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Abstract

In this paper we propose a methodology to derive a qualitative description of the behavior of a
system from an incompletely known nonlinear dynamical model. The model is written as an algebraic
structure with unknown parameters and/or functions. Under some hypotheses, we obtain a graph
describing the possible transitions between regions, defined by the trends of the state variables and
their relative positions. A qualitative simulation of the model can be compared with on-line data for
fault detection purpose. We give the example of a nonlinear biological model (in dimension three)
for the growth of cells in a bioreactor.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The prediction and the analysis of the behavior of a dynamical system is a difficult
task, which suffers from a lack of efficient tools. Indeed, it is well known that a nonlinear
dynamical model can exhibit very complicated behavior [23], even in low dimensions.
When the model is not completely known (some parameters or functions are not known),
as it happens frequently for example in the biological field [1], the problem is even
more complicated. Therefore the difficulty consists in describing the behavior, at least
qualitatively, of this model with incomplete knowledge.

The dynamical description of such a qualitative model is one of the goals of the
qualitative reasoning (QR) approach [20]. If the model is sufficiently known (i.e., with
known parameter uncertainties), then the semi-quantitative methods can be used [2,20].
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In some cases, it is possible to mathematically analyze the algorithms of qualitative
simulation [11]. For low dimensional systems, phase plane analysis can give some
interesting hints on the transient behavior [24], and if the system is linear or piecewise
linear the qualitative behavior can be approached [25]. A view of the structure of some
class of systems can also give results on asymptotic properties of the system [17,18]. Some
specific models or structures can be investigated more thoroughly [15,27,28].

In the sequel, we propose an approach that derives the qualitative transient behavior
and the asymptotic behavior from a dynamical model defined only by sign properties.
This method is suitable for a class of systems (loop structured systems with monotonous
interactions) that find numerous applications in the biological field including gene
regulation models [16], compartmental systems [21], cellular growth [8], and development
of stage structured populations [9]. We emphasize nevertheless that the analysis can also
be applied to other models, provided that there are enough zeros in the Jacobian matrix.
Indeed, the proposed approach has been applied to a broad spectrum of models whose
structure is not the ideal loop structure. In particular, competition between two species [3],
trophic nets [5], structured populations [7] have been considered.

The analysis presented here is the continuation of a methodology proposed in [4]: from
the study of the extradiagonal terms of the Jacobian matrix of the system, one can derive
two graphs called transition graphs. The first determines the qualitative behavior of the
velocity ẋ and summarizes for almost any trajectory the possible successions in time of
monotonous (increasing or decreasing) phases. The second one determines the qualitative
behavior of (x−x�) (where x� is an equilibrium point), and predicts the possible transitions
in time between qualitative regions of the space defined by the position of a point with
respect to an equilibrium value.

In this paper we extend the qualitative description of the dynamics of loop structured
systems, by relating the qualitative events corresponding to extrema to those corresponding
to crossing of equilibrium values. We use the signs of the diagonal elements of the Jacobian
matrix to show that qualitative features (tendencies of the state variables and positions
toward the considered equilibrium) of any trajectory are restricted to a certain set. We
propose a procedure to derive this set of possible qualitative features. This allows us to
consider the domain Ω as partitioned by various regions delimited by the nullclines and
the hyperplanes associated to an equilibrium x�. The transient behavior of the system can
then be determined by a theorem giving the possible global behaviors, and represented into
a graph describing the transients in terms of extrema and equilibrium crossings. We show
also that the graph obtained can give results on the asymptotic properties of the system
(stability of the equilibria, possibility of limit cycles, . . .).

For the sake of simplicity, we suppose the system to be autonomous and without inputs.
We could also consider the following controlled system:

ẋ = f
(
x,u(t)

)

with the input u(t) being constant on time intervals ]ti, ti+1[. Of course, the whole analysis
applies on each time interval. In [6], we have applied a similar methodology to a system
forced by periodic inputs.
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What are the main differences between our approach and the existing ones?
– we do not write a qualitative model or a qualitative differential equation, as in [2]: we

consider a class of quantitative models, i.e., we write classical ordinary differential
equations, where some parameters or some functions are not precisely defined, but
belong to some class (for example, the parameter p1 is positive, the function ρ(x) is
increasing); therefore we keep a global algebraic structure for the class of models;

– consequently, we keep the power of the mathematical tools for differential equations,
because we can use the algebraic properties of the class of models;

– it is clear that the possible behaviors of a dynamical system in dimension greater
than two are tremendously numerous; we are more interested by the validation of a
sequence of experimental behaviors; a typical result would be that the sequence is
compatible, or not, with the possible sequences generated by the model; this can be
applied to the on-line fault detection, in order to detect a process failure;

– the method counters the problem of intractability in QR by exploiting mathematical
constraints tailored to the class of equations;

– we examine also the transitions between regions, as in [11] and [24], but the regions
we consider are more complicated: they are the intersection of sets in the space of
state variables (corresponding to signs of deviations from a reference point) and (not
rectilinear) sets in the space of velocities (corresponding to signs of velocities); we
are able to eliminate some of these regions, because they are not compatible with the
algebraic structure of the class of models;

– we do not use any approximations (such as linearization, or piecewise linear
approximations . . .) in our techniques. Of course, we have to do strong hypotheses
on the class of models. These hypotheses can be smoothen (cf. the final remark).

Before entering technical details, we summarize our results. We have taken as a real life
application the class of models classically used to represent growth of phytoplankton. The
class of models is written:

(Σ)

{
ẋ1 = u(1 − x1)− ρ(x1)x2,

ẋ2 = (µ(x3)− u)x2,

ẋ3 = ρ(x1)−µ(x3)x3.

(1)

The functions ρ and µ represent the absorption rate and the growth rate (cf. Section 6
for details), and we keep them undefined, constraining them to be monotonic (increasing).

For this class of system the signs of the Jacobian matrix are (� represents either +1, −1
or 0):

(
−1 −1 0
0 � +1

+1 0 −1

)
.

We remark that the interactions between variables are monotonous and the system has a
loop structure: these are the two main hypotheses that we make.

The qualitative behavior is described by one of the two graphs in Figs. 8 and 9,
depending on the initial conditions. The nodes represent a set of feasible qualitative states
(determined by algebraic properties) defined by the sign of the position of the variables
with respect to a reference point, and the sign of their velocities. If the initial qualitative
state is known, we obtain a qualitative simulation by following the edges between the
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nodes. It is shown that, at most, one maximum, one minimum, one equilibrium crossing
bottom-up and one top-down for each state variable are possible.

The paper is organized as follows: after some definitions (Section 2), we define the
qualitative regions and compute the possible ones (Section 3); then we eliminate some
“nongeneric” trajectories (Section 4), and give our main theorem describing the allowed
transitions between regions (Section 5). The biological application is given in Section 6.

2. Definitions

Notations. The notations x > 0 for x = t(x1, . . . , xn) ∈ R
n means that for all i , xi > 0.

For y ∈ R we consider the function “sign”:

sign(y)=

{
−1 if y < 0,
0 if y = 0,
1 if y > 0.

For x ∈ R
n, sign(x) is the vector with components sign(xi). The matrix diag(x) is the

diagonal matrix having x ∈ R
n on its main diagonal.

Let Ω be an open convex domain of R
n and f a C1 mapping from Ω onto R

n. We
consider on Ω the autonomous differential system:

(Σ) ẋ = f (x).

Definition 1. A system (Σ) has a loop structure if fi(x)= fi(xi, xi+1) ∀i ∈ {1, . . . , n}.

The velocity of each variable only depends on the variable itself and on the next one (the
indexes are counted modulo n).

