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Abstract

In a chemostat, oscillatory behaviors during the transients are often experimen-
tally observed for cells growth. The aim of this paper is to propose a simple au-
tonomous model which is able to generate these oscillations, and to investigate it
analytically. Our point of view is based on the simplification of the cell cycle mech-
anisms, emphasizing two main steps: mature and immature stages are modeled and
the transfer between these two steps depends on the resource. We use the mathe-
matical global properties of competitive differential systems to exhibit a limit cycle.
A comparison between our model and a more complex PDE model is done with the
help of numerical simulations, giving qualitatively similar results.

Key words: biochemical mechanisms, structured model, ordinary differential
equations, chemostat, competitive system, oscillations.

1 Introduction

A chemostat is a laboratory apparatus, composed of a reservoir and fed by
a constant liquid flow, used for experiments of controlled growth of micro-
organisms. The inflow feeds the culture with biochemicals called substrates
(e.g. nitrate). In the vessel, microorganisms grow consuming these nutrients,
then the outflow retrieves substrates and cells present in the reservoir. Usually,
only one substrate is limiting in order to evaluate its influence on cells growth.
This idealized and controlled apparatus allows reproducible experiments and
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gives a very good approximation of specific realistic biological mechanisms
(see for example (Sciandra et al., 2003)).

Unstructured mathematical models, meaning that only one global variable is
used to represent the microorganisms, are often employed to describe cell
growth in chemostat. The most representative one has been proposed by
Monod (1942). His approach is based on the interaction between microorgan-
isms, more precisely bacteria, and substrates dissolved in the liquid medium.
Although this model could be successfully used to fit steady state, its pre-
dictions in perturbed conditions is far from being satisfactory. In particular
considering Saccharomyces cervisae (Parulekar et al., 1986; Porro et al., 1988)
or phytoplankton cells (e.g. Chlamydomonas reinhardii, (Nisbet and Gurney,
1982)), it is not able to represent oscillatory transients (in cell number) ob-
served in chemostat experiments (see section 2.2). A new modeling approach
is therefore required.

One idea is to consider different uptake and growth rate functions in order
to obtain more complex dynamics (Arino et al, 2003). Another one is to use
structured models, meaning that the whole cell population is described by
several variables representing some physiological states (Lemesle and Gouzé,
2005). Different models could be obtained by the choice of a structured vari-
able: if this variable is continuous, a model with partial differential equations
is obtained; if this variable is discrete, the model results in an ordinary dif-
ferential equations system. For example, in (Pascual and Caswell, 1997), the
structured variable is continuous and represents the cell maturation along its
cycle. Moreover, the cell number density is considered and the cell cycle is di-
vided into resource-dependent and resource-independent. The obtained model
is with PDE and some numerical simulations show an oscillatory behavior. In
(Cazzador, 1991), a discrete variable representing two phases of the cell mat-
uration (unbudded and budded cells) is chosen, the biomass concentrations
are the variables, and numerical simulations show autonomous oscillatory be-
haviour. We propose in the present paper a new model inspired by both of the
above models and an analytical proof of the oscillatory behavior. Our global
aim is to obtain a simple unforced growth model, retaining the main qualita-
tive biological hypotheses of the more complex model (Pascual and Caswell,
1997) and giving the same qualitative results (concerning the oscillations). The
hypotheses of the model (Cazzador, 1991) are quite different: the variables are
biomass concentrations and not number density, and the oscillatory behaviour
is based on the complex non-linear transfer rates between two compartments,
both rates depending symmetrically on the substrate concentration. Moreover
the oscillatory behaviour is not mathematically proved.

After recalling some classical results on unstructured and structured models
(section 2), we build, using a discrete structured variable, a model based on
biochemical grounds (section 3). This model is autonomous, meaning that
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there is no forcing in the inputs. The cell cycle is divided in two parts describing
its main phases: the mature and the immature one. The transfer between the
two phases is modeled by a function depending or not on resources which is
very similar to the previous assumption done by Pascual and Caswell (1997).
Moreover the cell number density is considered as state variables to precisely
describe cell division. Then a competitive system is built and existence of a
non trivial limit cycle can be analytically proved under some assumptions.
Numerical simulations are given to illustrate our results (section 4).

