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Abstract

The experimental study of genetic regulatory networks hadartremendous
progress in recent years resulting in a huge amount of dathemolecular in-
teractions in model organisms. It is therefore not possdolgmore to intuitively
understand how the genes and interactions together inBiudngcbehavior of the
system. In order to answer such questions, a rigorous mmagalid analysis ap-
proach is necessary. In this chapter, we present a familyaf smodels and anal-
ysis methods enabling us to better understand the dynarhgsnetic regulatory
networks. We apply such methods to the network that undethie nutritional
stress response of the bacteriéncoli.

The functioning and development of living organisms is colted by large and
complex networks of genes, proteins, small molecules, lagid interactions, so-called
genetic regulatory networkg he study of these networks has recently taken a qualita-
tive leap through the use of modern genomic techniques Hoat #or the simultaneous
measurement of the expression levels of all genes of an mmai his has resulted in
an ever growing description of the interactions in the stddjenetic regulatory net-
works. However, it is necessary to go beyond the simple gegom of the interactions
in order to understand the behavior of these networks andreiation with the actual
functioning of the organism. Since the networks under sara@yusually very large, an
intuitive approach for their understanding is out of quastiIn order to support this
work, mathematical and computer tools are necessary: thebiguous description
of the phenomena that mathematical models provide allowa ftetailed analysis of
the behaviors at play, though they might not exactly reprethe exact behavior of the
networks.

In this chapter, we will be mostly interested in the modelafghe genetic reg-
ulatory networks by means dfifferential equations This classical approach allows
precise numerical predictions of deterministic dynamimgarties of genetic regulatory
networks to be made. However, for most networks of bioldgitizrest the applica-
tion of differential equations is far from straightforwargirst, the biochemical reaction
mechanisms underlying the interactions are usually nat@srnpletely known, which
complicates the formulation of the models. Second, quativé data on kinetic pa-
rameters and molecular concentrations is generally absest for extensively-studied
systems, which makes standard numerical methods diffiewdpply. In practice, the
modeler disposes of much weaker information on the networkponents and their
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interactions. Instead of details on the mechanisms threugbh a protein regulates a
gene, we typically only know whether the protein is an ad¢tivar an inhibitor. And
even if it had been shown, for example, that the protein biodsie or several sites up-
stream of the coding region of the gene, numerical valuesssbdiation constants and
other parameters are rarely available. At best, it is pdssdinfer that the regulatory
protein strongly or weakly binds to the DNA, with a greatdirafy for one site than
for another.

Due to those uncertainties, we cannot hope to build a modelishguaranteed to
reproduce the exact behavior of the considered genetidategy network. No model
will be quantitativelyaccurate. It is therefore necessary to concentrate on thsrce-
tion of models that reproduce tlygialitative dynamical propertiesf the network, that
is, dynamical properties that are invariant for a range ohpeeter values and reac-
tion mechanisms. The qualitative properties express ttiméte connection between
the behavior of the system and the structure of the networkaécular interactions,
independently from the quantitative details of the latter.

Consequently, qualitative approaches have been devefoptdte modeling, anal-
ysis, and simulation of genetic regulatory networks anceottetworks of biological
interactions: Boolean networks [20, 30], Petri nets [22], Process algebras [28],
qualitative differential equations [17], hybrid autom§ta],... In this chapter, we con-
centrate on one particular class of qualitative models ofetje regulatory networks,
originally proposed by Glass and Kauffman [13]iecewise-linear (PL) differential
equations In Section 1, we describe this family of models and give alsexample.
In Section 2, we show qualitative results that have beenimddafor the analysis of
such systems. We then illustrate these models on the ouitstress response Bf
coli in Section 3, before discussing remaining challenges ferthalysis and control
of such models in Section 4.

1 Models of genetic regulatory networks

Among the many emerging families of models (see [5]), a ctdgsiecewise-linear
(PL) models, originally proposed by Glass and Kauffman [h2}s been widely used
in modeling genetic regulatory networks. The variablesim piecewise-linear differ-
ential equation (PLDE) models are the concentrations défme encoded by the genes,
while the differential equations describe the regulatotgiactions in the network by
means of step functions. The use of step functions is metivay the switch-like
behavior of many of the interactions in genetic regulatagyworks [26], but it leads
to some mathematical difficulties. The vector field for theDl model is undefined
when one of the variables assumes a value where the stepofiuietdiscontinuous,
referred to as a threshold value. Recent work by Gouzé andiShuses an approach
due to Filippov to define the solutions on the threshold hplagres. The approach
involves extending the PLDE to a piecewise-linear diffeéia@nnclusion (PLDI). As is
well known, such discontinuities can lead to sliding modése definitions and results
of this section are mainly from [3].