The Jacobian matrix of a loop structured system has therefore the following structure:



m1 1(x) m1 2(x) 0 . . . 0

0 m2 2(x) m2 3(x)
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 mn−1n−1(x) mn−1n(x)

mn1(x) 0 . . . 0 mnn(x)




where mi j (x)
def
=

∂fi
∂xj

(x).

Definition 2. The system (Σ) has monotonous interactions on Ω if each partial derivative
∂fi/∂xj (x) for i �= j never cancels on Ω .

Thereby the off-diagonal terms of the Jacobian matrix are of fixed sign on Ω . The signs
of the elements define what we call the structure of the system.

Example. In the following we will illustrate the definition and concepts that we introduce
on the simple and intuitive example of the Lotka–Volterra [29] system describing the
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interaction between a population of preys (x1) and a population of predators (x2):
{
ẋ1 = ax1 − bx1x2,

ẋ2 = −cx2 + dx1x2.
(2)

The parameters a, b, c and d are positive. As all the systems in dimension 2, system (2)
has a loop structure. Its Jacobian matrix is the following:

(
a − bx2 −bx1
dx2 dx1 − c

)
. (3)

It is easy to verify that the variables of system (2) remain positive. We will then consider
the domain Ω = R

�2
+ . Therefore the off-diagonal terms of the Jacobian matrix (3) on R

�2
+

are m12(x)= −bx1 and m21(x)= dx2, their signs are t12(x)= −1 and t21(x)= +1. 

We will consider the set Sn containing 2n elements:

Sn
def
=
{
σ = t(σ1, . . . , σn); σj ∈ {−1,1}

}
.

Thus Sn represents all the vectors of R
n whose components are either +1 or −1. We can

impose an ordering on Sn, such that σ q is the q th element in the ordering. Conventionally,
we will choose σ 1 = t(1, . . . ,1).

Example. For the above example, we will consider the four sign vectors σ q of S2:

σ 1 =

(
1
1

)
, σ 2 =

(
−1
1

)
, σ 3 =

(
−1
−1

)
, σ 4 =

(
1

−1

)
. 

Definition 3. For x� ∈ Ω the system with monotonous interactions (Σ) is diagonally
x�-monotonous if for all j in {1, . . . , n}, for all q in {1, . . . ,2n}, the sign of the partial
derivative ∂fj/∂xj (x) is fixed on each domain:

Wσ q (x
�)

def
=
{
x ∈Ω; diag

(
σ q
)
(x − x�) > 0

}
.

The domains Wσ q (x
�) are called the orthants of the x�-deviation space or x�-orthants.

These domains are delimited by the hyperplanes associated with x�. We denote Vi(x�) the
ith hyperplane associated with x�:

Vi(x
�)

def
=
{
x ∈Ω; xi = x�i

}
.

Example. Let us consider the equilibrium point of system (2):

x� =

(
c/d

a/b

)
.

Fig. 1 presents the corresponding four regions of Wσ q (x
�). These regions are separated by

the two hyperplanes:

V1(x
�) =

{
x ∈ R

�2
+ ; x1 = c/d

}
,

V2(x
�) =

{
x ∈ R

�2
+ ; x2 = a/b

}
.
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Fig. 1. The sets Vi(x�) and Wσq (x
�) for the Lotka–Volterra example.

Fig. 2. The sets Ui and Zσq for the Lotka–Volterra example.

The Lotka–Volterra system is diagonally x�-monotonous since the diagonal terms of its
Jacobian matrix (a − bx2 and dx1 − c) are of fixed signs on each Wσ q (x

�). 

In the same way, we define the orthants of the velocity space or z-orthants:

Zσp
def
=
{
x ∈Ω; diag

(
σp
)
f (x) > 0

}
.

The z-orthants are delimited by the nullclines Ui :

Ui
def
= {x ∈Ω; fi(x)= 0}.

Example. Fig. 2 represents the nullclines Ui which are the borders between the 4 regions
Zσp . The two nullclines are:

U1 =
{
x ∈ R

�2
+ ; a − bx2 = 0

}
,

U2 =
{
x ∈ R

�2
+ ; c− dx1 = 0

}
.

It is worth noting that in this particular case the nullclines Ui correspond to the Vi+1(x
�).

Remark that the two nullclines corresponding respectively to x1 = 0 and x2 = 0 are not
contained in the open set R

�2
+ . 
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We consider also the following sets that are unions of sets previously defined:

• The union set of hyperplanes associated with x�: V (x�) def
=
⋃n

i=1 Vi(x
�).

• The union set of nullclines: U def
=
⋃n

i=1Ui .

3. The set of possible qualitative events

In this section we will consider a monotonous (i.e., with monotonous interactions) loop
structured system (Σ) and we will suppose that there exists an equilibrium point x� ∈Ω

for which (Σ) is diagonally x�-monotonous. We will then determine the set of orthants of
the velocity space Zσp compatible with a given orthantWσ q (x

�) of the x�-deviation space.
In other words the question is to determine all the possible signs of f (x) for x in a given
x�-orthant, i.e., the following set of signs:

F
q def

=
{
sign

(
f (x)

)
, x ∈Wσ q (x

�) \U
}
. (4)

In QSIM terminology [20], the goal of this section is to provide the constraints that
determine the possible qualitative states of the system.

Example. This idea is illustrated in Fig. 3 where the sets Ui(x�) and Vi are simultaneously
represented. It is worth noting that, for each q , among the 4 a priori possible elements
σp ∈ Sn only one is in Fq : the sign of f is fixed in each set Wσ q (x

�). From the analysis
of Fig. 3, we have graphically:

F
1 =

{
σ 2}, F

2 =
{
σ 3}, F

3 =
{
σ 4}, F

4 =
{
σ 1}. 

First we will determine the elements of the set Fq which are obtained locally around
equilibrium x�. Of course, the consideration of this linearized system can be not sufficient
to give global information on the nonlinear system. In this case we will have to consider
the original system.

Fig. 3. The vector field in each domain Wσq (x
�).
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3.1. Linear approach

As a first step, we will determine this set for the linearized of (Σ) around the point x�,
which is:

$̇x =Df (x�)$x, (5)

where Df (x) denotes the Jacobian matrix at point x , and $x
def
= x − x�. Note that

diag(σ q)$x is a positive vector for x ∈ Wσ q (x
�). Of course, as for the nonlinear case,

we will exclude the nullclines of the linear system (linearized of a Ui ).

We will consider the matrix Mq def
= Df (x�)diag(σ q), whose elements are denoted mq

kl

and whose signs are sqkl = sign(mq
kl).

Example. At the point x�, the Jacobian matrix is:

Df (x�)=

(
0 −bc/d

ad/b 0

)
.

We have then the signs of the four matrices Mq :

sign
(
M

1) =

(
0 −1
1 0

)
, sign

(
M

2)=

(
0 −1

−1 0

)
,

sign
(
M

3) =

(
0 1

−1 0

)
, sign

(
M

4)=

(
0 1
1 0

)
. 

The problem of determining the possible signs forDf (x�)$x when x ∈Wσ q (x
�) is then

equivalent to the determination of the set

L
q def

=
{
sign

(
M

q ξ
)
, ξ > 0, (ξ + x�) ∈Ω

}
. (6)

Of course we have Lq ⊂ Fq : the sign patterns allowed close to x� are included in the
set of all possible sign patterns for the original nonlinear system.

We will determine the set Lq , using two complementary lemma (remember that the sqkl
take their values in {−1,0,1}).

Lemma 1. Consider the linearized of a diagonally x�-monotonous loop structured system
(Σ), at point x� ∈ Ω . For a given σ q , if there exists an index k such that one of the two
conditions is satisfied:

(1) s
q
k,k = 0,

(2) s
q

k,k = s
q

k,k+1,
then

L
q =

{
lq = t(lq1 , . . . , l

q
n

)
; l

q
j ∈

{
s
q
j,j ⊕ s

q

j,j+1
}}
. (7)

The table of the operator ⊕ (“generic qualitative sum”) is given in Table 1.