2 The chemostat paradigm

2.1 The chemostat

The chemostat is a vessel crossed by a constant flow where microorganisms
grow. The nutrient is provided by a constant inflow Fin and a blend of nu-
trient and of microorganisms is retrieved in the constant outflow Fout. In the
continuous well mixed cultures we consider here, the input flow rate and the
output flow rate are the same (Fin = Fout = F ).

The physically based mathematical modeling of a component dynamics p with
respect to this passing flow is simple; the variation of the total component pV
in the volume V (constant), is the difference between the inflow Fpin and the
outflow Fp:

˙pV = Fpin − Fp ⇔ ṗ = dpin − dp (1)

where d the dilution rate is equal to F
V . Generally the unit of the component

p is a concentration (i.e. mass of cells by volume unit or number of cells by
volume unit).

2.2 The classical Monod model

The most classical chemostat model was introduced by Monod (1942) to de-
scribe the bacteria growth. Only two variables are chosen to describe the
reaction occurring in the reactor vessel: the biomass X in concentration x and
the limiting substrate S in concentration s.

The mathematical model is divided in two parts: the previously mentioned
physical part due to the flow and the biological part, which describes the
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reactions in the vessel. Then the following model is obtained:

ṡ = −αµ(s)x −ds + dsin

ẋ = µ(s)x −dx

Biological part Physical part

(2)

This system (2) has been extensively studied (see Smith and Waltman (1995)).
Let us recall the main properties of this system. First, R2

+, which is of biological
interest, is invariant under (2).

Let us point some qualitative biological properties of the specific growth rate
µ(s). The more substrate there is, the more cells grow (i.e. µ(0) = 0, µ(s) in-
creasing); this implies that cells do not “lose biomass” (i.e. µ(s) ≥ 0). More-
over, cells cannot absorb more than a given quantity of substrate during a
given time (i.e. µ(s) bounded). These properties can be summarize as follows.

Hypothesis H 2.1 µ(0) = 0 and µ(.) is C1, increasing and bounded.

We will call such a function with the qualitative features (H2.1) a “Monod
like function” (e.g. Holling type II). This specific growth rate µ(s) is often
defined by the classical function µ(s) = µms

k + s .

To ensure the existence of a non trivial steady state, another hypothesis is
necessary.

Hypothesis H 2.2 µ(sin) > d

Then there exist two equilibria: an equilibrium, such that all the microorgan-
isms in the device disappear, referred to as the washout point (sin, 0) and
another equilibrium such that biomass population remains alive in the vessel,
called the non trivial point (designated (s∗, x∗) with x∗ > 0).

Proposition 1 Under the hypotheses (H2.1) and (H2.2), the washout steady
state is unstable and the non-trivial steady state is globally asymptotically sta-
ble in the positive orthant.

See for example Smith and Waltman (1995) for the proof.

This simple unstructured model is very intuitive and reproduces most of bacte-
ria population dynamics. The main restriction is that the whole physiological
description is contained in the variable x. For example, this model predicts
that an oscillatory behavior cannot exist. Since oscillations have been experi-
mentally observed, more complicated models (i.e. structured models) have to
be used to describe the population behaviour: the following model of Pascual
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and Caswell (1997) illustrates this idea.

2.3 A PDE oscillatory model

In the literature, to describe cells growth, the most useful structured variable
is the size (Metz and Diekmann, 1986). But if the cell division is taken into ac-
count, a more specific variable should be considered. In (Pascual and Caswell,
1997), this new variable is the position along the cell cycle. Moreover, to spec-
ify the description of the cell division, cells number density is modeled. A
dynamical system given by partial differential equations based on the Monod
hypotheses is derived and gives interesting numerical results:

∂x
∂t + s

1 + s
∂x
∂p = −(d + b(p))x for p ∈ [p0; pc]

∂x
∂t + ν ∂x

∂p = −(d + b(p))x otherwise

ds
dt = d(sin − s)− s

1 + sxtot

where s is the substrate, xtot =
∫
p x(t, p)dp the total population, p gives the

position along the cell cycle, b(p) the division rate, d the dilution rate, sin the
inflow substrate. The variable p is normalized so that p0 = 0 and the average
cell divides at p = 1. The cell cycle is divided into resource-dependent and
resource-independent segments separated by a transition point pc.