The family of PL-models is best illustrated with an exampitez schematic diagram
in Figure 1 describes a simple genetic regulatory netwankthis example, the genes
a andb code for the proteins A and B, which in turn control the expres of the two
genes: andb. Protein A inhibits gene and activates geneabove certain threshold
concentrations, which are assumed to be different. Sitpiaotein B inhibits gené
and activates geneabove different threshold concentrations. This two-gegelatory



network is simple but represents many features of reguidtand in real networks:
auto-regulation, cross-regulation and inhibition/a&tion. Such a two-gene network
could be found as a module of a more complex genetic regylaetwork from a real
biological system.
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Figure 1. Example of a genetic regulatory network of two gefaeandb), each coding
for a regulatory protein (A and B).

The equations modeling the example network in Figure 1 camrfteen down as

fo = KasT(xp,00)87 (Ta,02) — Yaa )

iy = kpst(2a,0,)5 (21,07) — Wy
where s™(x,0;) is equal to0 whenz, < 65 and equal tol whenz, > 6, and
s (xs,05) = 1 — st (xs,0,). In this model, gene is expressed at a rate, if the
concentrationr, of proteinb is above the thresholdg and the concentration, of
protein A is below the thresholéf. Similarly, geneb is expressed at a ratg, if the
concentrationr, of protein A is above the thresholt} and the concentratiom, of
the protein B is below the threshafd. Degradation of both proteins is assumed to be
proportional to their own concentrations, so that the esgimn of the genesandb is
modulated by the degradation rates:, and~,x;, respectively.

Such a model is readily generalized to models containingp lexpression and
degradation terms for each gene:

& = fi(w) —yim;

where f;(x) represents the expression rate of géndepending on the whole state

x = (21, -,xn)T and~;x; is the degradation rate. However, the expression rates
of (1) have the added property of being constant for values,aind;, belonging to
intervals that do not contain thresholds valégs This can be rewritten by detailing
fi(x) as follows:

L;
fil@) = maba(x)
=1

whereb;; () is a combination of step-functions (z,., 67) andx;; > 0 is a rate param-
eter. The generalized form of (1) is a piecewise linear model

&= f(x) -z 2

where the model is linear within hyper-rectangles of théestpace.
The dynamics of the piecewise-linear system (2) can beestlidithern-dimensional
state-spac€ = Q; x Qg x -+ x Q,,, where eaclf); is defined by, = {z € R, |

0 < z; < max;} for some positive parametetazr; > max, c o (@) A protein
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encoded by a gene will be involved in different interacti@different concentra-
tion thresholds, so for each variahlg, we assume there ayg ordered thresholds
o!,---,6" (we also defin@? = 0 and6”' " = max;). The(n — 1)-dimensional
hyperplanes defined by these thresholds partifianto hyper-rectangular regions we
call domains Specifically, a domai C 2 is definedtobeasdd = D, x --- x D,,,
whereD, is one of the following:

D, = {xl GQZ|0§1Z<9Z1}

D = {z; el0! <z <0ty forje{l,---,p—1}
D, = {xl S QZ|9fL < < maxi}

D; = {w; € Ylv; =0]} forj e {1,---,pi}

A domain D € D is called a regulatory domain if none of the variablgshas a
threshold value inD. In contrast, a domai® € D is called a switching domain of
orderk < n if exactly k variables have threshold valuesiin[25]. The corresponding
variablesz; are called switching variables i. For convenience, we denote the sets
of regulatory and switching domains Wy, and D, respectively. It is also useful to
define the concept of a supporting hyperplane for a domain.

Definition 1 For every domainD € D, of orderk > 1, define supp(D) to be the
(n — k)-dimensional hyperplane containing D.IIf € D, then we define supp(D) to
be equal ta.

1.1 Solutions in regulatory domains

For any regulatory domai® € D,., the functionf(x) is constant for al € D, and
it follows that the piecewise-linear system (2) can be ritas a linear vector field

&= fP -z 3)

where 7 is constant inD. Restricted taD, this is a classical linear ordinary differ-
ential equation. From (3), it is clear that all solutionsinmonotonically converge
towards the corresponding equilibriug{ D), which is defined byy¢(D) = fP. If
¢(D) belongs to the closure db, all solutions initiated inD converge towardg(D);
otherwise, all solutions reach the boundarydfn finite time (which means that they
exit D).

Definition 2 Given a regulatory domai® € D,., the pointp(D) = v~ fP ¢ Qis
called the focal point for the flow ifv.