Proof. Cf. Appendix A. �
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Table 1
Table of rules for the (com-
mutative) qualitative sum ⊕

1 ⊕ 1 {1}

−1 ⊕ 1 {−1,1}

−1 ⊕ −1 {−1}

−1 ⊕ 0 {−1}

1 ⊕ 0 {1}

0 ⊕ 0 {0}

Lemma 1 states that, under the given conditions, all the signs a priori admissible are
obtained. The following lemma covers the remaining cases, and it turns out that things are
a bit more complicated:

Lemma 2. Consider the linearized of a diagonally x�-monotonous loop structured system
(Σ), with x� ∈Ω .

If for every index k: sqk,k = −s
q

k,k+1, then

L
q = Sn − C

q , (8)

where the set Cq is obtained as follows from Dq def
= t(s

q

1,1, s
q

2,2, . . . , s
q
n,n):

• if det[Df (x�)]< 0,

C
q =

{
n∏

j=1

σ
q
j s

q
j,j D

q

}
,

• if det[Df (x�)] = 0,

C
q =

{
−

n∏

j=1

σ
q
j s

q
j,j D

q ,

n∏

j=1

σ
q
j s

q
j,j D

q

}
,

• if det[Df (x�)]> 0,

C
q =

{
−

n∏

j=1

σ
q
j s

q
j,j D

q

}
.

Proof. Cf. Appendix B. �

In this particular case one has to remove from the set of a priori admissible signs (which
is Sn here) the particular element Cq .

Example. Here we are in the case 1 of Lemma 1 where there exists an index k such that
s
q
k,k = 0 (k = 1 or k = 2). Hence:

L
1 =

{
σ 2}, L

2 =
{
σ 3}, L

3 =
{
σ 4}, L

4 =
{
σ 1}. 
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3.2. Global approach

In order to determine the set of possible signs for f (x), we will rewrite the system (Σ)

into another form. Using the fact that Lq ⊂ Fq , we will determine the various cases for
which this inclusion is strict.

Lemma 3. If x� is an equilibrium point, the system (Σ) can be rewritten

$̇x =A(x,x�).$x.

If (Σ) has monotonous interactions, then matrix A(x,x�) has the same off-diagonal signs
as the Jacobian matrix Df (x�) of (Σ). If moreover (Σ) is diagonally x�-monotonous,
the diagonal terms of A(x,x�) are of fixed signs in the various Wσ q (x

�). The diagonal
elements of A(x,x�) have the same sign as those of Df (x�) (except for the elements of
Df (x�) that are zero).

Proof. This is an application of the generalized first order Taylor formula [30]:

f (x)= f (x�)+

[ 1∫

0

Df
(
αx + (1 − α)x�

)
dα

]
(x − x�)

so that

A(x,x�)=

1∫

0

Df
(
αx + (1 − α)x�

)
dα,

where the Jacobian matrix Df is of fixed sign on Ω . The results follow easily from the
convexity of Ω [6]. �

Example. We have for the Lotka–Volterra system:

A(x,x�)=

(
a − b/2(x2 + x�2) −b/2(x1 + x�1)

d/2(x�2 + x2) d/2(x�1 + x1)− c

)
. (9)



We will use the same notations for A(x,x�) as for Df (x�), i.e., we will denote
Mq(x)=A(x,x�)diag(σ q), and tqkl the (fixed) sign of its elements mq

kl(x).
We first consider the simple case where the diagonal elements of the Jacobian matrix are

nonzero (and therefore matrix A(x,x�) and Df (x�) are of the same sign (cf. Lemma 3)).
In this case the simple framework of Lemma 1 is satisfied:

Lemma 4. Consider a diagonally x�-monotonous loop system (Σ) where x� is an
equilibrium point. If the following two conditions hold in Wσ q (x

�):
(1) ∀k, t

q
k,k = s

q
k,k �= 0,

(2) ∃k, t
q

k,k = t
q

k,k+1,
then we have Fq = Lq .
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Proof. It is straightforward that Fq ⊂ {lq; l
q
j ∈ {t

q
j,j ⊕ t

q
j,j+1}}, for the same reasons as in

the local case, when considering zk =m
q
k,k(x)ξk +m

q

k,k+1(x)ξk+1 (see Appendix A for the
notations).

But Lq = {lq; l
q
j ∈ {s

q
j,j ⊕ s

q

j,j+1}t} ⊂ Fq , and because the sq equal the tq we have
Fq = Lq . �

Remark 1. If sqk,k = 0 and tqk,k �= 0, no conclusion can be drawn in the general case on the
possible signs of the kth component zk and one has to consider the analytical formulation
of the model. Consider for example the following differential system defined on R

2:
{
ẋ1 = x2 − x2

1 ,

ẋ2 = x1 − x2
2 .

(10)

For the equilibrium point x� = t(0,0), the Jacobian matrix has the following signs:
(

0 +

+ 0

)
(11)

so that for x in R
�2
+ , Lq = {σ 1}. Nevertheless the matrix A(x,x�) has the following signs:

(
− +

+ −

)
(12)

and it is clear from (10) that Fq = S2.

Example. The above remark applies to the Lotka–Volterra system. Fig. 3 shows
nevertheless that the nonlinear part does not provide more qualitative possibilities than
the linear case: Fq = Lq . 

We will now consider the other case corresponding to Lemma 2.

Lemma 5. Consider a diagonally x�-monotonous loop system (Σ) where x� is an
equilibrium point. Suppose that for all k we have tqk,k = −t

q

k,k+1.
If det(A(x, x�)) cancels and changes its sign on Wσ q (x

�), then the set Fq covers all the
possible orthants:

F
q = Sn (13)

if this is not the case, then

F
q = Sn − C

q , (14)

where the set Cq is obtained as follows from Dq def
= t(t

q

1,1, t
q

2,2, . . . , t
q
n,n):

• if det[A(x†, x�)]< 0,

C
q =

{
n∏

j=1

σ
q
j s

q
j,j D

q

}
,

• if det[A(x†, x�)]> 0,

C
q =

{
−

n∏

j=1

σ
q
j s

q
j,j D

q

}
,

x† ∈Wσ q (x
�) being any point where the determinant of A(x†, x�) does not cancel.
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Proof. We have Lq ⊂ Fq ⊂ Sn. From Lemma 8, we know that Lq corresponds to Sn

except one or two elements. The question is to know if these elements can nevertheless
be in Fq . To answer this question, the same reasoning can be made as for the proof of
Lemma 8, considering now zk =m

q
k,k(x)ξk +m

q
k,k+1(x)ξk+1. This reasoning will give rise

to a constraint on the sign of the determinant of A(x,x�).
If the determinant can change its sign on Wσ q (x

�), then Dq or −Dq is possible on
Wσ q (x

�). �

Remark. Let us remark that if there exists another equilibrium point x† ∈Wσ q (x
�), then

A(x†, x�)(x† − x�)= 0 and therefore

det
(
A(x†, x�)

)
= 0.

Then we are in the case of the above lemma.

3.3. Partition of the state space: possible regions

Definition 4. For σp ∈Fq let us define the following open set:

Ωσ qσp (x
�)

def
= Wσ q (x

�)∩Zσp =
{
x ∈Wσ q (x

�); diag
(
σp
)
f (x) > 0

}
. (15)

Note that some Ωσ qσp (x
�) are empty. The nonempty remaining Ωσ qσp (x

�) represents
therefore the qualitative situations allowed by the model (as described in the above section)
and will be called the possible regions. Remark also that they do not intersect the nullclines
Ui and the hyperplane Vi(x�).