The cell division is described by a boundary condition for the newborn cell at
p = 0

νx(0, t) = 2
∫

p
b(p)x(p, t)dp

where each cell divides into two immature cells.

Proposition 2 (see Pascual and Caswell (1997)) For some parameters
values (using the numerical method known as the escalator boxcar train (de
Roos, 1988)), an oscillatory behavior is observed. Disappearance of oscillations
depends on the value of d or sin.

Let us remark that some local mathematical results ensure the existence of
exponentially periodic behavior (Webb, 1995) for such a structured model of
cell population dynamics without cell division (the division rate could easily
be incorporated into the analysis). Yet, the analysis of such models (specially
the global analysis of non linear PDE models) is often rather difficult or even
intractable.

In the following, since our purpose is to capture the essential qualitative mech-
anisms of the cell cycle, we want to built a model which is easy to study an-
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alytically. To do this, an approach based on ordinary differential equations is
followed and a structured model is built under the same main assumptions as
the above system.

3 An ODE oscillatory model

3.1 The model

Two main steps are considered in our model. The first step correspond to the
immature phase and the second one to the mature one. In each stage, the cell
density number is modeled: using this unit the division cell (one mature cell
gives two immature cells) can be easily described.

The transfer between the two compartments is given by different maturation
and division rates depending or not on the limiting substrate. The maturation
rate depends on the substrate, but the division rate does not. The uptake
nutrient rate function is different from the maturation rate meaning that the
energy used for growth is assumed to be different from the energy furnished
by consumption of substrate. Thus the model does not have a conservative
form.

All these biological phenomena are described by the following diagrams.

Cell Cycle
Resource

Independent
Resource

Division

Dependent

Mature Immature

g(s)
ν( )

ν( )s

s ν( )s
Immature

x1 k x2
Mature

Figure 1. (left) Two steps representing the cell cycle : substrate dependence and
independence. (right) Biochemical diagram of the biological mechanisms : transfer
between mature and immature cell compartments.

That leads to the model :

ẋ1 = −g(s)x1 + 2kx2 −dx1

ẋ2 = g(s)x1 − kx2 −dx2

ṡ = −ν(s)(x1 + x2) −ds + dsin

Biological part Physical part

(3)

where x1 is the density of the immature cells number, x2 of the mature one;
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k > 0 is the division rate, g(s) the maturation rate , ν(s) the uptake rate
function.

We choose initial conditions which have a biological meaning x1(0) > 0,
x2(0) > 0 and s ≥ 0.

As in the Monod model, some mathematical and qualitative hypotheses on
the specific maturation rate g(s) and the uptake rate ν(s) have to be done.

Hypotheses H 3.1

(a) g(s) ≥ 0.
(b) g(s) is an increasing function.
(c) There exists s and s such that g′(s) � 1 for s ≤ s ≤ s.
(d) g(s) is bounded.
(e) g(0) = 0.
(f) ν(0) = 0 and ν(.) is C1, bounded, positive and increasing.
(g) The domain of study of the system (3) is R3

+.

Thus, the function g(s) is assumed to be sigmöıdal. For example, we can take

g(s) = αsa

1 + sa with a > 1 and α > 0. This formulation for the maturation rate

means that cells need to have enough substrate to maturate, with a threshold
effect. This is often observed in cells growth experiments. Moreover, the fact
that the slope g′(s) � 1 means that we are free to choose the slope as large
as desired; that will be useful in the convergence proofs.
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Figure 2. Maturation rate function (α = 1)

We add two useful hypotheses:

Hypothesis H 3.2 k − d > 0 and
d(k + d)
k − d < g(sin).

Hypothesis H 3.3 s < s∗ < s

The first hypothesis ensures the existence and the uniqueness of a non trivial
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equilibrium point. The second one implies that g′(s∗) � 1 meaning that the
slope of the maturation function is very stiff at equilibrium.

3.2 Existence of steady states, boundedness and invariant set

The set of study of the system (3) is R3
+ since it is of biological interest.

