. More complex cases

We shall not treat here the more general case consisting of a combination of inhomogeneous
and asymmetric cellular division. We refer the reader to [19] where this is done in the discrete-time
context. As can be inferred from the preceding examples, numerous combinations and connection
graphs can be devised to account for varied phenomenons.

5. Conclusion and discussion

We have considered here a very general model of growth in the chemostat. This size-structured
model, formulated using ordinary differential equations, does not verify the mass conservation
principle. Hence we were not able to use the classical approach of chemostat analysis, which
consists in studying the system in its x-limit set, where it is linear.

The system, or more precisely the class of system which was introduced here, accounts for
maintenance and cell death. Direct analysis was not possible. However, we observed that a new
system, consisting of a normed version of the original system, was almost linear. Thus, after
ensuring that the quantity of substrate was positive, we were able to study the behaviour of the
new system, by considering a change of time scale. Then, studying the two-dimensional system
(substrate and normed cellular biomass) in the x-limit set of the linear system, we concluded to
the existence of a globally stable non-trivial equilibrium for it. This stability was proved using a
Lyapunov functional introduced by Harrison [17] in the predator–prey context.

Finally with this knowledge, we could turn our attention back to the original ðnþ 1Þ-dimen-
sional non-linear system. We concluded about it that it also admitted a globally stable, non-trivial
equilibrium point.

The very general form of the model allows for general hypotheses. As long as (1) the transition
matrix A is quasi-positive and irreducible (2) the growth rate l is a factor of this transition matrix;
then the analysis developed herein is valid.

We illustrated the sort of biological systems that this class of system can account for, studying
an example and giving two others. It has to be noted that a simplified version of the former, with
division in only the last size class and with all fluxes occurring at the same rate, leads to the same
equilibrium distribution as in a discrete-time model introduced by Gage et al. [7]. Analysis of the
more complex examples was not carried out, but we expect to find the same sort of equilibrium
size distribution as had been found in the discrete-time context in [19,20].

The assumption of size-independent cellular growth is the most crucial one, and it should be
discussed. Although not very satisfactory, it should be noted that it is quite a common hypothesis
in structured models of cellular growth to assume this independence. On the other hand, the
introduction of size specific growth greatly complicates the analysis. Cazzador studied [21] a
model of yeast growth in the chemostat, in which the yeast can be in two states: budded or un-
budded. Each state has a specific growth rate. Therefore, he considers a three-dimensional system,
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and shows that a Hopf bifurcation can occur for certain parameter ranges. Extension of his
analysis to the ðnþ 1Þ-dimensional case seems a complicated task.

While the assumption of homogeneous growth is a little bothersome, one can easily see that the
description of the cellular division process that we can do can be quite complex. Indeed, a great
deal of liberty exists with the various model parameters to play with the growth function. Con-
sider, e.g., our first example. By using very different values for the cis and mis depending on i (the
size), it is possible to account for size specific differences in growth. The same way, it is possible, in
the case of inhomogeneous or asymmetric cellular division, to make the division rates quite dif-
ferent depending on the cellular size.

Appendix A. Equivalence of flows

We use the following theorem of Hofbauer and Sigmund [16] several times in the text.

Theorem A.1. [16] If two differential equations of the form

dxi
dt

¼ fiðx1; . . . ; xnÞ

and

dxi
dt

¼ fiðx1; . . . ; xnÞW ðx1; . . . ; xnÞ

differ only by a positive factorWwhich does not depend on i, then these equations admit the same orbits.

Appendix B. Proof of the stability part of Theorem 3.1

Proof. So as to meet the requirements of the analysis of [17], the system has to be redimensi-
onalised. Since d1ðsÞP d0 > 0, we can divide by d1ðsÞ, hence obtaining the system

df
dt

¼ lðsÞ
d1ðsÞ

kpf � f ðA:1Þ

ds
dt

¼ � lðsÞ
d1ðsÞ

CTvrpf þ
d0

d1ðsÞ
ðsin � sÞ ðA:2Þ

which is dynamically equivalent to (17a) and (17b), in virtue of Theorem A.1. We then identify
this system with the system studied in [17]:

dH
dt

¼ aðHÞ � f ðHÞbðP Þ

dP
dt

¼ nðHÞgðP Þ þ cðP Þ:

In order to do so, consider the following functions, where s and f have been used for H and P,
respectively,
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aðsÞ ¼ d0
d1ðsÞ

ðsin � sÞ

f ðsÞ ¼ lðsÞ
d1ðsÞ

bðfÞ ¼ CTvrpf

nðsÞ ¼ lðsÞ
d1ðsÞ

gðfÞ ¼ kpf

and finally

cðfÞ ¼ �f:

Requirements of [17, Theorem 2.2] are that a=f and c=g be non-increasing functions with one of
them being strictly decreasing, and that ½nðsÞ � nðs�Þ�½s� s�� > 0 and ½bðfÞ � bðf�Þ�½f � f�� > 0 for
s 6¼ s� and f 6¼ f� respectively.