We can now consider the following partition of the state space Ω :

Ω =

( ⋃

σ q∈Sn, σp∈Fq

Ωσ qσp (x
�)

)
∪ V (x�)∪U. (16)

Fig. 4. Partition of the state space by the sets Ωσqσp (x
�).
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Example. As a conclusion of the previous paragraph, we have seen that only the four sets
Ωσ 1σ 2(x�),Ωσ 2σ 3(x�),Ωσ 3σ 4(x�) and Ωσ 4σ 1(x�) were not empty. The state space Ω is
now partitioned according to Fig. 4. 

4. The restricted phase space

We remove here from Ω some manifolds for which trajectories may have undesirable
behaviors (with respect to our goals): we show that this set of trajectories is of measure
zero, under some technical assumptions. The final phase space will be named Ω̃ . The
technical details that guarantee that the removed trajectories are of zero measure (and
therefore will not be observed) are presented in Appendix C.

Now we are able to define the open set Ω̃ , which is Ω minus these sets of measure zero
(in finite number) from the three properties presented in Appendix C (Properties C.2–C.4).
In the particular case (let us call it case E) where the two surfacesUi and Vi−1(x

∗) coincide
on an open set, we do not remove the corresponding set. From now on, everything will take
place in this restricted space Ω̃ . For a possible regionΩσ qσp (x

�) (see Section 3), we define
the nonempty set:

Ω̃σ qσp (x
�)

def
= Ωσ qσp (x

�)∩ Ω̃

and the neighbors in Ω̃ : two regions of the phase space are neighbors if they differ only
by one sign (of a deviation or a velocity). It is to be remarked that we have suppressed (by
restricting Ω) the possibility of going from one region Ω̃σ qσp (x

�) to another if they differ
by more than one sign (except in the last case E which is a bit degenerate, but will occur in
the example of Section 6).

Definition 5. Two domains Ω̃σ q1σp1 (x
�) and Ω̃σ q2σp2 (x

�) are called:
• strict U -neighbors if σ q1 = σ q2 , and there exists a unique k ∈ {1, . . . , n} such that
σ
p1
k = −σ

p2
k ;

• strict V -neighbors if σp1 = σp2 , and there exists a unique k ∈ {1, . . . , n} such that
σ
q1
k = −σ

q2
k .

Definition 6. In the case E, we say that Ω̃σ q1σp1 (x
�) and Ω̃σ q2σp2 (x

�) are strict UV -
neighbors if for all i �= k, σ

p1
i = σ

p2
i , σ

q1
i+1 = σ

q2
i+1 and σp1

k = −σ
p2
k , σ

q1
k+1 = −σ

q2
k+1.

Example. In dimension 2 none of the trajectories must be removed, therefore Ω̃ = Ω .
For the Lotka–Volterra system, the equilibrium hyperplanes Vi(x�) are included in the
nullclines Ui+1 (we are in case E) and therefore the sets Ω̃σ iσ i+1(x�) and Ω̃σ i+1σ i+2(x�)

are strict UV -neighbors. 

5. Transition between the domains Ω̃σ qσp (x�)

We can now consider the restricted space Ω̃ partitioned in open domains Ω̃σ qσp (x
�).

We will then show that the transition between these domains obey some rules determined
by the extradiagonal terms of the Jacobian matrix.
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Fig. 5. Transitions between the sets Ωσqσp (x
�).

5.1. Transition theorem

Theorem 1 (Transitions between regions). Consider a loop system (Σ) with monotonous
interactions and an equilibrium point x�. Suppose that Ω̃σ q1σp1 (x

�) and Ω̃σ q2σp2 (x
�) are

two strict neighbors. We recall that tk,k+1 is the sign of the element (k, k + 1) of the
Jacobian matrix.

• Crossing of a Uk:
Assume they are strict U (or UV )-neighbors. If tk,k+1σ

p1
k+1 = σ

p1
k (respectively

−σ
p1
k ), then the crossing of Uk is possible only from Ω̃σ q2σp2 (x

�) to Ω̃σ q1σp1 (x
�)

(respectively Ω̃σ q1σp1 (x
�) to Ω̃σ q2σp2 (x

�)), and it corresponds to a minimum
(respectively a maximum) of variable xk .

• Crossing of a Vi :
Assume they are strict V (or UV )-neighbors. If tk,k+1σ

q1
k+1 = σ

q1
k (respectively

−σ
q1
k ), then the crossing of Vk(x�) is possible only from Ω̃σ q2σp2 (x

�) to Ω̃σ q1σp1 (x
�)

(respectively Ω̃σ q1σp1 (x
�) to Ω̃σ q2σp2 (x

�)), and it corresponds for xk to a crossing
bottom-up (respectively top-down) of its equilibrium x�k .

We say that Ω̃σ q1σp1 (x
�) (respectively Ω̃σ q2σp2 (x

�)) is accessible from Ω̃σ q2σp2 (x
�)

(respectively Ω̃σ q1σp1 (x
�)).

The proofs of these theorems are very similar and can be founded in [3,4].

Example. Fig. 5 illustrates this theorem by showing the flow on the boundaries between
two neighbors. In dimension 2 these transitions could have been obtained from a more
traditional phase plane analysis. 

5.2. Barriers in the state space

Lemma 6. Suppose there exists two C1 mappings

Φ :x ∈Ω →Φ(x) ∈ R, ψ :u ∈ R →ψ(u) ∈ R,

verifying:

DΦ(x).f (x)=ψ
(
Φ(x)

)
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then R
def
= {x ∈Ω; ψ(Φ(x))= 0} separates Ω into positively invariant regions,

R
− def

=
{
x ∈Ω; ψ

(
Φ(x)

)
< 0

}
and R

+ def
=
{
x ∈Ω; ψ

(
Φ(x)

)
> 0

}
.

Proof. If we set u=Φ(x), u satisfies the first order scalar differential equation u̇=ψ(u).
The zeros of ψ separate the space into invariant regions where ψ is always positive or
negative. �

Corollary 1. If there exists a region of the state space Ω̃σ qσp (x
�) such that: Ω̃σ qσp (x

�)∩

R− = ∅ (respectively Ω̃σ qσp (x
�) ∩ R+ = ∅), then any trajectory initiated in R−

(respectively in R+) will never reach the region Ω̃σ qσp (x
�).

Corollary 2. Any trajectory initiated in a region Ω̃σ q1σp1 (x
�) ⊂ R+ (respectively

Ω̃σ q1σp1 (x
�) ⊂ R−), will never reach the regions Ω̃σ q2σp2 (x

�) ⊂ R− (respectively
Ω̃σ q2σp2 (x

�)⊂R+).

Remarks.
• Such a property is quite frequent, for example in biotechnological models, where u is

linked to mass conservation, and ψ is linear [1].
• Because u verifies a scalar differential equation, the nonempty limit sets are the

equilibria; property P thus holds (cf. Appendix C).

5.3. Main theorem of behavior

The following theorem describes the behavior of the trajectories of a differential
system (Σ) with monotonous interactions, loop structured and diagonally-monotonous:
the domain Ω , restricted to Ω̃ (cf. Section 4) is partitioned into the possible regions
Ω̃σ q1σp1 (x

�) (Section 3); the possible transition rules between these regions (cf. Section 5)
are given by Theorem 1.

Theorem 2 (Global qualitative behavior). Every trajectory of (Σ) in a domain Ω̃σ qσp (x
�)

either:
• stays in Ω̃σ qσp (x

�) and goes to infinity;
• stays in Ω̃σ qσp (x

�), and goes towards an equilibrium x† in the closure of Ω̃σ qσp (x
�);

• goes to one of the strict neighbors Ω̃
σ q

′
σp

′ (x�) that are accessible.