Proposition 3 Under (H3.2) two steady states exist for the system (3): (0, 0, sin)
referred to as the washout point (i.e. whole population disappearance), (x∗

1, x
∗
2, s

∗)
referred to as the non trivial point (i.e. population persists).

PROOF. Computing the steady states, we find that :

• (0, 0, sin) is always a solution.

• a positive equilibrium (x∗
1, x

∗
2, s

∗) such that x∗
1 > 0, x∗

2 > 0, s∗ > 0 exists and
is unique. Indeed,

g(s∗) =
d(k + d)
k − d has a unique solution under the hypothesis (H3.2) and be-

cause g is strictly increasing.

Let us remark that g(sin) > g(s∗), and since g is strictly increasing sin > s∗.�

Proposition 4 Under the hypotheses (H3.1), the closed domain of study R3
+

is invariant for (3).

PROOF. Computing the dynamical equations ẋ1, ẋ2 and ṡ at x1 = 0, x2 = 0
and s = 0 respectively and showing that the edges are repulsive, we can prove
the invariance of the set R3

+ for the system (3). �

Remark 5 Consider the subset U = R2
+ × [0, sin]. We can prove that this set

is invariant for the system (3). Indeed, computing the dynamical equation ṡ at
sin, we obtain ṡ(s=sin) = −ν(sin)(x1 + x2) < 0.

Proposition 6 In the domain R3
+, the state variables are bounded.

PROOF. Let c > 0 be defined such that for all s ≥ 0, c >
g(s)
ν(s)

(see the

next remark). Let V = x1 + 2x2 + cs be a positive definite function. Then we
obtain:

V̇ = −dV + (g(s)− cν(s))x1 − ν(s)x2 + dcsin < −dV + dcsin
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so that

V (t) < (V (0)− csin)e−dt + csin.

Then for V (0) > csin, V (t) < V (0) and for V (0) ≤ csin, V (t) ≤ csin. Thus
the variables x1, x2, s are bounded. �

Remark 7 The existence of a positive constant c is always possible even near
s = 0. Indeed since g(s) is a sigmöıdal function and ν(s) a Monod like func-

tion, near 0, g(s) ∼ ksa and ν(s) ∼ k′s with k > 0, k′ > 0, a > 1. Thus
g(s)
ν(s)

exists on R+ and can be bounded.

3.3 Local Analysis and persistence

In order to study the local behavior of (3), some classical techniques of first
order linearization will be used. We prove that the washout point is unstable
and then a detailed study of its stable and unstable manifolds will be done.

Proposition 8 Under the hypothesis (H3.1), the washout point (0, 0, sin) is
unstable.

PROOF. Computing the associated Jacobian matrix at the washout point,
we find that −d is an eigenvalue and the other two verify the system :

λ1 + λ2 = −g(sin)− d− k − d

λ1λ2 = g(sin)(−k + d) + d(d + k)

Using the hypothesis (H3.2), we prove that one eigenvalue is positive and the
other is non positive. We can conclude that the washout point is unstable. �

In the following a more detailed local study of its stable and unstable manifolds
is proposed. Thus the invariance of the interior of R3

+ will be ensure (for more
details, see the definition of persistence and the theorem of Butler and Mac-
Gehee in (Smith and Waltman, 1995) and see (Lemesle, 2004)).

Proposition 9 The only eigenvector intersecting R3
+ is the vector associated

with the positive eigenvalue. The stable manifold of the washout equilibrium
does not intersect the positive orthant.

PROOF. The eigenvectors are computed solving the following system:

Jwovi = λivi for i = 1, 2, 3
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with λ1 > 0, λ2 < 0 and λ3 = −d < 0. Then we obtain:

vλ1 =


k + d + λ1

g(sin)

1

− ν(sin)
d + λ1

(v1 + 1)

 vλ2 =



k − g(sin)−
√

∆
2g(sin)

1

ν(sin)(k + g(sin)−
√

∆)

g(sin)(g(sin) + k +
√

∆)

 v−d =


0

0

1



with ∆ = (g(sin) + 2d + k)2 + 4(g(sin)(k − d)− d(d + k)).