In Figure 2, example (1) is used to illustrate this concdpt:donsidered regulatory
domainD is {z, € Q|0 < x4 < 02} x {2, € W|0} < z, < 62}, so that system
(1) becomes

Tq = FKgq— YaZTa
Ty Rp — Vb

and the corresponding focal point (S%’ %) In the figure, this focal point is sup-

posed to be outside dP: every solution starting irD therefore exits this domain in
finite time.
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Figure 2: lllustration of the focal poinrt(D) of a domainD in example (1)

1.2 Solutions in switching domains

In switching domains, the PL system (2) is not defined, sinca switching domain
of orderk > 1, k variables assume a threshold value. If solutions do notlgigp
through a switching domain, it is necessary to give a definitf what a solution can
be on that domain. Classically, this is done by using a caostm originally proposed
by Filippov [10] and recently applied to PL systems of thiefid13, 7].

The method consists of extending the system (3) to a diffedenclusion,

z € H(x), (4)

whereH is a set-valued function (i.é4 (z) C IR™). If D is a regulatory domain, then
we defined simply as

forx € D. If D is a switching domain, far € D, we defineH (z) as
H(z) =2o({f” — 2| D' € R(D)}), (6)

whereR(D) = {D’ € D,|D C 9D’} is the set of all regulatory domains with
in their boundary, ando(X) is the closed convex hull oX. For switching domains,
H(z) is generally multi-valued so we define solutions of the défgial inclusion as
follows.

Definition 3 A solution of (4) or{0, 7] in the sense of Filippois an absolutely con-
tinuous function (w.r.tt) & (zo) such thatty(zo) = xo and; € H(&;), for almost all
t € 10,77

In order to more easily define these Filippov solutions, itseful to define a con-
cept analogous to the focal points defined for regulatoryalos) extended to deal with
switching domains.



Definition 4 Let D € D, be a switching domain of ordér. Then its focal seb(D) is
@(D) = supp(D) Neo({¢(D’) | D" € R(D)}). @)

Hence®(D) for D € D; is the convex hull of the focal pointg(D’) of all the regu-
latory domainsD’ having D in their boundary, as defined above, intersected with the
threshold hyperplaneupp(D) containing the switching domaib (Figure 3).

We have shown that

H(z) =~v(®(D) — ) ®)
which is a compact way of writing théf (x) = {y € IR™ | 3¢ € ®(D) such thay =
~v(¢ — z)}. The Filippov vector field is defined by means of the focal set.

2
o o(D?)

Figure 3: lllustration of the definition of the focal set onwitshing surfaceD ac-
cording to the Filippov definition of solutions. The convexllrof the points¢(D*')
andg(D?) is simply the segment that links them, so that (7) implie$ @) is the
intersection of this segment with sudpy.

If (D) = { }, with D a switching domain, solutions will simply crog3; other-
wise, sliding mode is possible and convergence takes pladké direction” of®(D).
If (D) N D = { }, solutions eventually leavB. In the case wher@(D) N D is not
empty, it can be assimilated to an equilibrium set withinowards which all solutions
will converge in the following sense

Lemma 1 [3] For every regulatory domaiy € D,., all solutions; in D monoton-
ically converge towards the focal s&{(D). For every switching domai® € D,
the non-switching componeii§,;); of the solution, in D monotonically converges
towards the closed interval

Wq((I)(D)) = {¢z €Q; | RS (I)(D)}a



the projection of®(D) onto Q;, if (§); ¢ m(®(D)). Every switching component
(&), of the solutiong; in D is a constanté;); = m;(®(D)) = 7.

Basically, this means that convergence does not take ptaards® (D), but to-
wards the smallest hyper-rectangle that conta@®). Indeed, if®(D) is neither
empty, nor a singleton, ar@d, belongs to®(D), the Fillipov vector field at this point
is defined as7 (&,) = v(®(D) — &,) and there is no guarantee that no element of
H (&) points outside ofp(D) (we know however that a solution stayséat). How-
ever, due to the structure of the differential equationis, éertain that the transient so-
lution does not leave the smallest hyper-rectangle coinigi(D). This phenomenon
is illustrated in Figure 4

(D)

([)[Dj

Figure 4: lllustration of the non invariance ®{ D): solutions with initial condition on
®(D) stay inside the boXl(D) but do not necessarily stay (D)

We then have the following corollary

Corollary 1 [3] All solutions ¢, in D converge toward$l(D), if &, ¢ II(D). For all
solutions; in D, TI(D) is invariant.

Adding the following assumption
Assumption 1 For all domainsD € D,
®(D) N supp(D') = {}, VD' C OD. 9)

it has been possible to develop stability results for thisifa of systems.

2 Stability and qualitative properties of PL models

The stability analysis of the various equilibria is a direohsequence of the analy-
sis in the previous section. It is easily seen that equdibri in someD € D, are
asymptotically stable. Indeed, they are the focal pointhefdomains in which they
are contained, so that the convergence that was descriltled previous section, leads
to asymptotic stability. The more difficult part consistsdefining and handling the
stability of Filippov equilibria that lie in switching suates.