Proof. Indeed, if a trajectory remains in a possible Ω̃σ qσp (x
�) (Section 3), then the ẋk are

of fixed sign, therefore the xk are monotonous. If they are bounded, they have to converge
towards an equilibrium in the closure of Ω̃σ qσp (x

�) or to go towards an accessible neighbor
(Section 5). Moreover, this neighbor must be a strict neighbor, because we have removed
the trajectories going to nonstrict neighbors (Section 4). �

Remark 2. Note that the trajectories cannot become unbounded in a domain Ω̃σ qσp (x
�)

where for all i , σ qi = −σ
p
i , because that would mean that the state variables are decreasing
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above their equilibrium, or increasing under their equilibrium. If the state variables are
positive (as often in biological modeling), a necessary condition for unboundedness in
Ω̃σ qσp (x

�) is that there exists i for which σ qi = σ
p
i = 1.

Remark 3. The equilibrium x� can be reached from a domain Ω̃σ qσp (x
�) if and only

if σpk = −σ
q

k for all k. If this condition is not fulfilled for some k, then variable xk is
decreasing under its equilibrium x�k , or increasing above its equilibrium and can therefore
not converge.

Remark 4. A local linear study can also give interesting information on the possibility of
convergence in a given region [4].

5.4. Graphical representation

We will represent each possible region Ω̃σ qσp (x
�) by a two column matrix of signs:

the first column stands for σ q , and the second for σp . For example, the region {x ∈ Ω;

x1 > x�1, x2 < x�2, x3 > x�3, ẋ1 < 0, ẋ2 < 0, ẋ3 > 0} is represented by the matrix:
(

+ −

− −

+ +

)
.

A possible transition between two regions is represented by an oriented arrow between
these regions, as determined by the conclusions of Theorem 1. A letter on the arrow will
indicate if the variable xk admits a minimum (mk), a maximum (Mk), if it crosses its
equilibrium x�k top-down (tk) or bottom-up (Tk). The set of all Ω̃σ qσp (x

�) related by the
arrows reflecting the transition rules of Theorem 1 is called the basic mixed transition
graph. The nodes for which it is possible to converge to equilibrium (cf. Remark 3) will be
called equilibrium nodes.

Our main theorem has now a “graphical version” (cf. the detailed example below and
Figs. 8 and 9). For the sake of simplicity, we will restrict ourselves to the case where all
the trajectories are bounded. We obtain then (cf. Figs. 8 and 9):

Theorem 3 (Graphical version of the global qualitative theorem). On each nonequilibrium
node, the trajectories follow an arrow of the graph and go towards an accessible node. On
each equilibrium node, the trajectories either stay in the node and converge to equilibrium,
or go towards an accessible node.

Example. Now the qualitative behavior of the prey-predator system can be represented
by a transition graph (Fig. 6). Fig. 5 illustrates this theorem by showing the flow on the
boundaries between two neighbors. 

5.5. Asymptotic behavior

Some theorems (admitting a simple interpretation in terms of the graph) on the behavior
of loop structured systems with monotonous interactions have already been given [4]. We
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Fig. 6. Transition graph for the Lotka–Volterra system. Each node of the graph represents a qualitative feature:
the first column deals with the sign of the deviation from the equilibrium point, and the second column represents
the trend of the variable. mi (respectively Mi ) stands for a minimum (respectively a maximum) of xi , and ti
(respectively Tk ) represents a crossing of its equilibrium value top-down (respectively bottom-up).

will just give the following lemma, derived from considerations of both deviation from a
reference point and trends of the variables.

Lemma 7. If, in the transition graph of a system Σ , there is no cycle containing an
extremum of variable xk , then for almost every trajectories, xk either goes towards an
equilibrium in the closure of Ω or to infinity.

Corollary 3. If there is no cycle in the transition graph of a system Σ , almost all the
trajectories go towards an equilibrium in the closure of Ω or diverge.

In other words, it means that there is no periodic or recurrent behavior, nor chaos or
other complex behavior.

6. Application: qualitative behavior of a general class of cell growth models

6.1. The class of models

To illustrate the qualitative analysis of loop structured systems we will consider a
nontrivial application: the growth of phytoplankton in the oceans. We will consider a
class of models used in oceanography to estimate the amount of carbon uptaken by the
phytoplankton during the photosynthesis process. These models describe the behavior of
phytoplanktonic biomass (x2) growing on a substrate (x1).

In the laboratory, the algal growth process in a continuous reactor (chemostat), for
dimensionless variables (for a nonzero nutrient supply) can be described by the following
system:

(ΣPGM)

{
ẋ1 = 1 − x1 − ρ(x1)x2,

ẋ2 = (µ(x3)− 1)x2,

ẋ3 = ρ(x1)−µ(x3)x3.

(17)
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The variable x3 is the cell quota, i.e., the quantity of intracellular nutrient per biomass
unit. The functions ρ and µ respectively represent the absorption rate of the substrate and
the growth rate.

The validation of this class of models by comparison with experimental data is given in
[6]. For more mathematical details on the models in the chemostat see [26].

Among the models (ΣPGM), the Droop model [8,12] is largely used in the biological
field. For this particular model we have:

ρ(x1)= a1
x1

a2 + x1
; µ(x3)= a3

(
1 −

a4

x3

)
.

The functions used for ρ and µ are only conjectures and are not justified by a proper
validation for transient conditions. In the following we keep a more general framework and
we do only qualitative hypotheses, so that the analysis can be applied to any reasonable ρ
and µ.

Hypotheses. Some hypotheses, corroborated by the experiments, are generally made by
the biologists in order to represent growth of phytoplankton [22]: in the considered physical
domain, Ω = {x ∈ R

�3
+ ;x1 > 0, x2 > 0, x3 > 0}:

(H1) The absorption rate ρ is a nonnegative bounded function of x1. It is strictly
increasing and verifies ρ(0)= 0.

(H2) The growth rate µ is a nonnegative strictly increasing function of x3.
(H3) An equilibrium exists in the open domain Ω .
The class of models (ΣPGM) verifying hypothesis (H1)–(H2)–(H3) is called the class of

Phytoplanktonic Growth Models (PGMs). It can easily be verified that the Droop model is
in this class.

6.2. The PGMs: a nontrivial loop structured class of systems with monotonous
interactions

Property 1. The PGMs are loop structured models with monotonous interactions in Ω .

Proof. The Jacobian matrix has the following signs on Ω :
(

−1 −1 0
0 t22(x) +1

+1 0 −1

)
(18)

with

t22(x)= sign(ẋ2)= sign
(
µ(x3)− 1

)
. � (19)

Property 2. The PGMs have two equilibria:
• x� ∈Ω :

x�3 = µ−1(1); x�1 = ρ−1(µ−1(1)
)
; x�2 =

1 − ρ−1(µ−1(1))
µ−1(1)

.
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• xb, an unstable equilibrium on the boundary of Ω :

xb2 = 0; xb1 = 1; xb3 unique solution of: µ
(
xb3
)
xb3 = ρ

(
xb1
)
.

Proof. In accordance with hypothesis (H3), we have x� ∈ Ω , i.e., x�2 > 0. Hypotheses
(H1) and (H2) ensure the uniqueness of this equilibrium, because the applications µ−1 and
ρ−1 ◦µ−1 are strictly increasing. Moreover, it is straightforward from a local study that xb

is unstable if x�2 > 0.
We will then consider the three hyperplanes Vi(x�)= {x ∈Ω; x = x�i } which separate

the space Ω into eight regions Wσ j (x
�). �

Property 3. The PGMs are diagonally x�-monotonous in the domain Ω .