We find that the local stable manifold of the washout point and R3
+ inter-

sect over the set x1 = 0 and x2 = 0. Moreover, the local unstable manifold
intersects the domain R3

+. �

Corollary 10 Under the hypothesis (H3.1), the system (3) is dissipative in
the open positive orthant, and is uniformly persistent.

PROOF. Using the proposition 6, all the variables are bounded. Uniform
persistence follows from the above proposition and from the fact that there is
no heteroclinic cycle in the boundary (see (Smith and Waltman, 1995)). �

3.4 Global Analysis

To study the stability of the non trivial point when it exists, we make the
change of variables z = ln(x1 + x2), u = x1

x1 + x2
, s = s. Because of the dis-

sipativity and the uniform persistence of the original system, the new system
is well defined in the open set D1 = R×R∗

+×R∗
+, and, moreover, there exists

a compact subset B ∈ D1 which attracts all solutions starting in D1. From a
biological point of view, we remark that this change of variables amounts to
take the total number of cell, and the proportion of mature cells, as the new
variables.

We obtain the new dynamical system:

ż = k(1− u)− d

u̇ = −g(s)u + k(1− u)(2− u)

ṡ = −ν(s)ez − ds + dsin

(4)
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with its associated Jacobian matrix

J =


0 −k 0

0 −g(s)− k − 2k(1− u) −g′(s)u

−ν(s)ez 0 −ν ′(s)ez − d



This new system is competitive in D1 since all the off-diagonal terms of the
Jacobian matrix are non positive (Smith, 1995). Moreover this system is irre-
ducible in D1 since J is an irreducible matrix.

Proposition 11 Under the hypothesis (H3.3), the non trivial equilibrium (z∗, u∗, s∗)
is unstable. Moreover, the stable manifold is one-dimensional.

PROOF. Let J∗ the associated Jacobian matrix computed at (z∗, u∗, s∗)
which verifies k(1− u∗) = d.

The number of positive eigenvalues are computed using the Routh criterion
for the J∗ characteristic polynomial, see (Hofbauer and Sigmund, 1988). We
compute the number of sign changes in the first Routh column. This first
column is given by

1, a1,
a1a2 − a3

a1

, a3

with a1 = −tr(J ∗), a2 the sum of the three principal 2 × 2 minors of J∗ and
a3 = −det(J ∗). We obtain:

a1 = g(s∗) + k + 2d + ν ′(s∗)ez∗ + d > 0

a2 = (g(s∗) + k + 2d)(ν ′(s∗)ez∗ + d) > 0

a3 = g′(s∗)u∗ν(s∗)kez∗ > 0

Computing a1a2 − a3:

(g(s∗) + k + 2d + ν ′(s∗)ez∗ + d)(g(s∗) + k + 2d)(ν ′(s∗)ez∗ + d)−g′(s∗)u∗ν(s∗)kez∗

(5)

and using (H3.3), since g′(s∗) � 1, the second part of equation (5) can be
made very large non positive, and thus a1a2 − a3 will be non positive.

Thus since there are two sign changes in the Routh column, there are two
eigenvalues with a non negative real part meaning that the stable manifold is
one-dimensional. �
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To prove the existence of a stable limit cycle, the following theorem (Zhu and
Smith, 1994) using competitive property applies:

Theorem 12 (see Zhu and Smith (1994)) Let ẋ = f(x) be a dissipative,
irreducible and competitive system in an open subset D ⊂ R3. Moreover, let
D be a p−convex system of R3. Assume that D contains a unique equilibrium
point ξ∗ and det(J∗) < 0. Then either

(i) ξ∗ is stable, or
(ii) there exists a non trivial orbitally stable periodic orbit in D.

Let us denote the non trivial steady state (x∗
1, x

∗
2, s

∗) = ξ and consider (4) in
the open set D1.

Proposition 13 Under the hypotheses (H3.2), a non trivial stable periodic
orbit exists for (4) in D1.

PROOF. To prove this proposition, let us verify the hypotheses of the above
theorem 12. We compute the Jacobian matrix J at ξ.

(a) The system is dissipative, irreducible and competitive using proposition 6
and corollary 10.

(b) D1 is p−convex by definition, contains a unique equilibrium point ξ∗.