In a switching domairD € Dy, recall that solutions are defined by considering the
differential inclusionH (x). We say that a poing € € is an equilibrium point for the
differential inclusion if

0 € H(y), (10)



where H is computed using the Filippov construction in (6). In otherds, there is
a solution in the sense of Filippog;, such that;(y) = y, V¢t > 0. We call such
a point asingular equilibrium point It is easily seen that, fay to be an equilibrium
pointinsideD, it must belong tab(D). Also, since Assumption 1 prevenbgD) from
intersecting the border dp, we then have thab(D) C D. Every elemend of ®(D)
is then an equilibrium whe®(D) C D so that, for everyp € ®(D), there exists a
solutioné; (¢) = ¢ for all ¢.

One of the interesting results of [3] concerns the link betvthe configuration of
the state transition graph and the stability of an equilitori This discrete, qualitative
description of the dynamics of the PL system that underliesqualitative simulation
of genetic regulatory networks was originally due to Glaksndicates the passages
between the different domains making up the phase spacaté\tsansition graph is a
directed graph whose vertices are the domains of the systenwhose edges are the
possible transitions between these domains (easily detedtby examining the PL
model [3]). The transition graph of system (1) is illusticite Figure 5.
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Figure 5: Subdivision of the state-space in 25 domains arition graph of system

(1)

For a two-dimensional system, we show how this graph indg#te stability of
singular equilibria:

Theorem 1 [3] Let the dimension of the PL model be 2, and Ietbe a switching
domain containing a singular equilibrium poigi D). If for all regulatory domains
D’ € R(D) (thatis, adjacent tdD), there exists a transition fror®’ to D in the state
transition graph, thers(D) is asymptotically stable.

This result is purely qualitative: the actual value of thegpaeters is not needed. It
can be directly applied to show that the singular equilibriw,,, z,) = (62,6%), cor-
responding taD'° on Figure 5, is asymptotically stable because there arsitians to
D' from D'3, D> D?3 andD?°, the regulatory domains adjacentfig®.

A generalization, but in a weaker form, of this theorem to elirsionn is also
available.

Theorem 2 Assume()? C IR"™. Let D € D, be a switching domain of order > 1
containing a singular equilibrium sé&( D) that satisfies Assumption 1. If foral)’ €



R(D), there is a transition fronD’ to D in the state transition graph, théh D) is
asymptotically stable.

These results are very helpful for the qualitative analgs$ithe genetic regulatory
networks. However, some stable equilibria cannot be ifiedtthrough those criteria.
Some less restrictive criteria are therefore under devetg. Without these new re-
sults, we can discover stable equilibria that would not Hasen directly identified by
our criteria through a rigorous simplification of the modefdre applying the criteria:
this can be done through model reduction or identificatioregfons of the state-space
that cannot be reached by the solutions (maybe after sonte fime). We will illus-
trate the kind of things that can be done on an example in thesimg section. In
that section, since the resulting models are very simplegdaveot need to go back to
transition graph analysis at the end of the reduction proszdut we could have done
so, and it will be necessary to do so if the model reductiorcedare does not yield
very small models.

3 Carbon starvation response oE. coli

We will present a specific model reduction and stability gsial for the model in di-
mension 6 of the carbon starvation responsé.afoliof Ropers et al. [29]. In their nat-
ural environment, bacteria likescherichia colirarely encounter conditions allowing
continuous, balanced growth. While nutrients are avaéldbl coli cells grow quickly,
leading to an exponential increase of their biomass, a stted exponential phase
However, upon depletion of an essential nutrient, the b@ctge no longer able to
maintain fast growth rates, and the population conseqguenters a non-growth state,
calledstationary phasé-igure 6). During the transition from exponential to statry
phase, each individud. coli bacterium undergoes numerous physiological changes,
concerning among other things the morphology and the mésabof the cell, as well
as gene expression [19]. These changes enable the celvieesprolonged periods of
starvation and be resistant to multiple stresses. Gduibon starvation responsmz&n be
reversed and growth resumed, as soon as carbon sourcesdacaitable again.

N Y
Exponential phase Stationary phase ©
\“Vh @ @ o //-//‘/ T o ﬂ-/'r//
Signal of nutrient
deprivation

Figure 6: Nutrient-stress response of bacteria duringrémesition from exponential to
stationary phase.

On the molecular level, the transition from exponentialgghi stationary phase is
controlled by a complex genetic regulatory network intéiggavarious environmental
signals [18, 24, 32]. The molecular basis of the adaptatioth@® growth ofE. coli
to carbon starvation conditions has been the focus of extessudies for decades



[18]. However, notwithstanding the enormous amount ofrimfation accumulated on
the genes, proteins, and other molecules known to be indafvthe stress adaptation
process, there is currently no global understanding of Husvresponse of the cell
emerges from the network of molecular interactions. Moegpwith some exceptions
[1, 16, 31], numerical values for the parameters charagteyithe interactions and
the molecular concentrations are absent, which makesfitwlifto apply traditional
methods for the dynamical modeling of genetic regulatotyvoeks.