Proof. It can be noticed that t22(x)= sign(x3 − x�3), therefore in each domain Wσ q (x
�),

t22(x)= σ
q

3 is fixed. We therefore have sign(ẋ2)= sign(x3 − x�3)= σ
q

3 .
We are therefore in the case E of Property C.4 (with V3(x

�) ⊂ U2), it means that
simultaneously when x2 reaches an extremum, x3 crosses its equilibrium x�3 . �

Property 4 (Mass conservation). If u= Φ(x) denotes the total nutrient concentration in
the chemostat:

u
def
= x1 + x2x3 (20)

u satisfies the following differential equation:

u̇= 1 − u. (21)

Property 5. The trajectories of the PGMs are bounded in the positively invariant
domain Ω .

Proof. The proof of Property 4 is straightforward from system (17). To show that Ω is
positively invariant one has to consider the field on the boundaries:

• From (H1), for every x on the face x1 = 0 we have: ẋ1 = 1> 0.
• For every x on the face x2 = 0 it holds: ẋ2 = 0.
• For every x on the face x3 = 0: ẋ3 � 0.

Moreover, to prove the boundedness of the trajectories, we first use Property 4 to show that
u is bounded, i.e., x1 and the product x2x3 are bounded.

To show that x3 is bounded, we consider a real a large enough to ensure that the strictly
increasing function µ(a)a becomes larger than the upper bound of ρ (cf. (H1)). It follows
that the field on every hyperplane x3 = b, where b� a, verifies: ẋ3 < 0.

The product x2x3 is bounded, so that x2 is also bounded (cf. [4] for details). �

In the sequel, we will remove the set of trajectories initiated from the manifolds
presented in Table 2. Note that for a loop structured system with monotonous interaction in
dimension 3, it is impossible to cross simultaneously two sets Ui (see [4]). The same proof
shows that it is also impossible to cross simultaneously two sets V3(x

�). As a consequence,
the following results hold on the restricted set Ω̃ :

Ω̃ =Ω \
{
U1 ∩ V3(x

�),U3 ∩ V2(x
�)
}
.
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Table 2
Table of the set of initial conditions for which the
trajectories are removed

Manifold Equations

U1 ∩ V3(x
�)

1 − x1 − ρ(x1)x2 = 0
x3 = x�3

U3 ∩ V2(x
�)

ρ(x1)=µ(x3)x3
x2 = x�2

6.3. Study of the transition graphs

6.3.1. The possible qualitative situations
To obtain the set of possible domains allowed by the class of models (ΣPGM), we can

now apply results of Lemmas 4 and 5 for the 8 orthants Wσ q (x
�). Note however that

the Jacobian matrix (18) at the equilibrium point has a zero on its diagonal (s22 = 0),
therefore (see Remark 1) the possible signs for ẋ2 have to be determined directly from
the system (ΣPGM). The analysis follows here straightforward from Property 3: for
x ∈Wσ q (x

�), sign(ẋ2)= σ
q
3 .

The set of possible qualitative domains Ω̃σ qσp (x
�) now follows from the results of

Section 3.2 after the computation of the sign of the 8 matrices Mq as shown in Table 3.
We can remark that none of these matrices presents the case treated in Lemma 5.

Property 6. There exist 18 possible qualitative regions Ω̃σ qσp (x
�) for the class of PGMs.

These qualitative situations are listed in Table 3. Remark that a priori we have 26 = 64
possible situations. The consideration of this set of possible domains therefore constitutes
a first filter to test the structure of the model. If a qualitative event not belonging to this
set can be experimentally observed, it means that the system cannot rely on the supposed
structure.

6.3.2. The basic mixed transition graph
To go further into the description of the qualitative behavior of the model, we can now

construct the mixed transition graph by applying Theorem 1 to all the strict neighbors
Ω̃σ q1σp1 (x

�) and Ω̃σ q2σp2 (x
�) belonging to the set of feasible regions. It can be noticed

that V3(x
�)⊂U2, and then from Property C.4 (case E defined in Appendix C), there exists

UV-neighbors.
Finally we obtain the mixed transition graph (Fig. 7) associated with the PGM (ΣPGM).

This graph summarizes the possible succession of extrema or equilibrium crossings from
an initial qualitative situation.

It is noteworthy that the construction of this graph relies only on the sign of the Jacobian
matrix (the peculiar case of Lemma 5 does not appear here), and not on the precise
formulation of the model.
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Table 3
For each σ q , the matrices Mq and the sets Fq associated to the Droop model
are represented (note that sign(ẋ2)= σ

q
3 ). The graphical representation of the

feasible domains Ω̃σqσp (x
�) is illustrated by a sign matrix: the first column

contains the sign of the deviation from equilibrium x� , the second column the
sign of the trend of the variables. The � means either +1 or −1

6.3.3. Simplification of the basic mixed transition graph
The basic mixed transition graph can be simplified by considering the result of Lemma 6.

Property 7.
Depending on initial conditions some regions of Ω are unreachable:
• if u(0) < 1 then the regions

(+ �
+ �
+ �

)
and the regions

(
� −
� −
� −

)
are unreachable;

• if u(0) > 1 then the regions
(

− �
− �
− �

)
and the regions

( � +
� +
� +

)
are unreachable.

The sign � means that it can be either + or −.

Proof. Consider the application φ :x → φ(x)= u= x1 + x2x3. From Property 4 we have
that DΦ(x).f (x)= 1 −Φ(x).

Lemma 6 therefore says that the surface x1 + x2x3 = 1 separates the space into 2
unconnected regions R+ = {x ∈Ω;x1 + x2x3 > 1} and R− = {x ∈Ω;x1 + x2x3 < 1}.
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Fig. 7. Basic mixed transition graph. Mi (respectively mi ) denotes a maximum (respectively a minimum) for the
variable xi . Ti (respectively ti ) denotes a crossing of its equilibrium value bottom up (respectively top down) for
the variable xi .

Indeed, the regions
(+ �

+ �
+ �

)
are belonging to R+: if ∀i, xi > x∗

i then x1 + x2x3 − 1 >
x∗

1 + x∗
2x

∗
3 − 1 = 0.

In the same way, the regions
(
� −
� −
� −

)
are belonging to R+: if ∀i ẋi < 0 then u̇ =

ẋ1 + ẋ2x3 + x2ẋ3 < 0, and from (21) u− 1 = −u̇ > 0. �

The proof is symmetrical for the regions contained in R−.

Lemma 8. Almost every trajectory converges towards the equilibrium x�.

Proof. If, depending on initial conditions, we remove the unreachable regions (see Lemma
7), then the cycle in graph of Fig. 7 disappears. Applying Lemma 7, we conclude that
almost every trajectory either goes towards an equilibrium in the closure of Ω or to
infinity. As these trajectories are bounded (Property 5), the only possibility is to go towards
the unique stable equilibrium x∗ ∈ Ω (the equilibrium on the boundary of Ω is unstable
(Property 2)). In fact this equilibrium is globally stable (cf. [3]). �

Property 8. In the considered domain, if u(0) < 1 (respectively u(0) > 1), the region(− −
+ +
+ −

)
(respectively

(
+ +
− −
− +

)
) is unreachable.

Proof. From Lemma 8, in the domain Ω the PGMs have a unique, globally stable,
equilibrium. In the case u(0) < 1, the qualitative situations mentioned in Property 7
disappear from the mixed transition graph. It can then be noticed that in this graph, two
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Fig. 8. Simplified mixed transition graph for u(0) < 1.

domains are positively invariant. Among these, the region
(− −

+ +
+ −

)
does not satisfy the

conditions of Lemma 3; it can therefore not lead to the nontrivial equilibrium in the interior
of Ω . �

Properties 8 and 7 can now be used to simplify the mixed transition graph: depending
on the initial condition for u, it can be reduced to two graphs (Figs. 9 and 8).

6.4. Summary of the qualitative behavior of the PGMs

Now we have the complete description of the transient behavior of the PGMs given by
the two graphs (Figs. 8 and 9). From the analysis of these graphs, the following property
holds:

Property 9. The trajectories of the PGMs admit for each of the state variables at the
most one minimum, one maximum, one bottom-up equilibrium crossing, and one top-down
equilibrium crossing.