We have

cðfÞ
gðfÞ ¼ � 1

kp

and

aðsÞ
f ðsÞ ¼

d0ðsin � sÞ
lðsÞ :

The latter is strictly decreasing if and only if

ðsin � sÞdl
ds

> �lðsÞ:

From (4), we can deduce that in the vicinity of s� we have s < sin. Hence the function is indeed
strictly decreasing.

Now nðsÞ is a monotonically increasing function of s, so ½nðsÞ � nðs�Þ�½s� s�� > 0 for s 6¼ s�, and
½bðfÞ � bðf�Þ�½f � f�� ¼ CTvrpðf � f�Þ2 > 0 for f 6¼ f�.

Using these functions, the system is indeed of the needed form for the analysis of [17]. Define
the following function:

V ðs; fÞ ¼
Z s

s�

nðuÞ � nðs�Þ
f ðuÞ duþ

Z f

f�

bðuÞ � bðf�Þ
gðuÞ du ðA:3Þ

which, using the notation of our model, yields

V ðs; fÞ ¼ s� s� � lðs�Þ
d1ðs�Þ

Z s

s�

d1ðuÞ
lðuÞ duþ

CTvrp
kp

f

�
� f� 1

�
þ ln

f
f�

��
: ðA:4Þ

In ðf�; s�Þ, we have V ðf�; s�Þ ¼ 0. The time derivative of V is given by

J. Arino, J.-L. Gouz�ee / Mathematical Biosciences 177&178 (2002) 127–145 143



dV
dt

¼ nðsÞ½ � nðs�Þ� aðsÞ
f ðsÞ

�
� aðs�Þ
f ðs�Þ

�
þ ½bðfÞ � bðf�Þ� cðfÞ

gðfÞ

�
� cðf�Þ
gðf�Þ

�

which in our model gives

dV
dt

¼ lðsÞ
d1ðsÞ

�
� lðs�Þ
d1ðs�Þ

�
d0

lðsÞ ðsin
�

� sÞ � d0
lðs�Þ ðsin � s�Þ

�

¼ d0
lðsÞ
d1ðsÞ

�
� lðs�Þ
d1ðs�Þ

�
sin � s
lðsÞ

�
� sin � s�

lðs�Þ

�
: ðA:5Þ

Now a few conditions have to be verified. To begin with, we seek sL, sM, fL and fM, the largest
numbers such that

aðsÞ > bðf�Þf ðsÞ for sL < s < s� ðA:6Þ

aðsÞ < bðf�Þf ðsÞ for s� < s < sM ðA:7Þ

cðfÞP � nðs�ÞgðfÞ for fL < f < f� ðA:8Þ

cðfÞ6 � nðs�ÞgðfÞ for f� < f < fM: ðA:9Þ
Consider (A.6). Substituting their values for the functions, we seek the value of sL < s� such that

d0ðsin � sÞ > lðsÞ
d1ðsÞ

CTvrpf
�:

Now in s� we have

d0ðsin � s�Þ > lðs�Þ
d1ðs�Þ

CTvrpf
�:

Now consider a decreasing s < s�. The left-hand side of the inequality is a decreasing function of s,
thus increases if s decreases. On the contrary, the right-hand side is an increasing function of s,
and thus decreases as s decreases. Therefore, the inequality is verified for all s < s�, so sL ¼ 0.
Proceeding the same way, we can easily check that sL ¼ fL ¼ 0 and sM ¼ fM ¼ 1.

Then defining

u ¼ minfV ðs�; fLÞ; V ðs�; fMÞ; V ðsL; f�Þ; V ðsM; f�Þg
we find u ¼ 1. Then Theorem 2.2 of [17] states that the domain of attraction of ðs�; f�Þ includes
the set

Du ¼ fðs; fÞ : V ðs; fÞ < ug:
Hence the domain of attraction of the interior equilibrium is the whole positive quadrant R2

þ. The
interior equilibrium is thus globally stable. �
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