Signal

Legend

JPE: Fis Synthesis of protein Fis
fis

from gene fis

Abstract description of
Activation a set of interactions

e Inhibition

Figure 7: Network of key genes, proteins, and regulatorgraxttions involved in the

carbon starvation network i&. coli. The notation follows, in a somewhat simplified
form, the graphical conventions proposed by Kohn [23]. Tbetents of the boxes

labeled ‘Activation’ and ‘Supercoiling’ are detailed inqR

The above circumstances have motivated the qualitatiMgsie®f the carbon star-
vation response network . coli[29]. The objective of the study was to simulate the
response of aft. coli bacterium to the absence or presence of carbon sources in the
growth medium. To this end, an initial, simple model of thebom starvation response
network has been built on the basis of literature data. ltihes six genes that are be-
lieved to play a key role in the carbon starvation responggie 7). More specifically,
the network includes genes encoding proteins whose gctleppends on the transduc-
tion of the carbon starvation signal (the global regulatgrand the adenylate cyclase
cya), genes involved in the metabolism (the global regul&)y cellular growth (the
rrn genes coding for stable RNAs), and DNA supercoiling, an irtgpd modulator of
gene expression (the topoisomertg@Aand the gyrasgyrAB).

3.1 Model of carbon starvation response

The graphical representation of the network has been aatsinto a PL model sup-
plemented with parameter inequality constraints. Thelt@gumodel consists of seven
variables, one concentration variable for the product ohezf the six geneg ¢, x,-
x5, xq, T, xy) fOr (crp, cya, fis, gyrAB, topA, rrand one input variable, represent-
ing the presence or absence of a carbon starvation signpl T2@ 38 parameters are
constrained by 54 parameter inequalities, the choice ofhvisi largely determined by
experimental data.
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The model of Ropers et al. is:

G = ket rosT(xp,07)sT (e, 00)sT (2y,0,)5T (us, 05)
+r3s™ (T, 05) — oo
iy = Kyt /i?l (1= sT(zc, 02)sT (2, 9§)s+(us, 05)) — vyzy
iy = (/{} + n?s*(wg,%)s*(xt,ﬁf)
(1 — st (e, 00)sT (y,0,)sT (us,05)) s~ (y, 9?) —yfxf
Ty = Ky (1 — 5T (g, 952;)37(95167 9151)) s~ (zf, 9310) — Yg%yg
Ty = fit8+($g79§)37(9€t79%)3+($fa9?) - Nt
i = KpsT(xf,0%) + K7 — ey

with u; = 0 in the presence of carbon sources and= 1 in a depleted environment
(and@; = 0.5). In order to univoquely determine the situation of the was focal
points in the state-space, the following constraints orptirameters are needed:
1 1 2
O<9§<9§<9§<maxc,9§<%<9§,9§<%<0§,
93 (retr2)
. < o < max.
0< 0! <02 <03 01 < fx < g2 g3 < L)
< y< y< y<ma]}y, y<’Y_y< " y<T<maa¢y
1
1 2 3 4 5 1 Ky 2
0<9f<9f<9f<9f<9f<maxf,9f< - < 0%, o
9? < (Hf%rfnf) < maxys
1 2 2 kg
0 <8, <85 <mazg, 0, < e < mazg
0 <0} <0? < maxy, 9?<%<mawt
: (rpth7)

0<9r<maxr,0<:—r<9r,9r<T<maxr

A qualitative analysis of this model has been carried ou2# py using GNA (Genetic
Network Analyzef6]), a computer tool that automatically generates thesti@nsition
graph and possible trajectories in that graph, that is,itgi@e solutions that are pos-
sible for this system. The following simulations are progddor the transition to the
stationary phase (Figure 8) and to the exponential phaggi@R). In the first case,
we see that the solution converges towards a single regitrecdtate space, where we
can guess that convergence towards an equilibrium takes.plathe second case, the
behavior of the solution is not as clear: oscillations cardétected between various
regions but it is impossible to say, based on the transitiaplgalone, if those oscilla-
tions are damped or not. Therefore, it is useful to try andyaeathe model further to
check what kind of oscillations take place (and in the same tf convergence actually
takes place towards an equilibrium in the case of the entsyationary phase).