(c) Since J∗ has two non negative eigenvalues, xi∗ is unstable and moreover
det(J∗) < 0 (see proof of proposition 11).

Thus since all the hypotheses of theorem 12 are verified, a non trivial stable
positive orbit exists for (4), and therefore for system (3). �

Remark 14 (The dilution rate as a bifurcation parameter) An impor-
tant hypothesis ensuring the existence of the limit cycle is g′(s∗) � 1. Recall
that the non trivial point is defined such that:

g(s∗) =
d(k + d)

k − d
= f(d)

where f(d) is an increasing function of d. When the dilution rate d varies,
s∗ can leave the interval [s, s] and g′(s∗) may become smaller (see Figure 3).
Thus for smaller or higher dilution rate, the limit cycle may disappear and the
non trivial equilibrium become stable.
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4 Simulations studies

We choose for parameters values k = 0.6, sin = 10, g(s) = s18

1 + s18 and

ν(s) = s
1 + s , which verify (H3.3) for d = 0.02, 0.1 and 0.25. This values

correspond to classical order values usually taken in growth phytoplankton
chemostat experiments. Notice that the exponent 18 put in the formula of
g(s) has to be large so that all the mathematical hypotheses (in particular
inequality 5) are verified.

A limit cycle can be observed for d = 0.1 and disappears for higher dilution
values. Indeed, an approximative study of the function g(s) and its derivative
provide s ∼ 0.9, s ∼ 1; then g(0.9) = 0.07, g(1) = 0.5 and therefore if
0.07 & f(d) & 0.5, there is no limit cycle. With the chosen values we have
f(0.02) ∼ 0.02, f(0.1) ∼ 0.14 and f(0.25) ∼ 0.6. Thus for d = 0.02 and
d = 0.25, the limit cycle disappears.
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Figure 3. Phase diagram of the model. Disappearance of the limit cycle for different
values of d (d = 0.02, d = 0.1, d = 0.25)

4.1 Qualitative comparison with the PDE model

Our model is qualitatively able to reproduce the the results obtained by (Pas-
cual and Caswell, 1997) with the PDE model recalled in section 2.3. For similar
parameters value of (d and sin), the same qualitative results can be observed.
Indeed, figure 4.1 shows the evolution of the total cells number for our model
and we can see that as the dilution value increases (resp. decreases), the limit
cycle disappears and as the sin value increases (resp. decreases), the limit cycle
disappears. These two figures have to be compared with the figures 3 and 6 of
(Pascual and Caswell, 1997), and are qualitatively the same.
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Figure 4. Total cells number (mature + immature). On the left part, different values
of d are taken for sin = 10. On the right part, different values of sin are taken for
d = 0.1. For sin = 2, we scaled the figure to see the damped oscillations.

5 Conclusion

The classical unstructured Monod model is not able to explain all biological
observations of continuous cultures of cells. Various modifications have been
proposed to improve its accuracy by introducing a new descriptive continu-
ous variable: for example, the continuous position of the cell along its cycle.
This structure has been proposed to explain the oscillatory behavior observed
during experiments. In this paper a different approach is considered. The struc-
tured model is based on a discrete variable describing the two main stages of
cell cycle: mature and immature stages.

Finally a comparison with some simulations of the model in PDE shows sim-
ilarities: we obtain oscillatory behavior depending on the dilution rate d or
on the inflow value sin. However our model based on a discrete structured
variable is very simple and can be analytically studied.

The mathematical study of this system proves existence of a limit cycle using
some properties of competitive systems. More work is needed to be able to
prove the uniqueness of the limit cycle, that was clear in the simulations.

All the properties will be the same if we add a constant mortality term in the
system. This mortality rate could be due to the death of cells which occurs
before leaving the chemostat. Let m denote the mortality rate, the model
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becomes:

ẋ1 = −g(s)x1 + 2kx2 −mx1 −dx1

ẋ2 = g(s)x1 − kx2 −mx2 −dx2

ṡ = −ν(s)(x1 + x2) −ds + dsin

If m is constant and not too large, the properties remain the same as above.
More complicated behaviors may appear if this mortality rate depends on the
substrate (for more details see (Lemesle, 2004)).
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