More precisely, if we apply the necessary conditions to reach an equilibrium that have
been given in Remark 3, then the equilibrium can be reached only from the following
domains:

(
− +

− +

+ −

)
,

(
+ −

− +

+ −

)
,

(
− +

+ −

− +

)
,

(
+ −

+ −

− +

)
.
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Fig. 9. Simplified mixed transition graph for u(0) > 1.

If we use more quantitative information about the model (if this information is assumed
to be reliable enough), then the final domain from which equilibrium is reached can be
precisely determined from a local study [4].

Note that the path to reach the final domain (i.e., the domain from which equilibrium
is attained) is not unique. For some qualitative initial conditions, several paths can be
followed. The actual path followed by a trajectory could be specified if we use more
quantitative information on the model.

7. Application to fault detection or model validation

The proposed methodology can be used as the basis for a qualitative comparison between
the actual behavior of a real system (obtained by the measurements) and the theoretical
behavior contained in the transition graph. Note that the value of the equilibrium x� is
obtained from the experimental data.

The transition graph can thus serve to validate the structure of the model from the
experimental observations of the temporal scenarios of qualitative transitions. Indeed, if
the observed sequences of qualitative events do not correspond to a sequence contained in
the graph, it points out a conflict between the model and the data.

Once the model has been validated, the comparison can be performed in real time to
provide a fault detection tool. Here the measured qualitative transitions can be compared
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to the transition graph [13,14]. If the transitions does not correspond to any path of the
graph, this means that the system behaves differently than the model which represents the
standard working mode. A mismatch between the observations and the graph will then
correspond to a qualitative change (failure) in the process.

For both objectives (validation or fault detection), the transition graph will give us a set
of criteria to diagnosis the origin of the fault (in the model for validation or in the system
for fault detection). The diagnosis will be deduced from the localization of the constraint
contained in the graph that is violated. The reason for the conflict between the actual and
the theoretical behavior can be of two main types (we assume here that only one fault
happens at the same time):

• A transition for xi does not respect the direction of an arrow. This means that the
modeling of variable xi is not consistent with the data. More precisely, it can result
from a sign change in the extradiagonal term of the Jacobian matrix associated with
this arrow (xi): the interaction between xi and xi+1 has changed. It can mean, e.g., that
variable xi+1 is inhibiting xi instead of enhancing it. It can also be the consequence
of an interaction with another variable [7]. In this case, the loop structure is affected.
A more detailed discussion of the use of the transition graphs to validate the structure
of a model can be found in [4].

• An observed transition occurs towards a qualitative feature that does not exist in the
graph. If the transition was compatible with the transition rules imposed by the extra-
diagonal terms of the Jacobian matrix, this may indicate that the topology of the space
as induced by the partition of the Ωσ qσp (x

�) is wrong. This points out a change in the
sign of a diagonal term of the Jacobian matrix. It remains to find out which variable
is affected by such a change. This can be done by exploring the effect of a change in
each of the signs of the diagonal elements on the possible regions Ωσ qσp .

The noise in the data can make the comparison—even on a qualitative basis—difficult.
We have proved in [6] that the constraints dealing with the trends of the variables still
hold after removing noise with a simple moving average filter. This approach has been
applied to analyze the response of a population of phytoplankton to a periodic input of
nutrient [6]. Although is was based only on the simple diagnosis obtained with trends
of the state, it revealed a qualitative change in the behavior of the population for high
frequency of nutrient supply: it seems that the cell division synchronizes on the nitrogen
source.

Finally, the presented methodology can also be used in the context of model identifica-
tion with an inverse problem perspective. How to find the model structure from a set of
data? If there is a large number of available experiments which contain a sufficient amount
of qualitative information (qualitative transitions), one can report these observations in a
graph and observe the transitions that are always performed in the same way, and the qual-
itative domains that are reached. This should lead to the identification of an experimental
transition graph. The next step will then consist in finding a model structure that generates
the observed graph. If the system has a loop structure (or a structure close to this ideal
case), this will be straightforward from the proposed analysis. The important point is that
this analysis is independent of the parameter values, as a consequence it only provides the
model structure. Quantitative modeling steps are then necessary to get a complete model-
ing.
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This can find important applications, e.g., in the field of genomics, where data on the
temporal evolution of gene expression is available. This method could help to clarify
the interactions between the genes in the framework of the so called reverse engineering
approach [10].

Of course, a computer implementation of the method will be necessary when the system
complexity will be too high. The complexity can both be due to an increase in the
state variables, or to additional interactions between the variables which make the model
differ from the loop structure. The implementation of the methods will then consist in
automatically generating a graph from the model structure and supporting the comparison
between the graph and the available experiments. Finally, for the reverse engineering
purpose, it will allow to automatically identify a graph and generate possible model
structures from the data analysis.

8. Conclusion

For the studied class of systems we have obtained a global qualitative description of
the transient behavior as well as of the asymptotic behavior. We want to stress the fact
that these results are global (i.e., they do not result from local linear considerations). It
is noteworthy that the qualitative behavior of these systems results only from the signs
of the Jacobian (if we exclude the particular case for which the sign of the determinant
must be known). Therefore, this analysis is particularly well adapted to the biological
context, where the only sure a priori knowledge of the process is the sign of the interactions
between variables.

In the analysis we have removed the trajectories for which two qualitative events appear
at the same time (except for the case E defined in Appendix C). These trajectories are of
zero measure and thus they will never be observed in the real system. This simplifies the
analysis and differs from most of the qualitative studies where these special cases are not
removed.

Finally, let us stress that the hypothesis on the loop structure of the model is quite strong.
In fact, our methodology can be applied (for a system with monotonous interactions)
even if the system has not exactly a loop structure [3,5,7]. It is easy to see that some
transitions between two regions will be permitted in the two directions, allowing a more
complex behavior. However, for the transitions being allowed in only one way, we are
still able to compare the model and the data. Moreover, it can happen that some regions
are still invariant (for example, if the Jacobian matrix has positive signs outside the main
diagonal, the region with positive signs is invariant). In this case it is possible to derive
interesting results for such more general systems. Much work remains to be done in this
direction.
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Appendix A. Proof of Lemma 1

If σ ∈Lq , then there exists ξ ∈Ω+� such that: σ = sign(Mq ξ). If we denote z=Mq ξ ,
we have:

zj =m
q

j,j ξj +m
q

j,j+1ξj+1.

While ξj and ξj+1 are positive, the possible signs σj for zj are in the set {s
q
j,j , sqj,j+1}

(remember that the sets zj = 0 have been removed).
It follows that Lq ⊂Aq , where Aq is the set of a priori possible signs:

A
q def

=
{
lq; l

q

j ∈
{
s
q

j,j ⊕ s
q

j,j+1
}}
.

We will show that all the elements of Aq have a preimage by sign(Mqξ).
If condition (1) or (2) is fulfilled for k, sign(zk)= s

q

k,k+1 = s
q

k,k+1 ⊕ s
q

k,k . We will fix ξk
to an arbitrary positive value.

If we consider zk−1 =m
q

k−1,k−1ξk−1 +m
q

k−1,kξk , there exists two possibilities:
(i) One of the two conditions is fulfilled: sqk−1,k−1 = 0 or sqk−1,k−1 = s

q

k−1,k . For any
ξk−1 > 0, we have:

sign(zk−1)= s
q

k−1,k = s
q

k−1,k ⊕ s
q

k−1,k−1.

(ii) In the other case, sqk−1,k−1 = −s
q

k−1,k , and we choose:

ξk−1 = −ε
m
q

k−1,k

m
q

k−1,k−1
ξk with ε ∈

{
1
2
,

3
2

}
.