3.2 Asymptotic dynamics

Since the 6-dimensional model, with all its constraintspis complex to handle di-
rectly, we first check if some kind of simplifications can bedealndependently of the
case that we will study (stationary phase or exponentiaspltanditions), we notice
that

e 1, iS a variable whose evolution depends on, but does not irdeitre rest of
the system. As a consequence, it can be removed from thesiafynce the
analysis of the remaining 5-dimensional system is comg|etes will be able
to easily identify the consequence of its behavior on thecentration of stable
RNAs (z,.).
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is detected (the domain whesg > 63,z, = 03,2 < 0}, 2, = 07,2, < 6} and
T < 0;)
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Figure 9: Entry into exponential phase: qualitative tenapexolution of the proteins
and stable RNA concentration in a rich environment with thgaaisms being at the
equilibrium of the stationary phase at the initial time. ations of thex; andx,,

states is detected.
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e There exists a finite time after which (t) < 6} since, as long as; > 0}, the
x; dynamics reduces to

Ty = — Ny

Oncez; reached);, we cannot a priori rule out a sliding mode alomg =

;. Sincef} < 62, this indicates that we can replage(x;, 6?) with 1 for the
purpose of our analysis. We simply consider that the aforgioeed finite time
has already occurred.

e Similar studies show that.(t) > 6} andz,(t) > 6, after some finite time. We

can then replace’ (z., 6}) ands™ (z,,0,) with 1 in our analysis.

The system that we need to analyze has now become

e = "{i +/€257(5L‘f76‘?”)5+(usa95) +/€257(5L‘f’9}) — YeZe
&, = n; + /if/ (1 — s (e, 03)sT (my, 9§)s+(us, 95)) — Yy Ty
iy = (/1} + K35t (g, 9;)) 5 (us,05)s™ (x5,0%) — yray
iy = Ky (1= sT(zy, 93)3*(96,5, 07)) s~ (xy, 9;%) — YgZg

Ty = fit8+($979§)37(9€t79%)3+($fa9?) - Nt

The next simplification step consists in seeing thatloes not influence the rest of the
model, so that it can be removed, and thatloes not influence the rest of the model
either (except,) so that it can also be removed. These actions are in the saenef|
thought as the removal af.. As a consequence of these simplifications, we are able to
see that the core of the long term dynamics is not really intted byz,, z, andz..

We now have the three-dimensional system:

iy = (n} + n?s*(xg, 0_(1])) s (us,05)s™ (xy, 95}) —yfxp
iy = kg (1—5"(2g,02)s (21,0})) s~ (2,0%) — 7474 (11)
i = kst (2g,05)s (2, 00)sT (5, 07) — Yo

Once we have analyzed the behavior of the solutions of thidatave will be able to
reconstruct what happens with, x, andz,.. For this analysis, we still suppose that

3.3 Asymptotic dynamics in the absence of carbon sources

The analysis of the case, = 1, the stationary phase solution in a depleted environ-
ment, is very straightforward. System (11) becomes

a::f - 2 1 4
i, = Ky (1 — s (g, 02)s~ (x4, 0; )) s (xy, Hf) — YgZg
Ty = fits+(x9793)8’(%91})8*(%,9}1) - Nt

so thatr; goes ta0. It is then directly seen that, after a finite time (the timlesta for
x to fall belowd?), we have

Ty = =i
so thatz; also goes to zero. The, dynamics then reduce to

g = KgS (T4, 03) — Ygg
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so thatz, reaches9§ in finite time. The three dimensional system thus has a very
simple behavior: the state goes(tey, x4, z:) = (0, 03, 0).

Since the solutions of the 6-dimensional system are bourthecbehavior of the
other three states can be deduced from the analysis of trespanding equations with
(zy,24,2:) approaching their equilibrium (so thay < 6},2; < 6; andz, > 6,).

We then have:

T, = Kii + Ki% + /fg — Yele

| 5 .3 3

Ty = Kyt Ky (1 — s (2, 02)sT (zy, 9y)) — Yy Ty
Ty = Ky —VrZr

It is then directly seen that, on¢e s, x4, 2;) is close to its equilibrium, the variables
1 2 3 2 Q . . .
(x¢, ) €xponentially converge towarcqg%, ~=) while 2, reache®} in finite

time.

3.4 Asymptotic dynamics in the presence of carbon sources

The caseai; = 0, the behavior of the model in an environment rich in carbairses,
is more intricate to analyze. System (11) becomes

iy = (/1}4-/1?5'*'(3257,9;)) S_(ﬂff,e?) — VT
Ty, = Ky (1 — s (g, 93)8_(33,5, 9,51)) s (xy, 9;10) — Y9y
Ty = "it3+(l'gv93)37(9516»9%)5+($fa9?) — YTt

As stated earlier, we know that < 6/ after some finite time; this does not help us for
further simplifications of this model. In the following, weillxshow that, after some
finite-time, we haver; < 6}, which will help us eliminate the; equation. In order to
do that, we first show that, after some finite timg,< 62.

Indeed, if we suppose that, > 93 for all times, system (11) would become

i = () +7) s @0~
Ty = Hgs+($t79151)5_(xf794) — YgZyg
i = ks (e, 00)sT (2, 07) — Yo

which shows that; reached} in finite time so that:, becomes equal to
Tg = —YgTg

This leads to the convergencexgf to 0 and thus to below?, which is a contradiction.
This shows that, should reacl¥? in finite time whenz, (0) > 62.
An ensuing case-by-case analysis shows that the regiorewhet 9527 is invariant.
We will now show thate, is decreasing almost all of the time whep < 93 and
x; < 6}, that is in a region which we have shown to be reached in finte &and
invariant. Detailing three cases, we have:

Ty <07 0rTp <OF & = iy

xg =07 and zy > 0}: We havei, = —v,z, < 0 at such a point and in a neighbor-
hood surrounding each such point so that any solution dyreaters the region
wherez, < 93 (and consequently; = —;z;, as we have seen).
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xy, =02 andzy; = 0} We havei; = (n} + n}) —~fxy > 0 at this pointand in a
neighborhood surrounding it, so that any solution diregtigs in one of the two
previously described regions, where we have seenithistdecreasing.

For any solution of (11);z; could only increase ifc stayed in the second or third
region, which we have shown not to be possible. We then have —~;x; for almost
all times in the region of interest. After elimination of, we have to analyze the
following system:

Ty = (/ﬁ} + /ﬁ?cs+(xg, 0;)) s~ (zy, 9?) —YfTf (12)
iy, = kgs (x4,02)s  (xf,0%) — V4T
g g g, Yg V) =Ygy
At first sight, this analysis is not straightforward becatlge is a second order piece-
wise linear system with two thresholds in each directionicivhheoretically gives rise

to 9 regions. However, as is illustrated on Figure 10, sonthefegions have the same
dynamics and can be grouped together, giving rise to sioregi

. Al6) . /

q / Al 1) g _\|.-‘.1
” AI.';]

1
d,

1

1

1

1

: (1} d
1 Al )

! A Al2) P
1

1

1

1

Figure 10: lllustration of the vector field and the variougioms for system (12). The
thick black lines indicate where sliding modes can occur.

The behavior of the solutions along the thick black linesgewrehsliding modes
are present, can be directly inferred from the Filippov ¢nrdion. However, simple
observations indicate what actually happens: along tleeviherez, = 93 andzy <
07, we have

g =Kgs (24, 9527) — Ygg
with
Kg 2
— >0
Vg g
so that the line is attractive (black wall). Moreover,

Ty = (/ﬁ}—k/ﬂ?) —rxy >0
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so thatz is increasing and all solutions reach the end-péint =,) = (6%,67) in
finite time. In some sense, each time the solution reachsdtack wall, there is a
resettaking place that sends the system to the end-méﬁmg)

Along the line wherer; = 6% andz, > 6, we have

iy = (nj+n7) s~ (w5, 0F) = vpay
. . . . . . 1 ){,2 g
so that this line also is a black wall (bearing in mind tﬁéwﬁ > 9?). In addition,

Tg = —YgTg
so thatz, is decreasing and all solutions reach the end-pgintz,) = (67,6;) in
finite time.

The observation of Figure 10 (as well as a detailed analydtsedinear systems in
each of the regions) indicate that, eventually, the sahstioscillate arounéts ¢, z,) =
(9;%, 9517). Whether this oscillation is damped, neutrally stable atahle is still unclear.
It is clear, though, that the oscillation is bounded, as itz go beyond the black
walls.

In order to analyze the oscillations, we will compute thet fiesurn map from and
to the segment that link@?, 6;) to (6%, 67). We will therefore consider som@}, x)

as initial condition and compute the functigf) such that{6%, f(z)) is the image of
(67, ) on the segment after one cycle aroufig, 6,).

The first step consists in computing the image(&ﬁ, x), belonging to the initial
segment, on the horizontal segment that littks 6,) to (6%, 6,). The transition takes
place in the regiol\() so that (12) becomes

S T SV
{ {1.,f—/€f+/€f Vi Ty (13)
Tg = —g Xg

whose solution is

(14)

1 2

— 04 o=t g Bt gt

zp(t) =05 e + T (1 —e 1t
xg(t) = x e ot

In the absence of the vertical black wall, and using the dyosuii 3) for both regions
A®W and A®) | it is then straightforward to see that the solution impabts target

—Iin 1
segment whem, (t) = 6, thatis, att = ¢, (x) = M so that

1 2
zf(ti(z)) = 93% e—rti(x) 4 ”fﬂy_Jrf"‘f (1 — e~ wtr(@)

1 ’Yff 1 2 1 ’Yff
94 9_9 Yg + KptK} 1— o_g Vg
f\= Vs z

However, it is possible that the actual solution hits theigalblack wall before reach-
ing the target segment, so that the previously compuidd, (x)) > 9?. In that case,

the actual solution stays on the vertical black wall untileaches the poir(iﬁfc, 0,)-
Therefore the target of the poi(ﬁ;%, x) on the horizontal segment is

f

2f of
) 01 Yg Hl + K/2 91 Yg
(fl(x),ﬁé) = | min 93% (f) + LT ,9? ,0517

f x
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Similarly we can defing6, f2(z)) as the image ofz,0,) (with z € [07,63]) on
the vertical segment below the equilibriufys(x), 0;) as the image of6%, z) (with
z € [0,6;]) on the horizontal segment on the left of the equilibrium &l f4(x))
as the image ofz, 6;) (with = € [0,67]) on the initial segment.