Then zk−1 = (1 − ε)m
q

k−1,kξk . If we take ε = 1
2 we have sign(zk−1)= s

q

k−1,k , if we
take ε = 3

2 we obtain sign(zk−1)= −s
q

k−1,k = s
q

k−1,k−1.
The same reasoning can be applied to zk−2, zk−3, . . . , z1, zn, . . . , zk+1, hence ξk−2, . . . ,

ξk+1 can be chosen such that the result follows.

Appendix B. Proof of Lemma 2

We will show that among the set Aq = Sn corresponding to the set of a priori possible
signs for z (see argue given in the proof of Lemma 1), one single element is not in
Im{sign(Mqξ)}.

(1) We will first assume that Dq = t(s
q

1,1, s
q

2,2, . . . , s
q
n,n)= σ 1, i.e., for every k: sqk,k = 1.

The other cases are symmetrical and they will be detailed at the end of the proof.
We first show that it is possible to find ξ ∈ Ω+� such that there exists k for which
zkzk+1 < 0 (zk is defined in Appendix A). For the sake of clarity, we will first find
such ξ ensuring z1 < 0 and zn > 0. For a fixed ξ2 > 0, it is possible to find ξ3 > 0
such that z2 is of desired sign (cf. proof of preceding lemma). In the same way
ξ4 > 0 to ξn > 0 can be chosen to obtain an arbitrary (and fixed) sign for z3 to zn−1 .
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Now we have to choose a ξ1 > 0 such that z1 < 0 and zn > 0. This is possible if we
take:

ξ1 <min
(

−
m
q
1,2

m
q

1,1
ξ2,−

m
q
n,n

m
q

n,1
ξn

)
.

This result can clearly be extended to all the situations where there exists an index
k such that zkzk+1 < 0.
Let us prove that to find ξ such that z is positive, it is necessary to have det(Mq) > 0.
Indeed, to have zp > 0 for every p, there must exists a positive ξ such that the
following conditions hold for every p:

ξp+1 <
m
q
p,p

−m
q
p,p+1

ξp (B.1)

it follows that:

ξn <

n−1∏

j=1

m
q
j,j

−m
q
j,j+1

ξ1 <

n∏

j=1

m
q
j,j

−m
q
j,j+1

ξn. (B.2)

Condition (B.2) imposes:

λq
def
=

n∏

j=1

m
q
j,j + (−1)n+1

n∏

j=1

m
q

j,j+1 > 0. (B.3)

It is noteworthy that, for the loop structured system (Σ), λq is nothing but the
determinant of matrix Mq :

λq = det
(
M

q
)
= det

(
Df (x�)

) n∏

j=1

σ
q
j .

Reciprocally, let us show that if λq is positive, it is possible to find a positive ξ such
that z is positive.
First, we choose an arbitrary ξ1. We compute ξ2 to ξn by the following induction
formulae for 1 � p � n− 1:

ξp+1 = ε
m
q
p,p

−m
q
p,p+1

ξp (B.4)

with:

ε
def
=

(
n∏

j=1

−m
q
j,j+1

m
q
j,j

)1/n

,

while λq is positive, it implies ε < 1, and thus condition (B.1) holds for 1 � p �

n − 1 implying zp > 0. We now have to prove that this gives also zn > 0. If we
compute ξn we get:

ξn = εn−1
n−1∏

j=1

m
q

j,j

−m
q

j,j+1
ξ1
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and then

m
q
n,n

−m
q

n,1
ξn =

ξ1

ε
> ξ1

and therefore zn > 0.
We have then found a positive ξ ensuring z > 0.

(2) The proof has now to be achieved by symmetry for a general Dq : the problematic
cases correspond to sign(z) = Dq . The problem is then equivalent to find
ξ > 0 such that sign(diag(Dq )z) = σ 1, it consists therefore in considering matrix
diag(Dq )Mq , whose determinant is det[Df (x�)]

∏n
j=1 σ

q

j s
q

j,j .

Appendix C. The set of trajectories that can be removed from Ω

C.1. Motivations

We want to remove a set of trajectories initiated from some (n− 2)-dimensional mani-
foldM , typically the intersection between two isoclines. It is clear that, in finite time, such a
set of trajectories is (n− 1)-dimensional, but the limit set (in positive time) can be, in some
(rather intricate) case, of nonempty interior. This case is undesirable, because if we remove
this set, it can be that we remove the trajectories that are experimentally observed. We will
therefore suppose that the differential system is such that the limit set of any manifold M
of dimension (n− 2) is of measure zero (property P). There are many cases where such a
property is verified, and many ways to check it. Let us list some sufficient conditions:

• if the system admits a Lyapunov function for the equilibrium x∗, then it is globally
stable. The limit set of any manifold is x∗ itself;

• if the system admits a function V (x) decreasing along the trajectories, then the
Lasalle’s theorem [19] gives us that the limit sets of any bounded trajectories are
contained into the set {x; d

dt V (x)= 0}. If this set is of measure zero (if it is contained
in an (n− 1)-manifold for example), then the property is verified;

• if there exists an application h : Rn → R
p , with p < n of class C1, regular at every

point, such that

d
dt
h(x)= g

(
h(x)

)

along the trajectories of the system Σ , and if the limit sets of the new differential
system in R

p

(
Σ1) {

ḣ= g(h)

verify property P, then the system Σ verifies property P (indeed, because of the
regularity of h, the preimage of a set of measure zero is of measure zero). For example,
if we know that the limit sets of Σ1 are a finite number of points (it is the case in
dimension one), then the property stands for Σ1, and therefore for Σ .
For example, for biological, ecological or chemical models, it is often the case
that some mass balance or mass conservation relation holds, giving easily a scalar
differential equation; Property P is therefore verified.
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Now we examine each set of initial conditions of the trajectories we want to remove. It
is roughly the intersection between the Vi(x∗) and Uj , because there are two signs that
change simultaneously. In all the following, we suppose that the above property P holds.

C.2. Remaining in a nullcline or in an equilibrium hyperplane

We recall first that it is not possible to stay on a nullcline.

Property C.1. A trajectory cannot remain in a Vi(x∗) set or in a Ui set, unless it is the
equilibrium point x�.

The proof is in [4]. The idea is to write that the manifold is invariant, and to differentiate
enough times to obtain the result.

C.3. Intersecting nullclines and equilibrium hyperplanes

Property C.2. For loop structured systems with monotonous interactions, the set of
trajectories intersecting simultaneously two (different) Vi(x∗) is of measure zero.

Indeed, the intersection of the two hyperplanes xi = x∗
i and xj = x∗

j is a (n − 2)-
dimensional plane. Because of property P, the trajectories are of measure zero.

Property C.3. The set of trajectories intersecting simultaneously two (different) Ui is of
measure zero.

The intersection is defined by fi(x)= fj (x) = 0. The derivative of this application is
of full rank two because the interactions are monotonous. Therefore the preimage of 0 is a
manifold of dimension (n− 2), and property P applies.

Property C.4. For loop structured systems with monotonous interactions, the set of
trajectories intersecting simultaneously Ui and Vj (x∗) (j �= i − 1) is of measure zero. The
set of trajectories intersecting simultaneouslyUi and Vi−1(x

∗) is of measure zero except in
the case (let us call it case E) where the system (Σ) is such that the two surfaces coincide
on an open set.

In the first case, the intersection is defined by xi = x∗
i , fj (xj , xj+1)= 0, and the same

reasoning as above applies. If j = i− 1, then the intersection {x ∈Ω, fi−1(xi−1, x
�
i )= 0}

can be of dimension (n− 1): take for example the Lotka–Volterra system, the equilibrium
hyperplane Vi(x�) is included in the nullcline Ui+1.
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