This yields

fi1(z) = min (6‘;% (9‘ ) s K}V—tl{? (1 — (%) Wg) ,9?)

"

vf v

2f 2f
g P 95,& g
9 5
+55 1‘(,1_“_99
g

g g
f

pr_ e 7 pr_rhrd\ 3
N i 1 T kg | 2
fa(z) = min 0, Tl + 3 1 Tl ,0;

z—
vf

and f(z) = fa(f3(f2(f1(x)))) which hase = 6} as a fixed point. It was then shown
in [2] that f'(z) < 1 whenz > 0;%, so that the sequence,11 = f(z,), which
represents the successive impacts on the initial segmenemes tor = 9;%. We can
then conclude that the cyclic solutions that surro 9517) are damped. This point
is therefore a globally attractive equilibrium of (12) (d®] that gives more general
results inn dimensions for a negative feedback loop).

Having elucidated the dynamical behavior of tag, z,) subsystem, we can now
deduce the behavior of all other states. From the momenwbaiavez, < 62, it
comes from (11) that

Ty = =7Vt

so thatz; goes to0. Once those three states are close to their equilibriumeyahe
remaining three equations become

. _ 1

Te - ’i(; - ’chc

. _ 1 2

Ty = lﬁlzl/ + Hg — VyTy
Tr = K.+ K, — YL

1
K,y-‘r

1 2 1 2
so that convergence 6., z,, ) towards(%, - 'y %) takes place.
c Y ”

3.5 Comparison of the equilibria

It is interesting to compare both equilibria: we have

T Ty xp | xg | T Ty
T 2 3 2
— Rethotre 3 2 Ky
us =1 - 19y ] 0 (6510 >

1 1 2

us =0 Lo Sytry | gd | gL | o | et
S Ye Yy f g Yr

We see that most genes settle at different levels dependitiggoabsence or pres-
ence of carbon sources. The most illustrative of the diffeesbetween the two states
(carbon starved or not) is., which represents the concentration of stable RNAs and is
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a good indicator of the cellular growth. As expected, whebea sources are depleted,
the equilibrium level ofx, is smaller than when carbon sources are abundant: when

carbon shortage occurs, stays at a "house-keeping”-level Wheréﬁéﬁ, the equi-
librium value in the presence of carbon sources, allowsdst €ell growth. Also to be
noted is the fact that, = 0 in both cases; this does not mean ttogtA, the gene cor-
responding tac;, is useless. Indeed, when the carbon sources are eitheéngously
present or absent, the effecttopAeventually dies down. However, in a time-varying
environment, where nutrients are alternatively presedtabsent, an increase of the
concentration can occur whenevey > 62> andz; > 6}. TopA thus influences the
transients.

3.6 Abstraction of the reduction method

We have seen that the preliminary model reduction has atldiwea simplification
of the model analysis. Indeed, a global stability analy$ia &-order model is no
easy task, whereas there are various methods for the amalysécond order models.
The reduction of the dimension of dynamical models is ailtio the further devel-
opment of the mathematical methods for genetic regulatetyorks analysis because
the networks typically are very large, so that it is rarelggible to study them directly.
Classically, it has been attempted to apply time-scaleratipa methods, but these are
mainly efficient for eliminating the fast metabolic compatefrom mixed metabolic-
genetic networks. Also balanced truncation methods haga be#roduced for genetic
regulatory networks where inputs signals (action on thevagk) and output signals
(measurements) are clearly identified ([15, 21]). In thiaraple, we have exploited
the hierarchicaltriangular structure of the model arising after a finite ti(ti@s finite
time allowed us to get rid of some of the interactions intenfg with the triangular
structure). We notice from graph theory that the identifaraiof such a structure in
the graph corresponding to the network is equivalent to treech for the strongly
connected components of the graph. There are efficientitligts to do so on large
graphs, so that this model reduction method is tractabl¢h@huge graphs that rep-
resent genetic regulatory networks (preliminary work oattubject has been done in
[4] with links to GNA). Combining this approach with thredtls elimination allows
for a progressive simplification of the graphs.

4 Challenges in PL models analysis

One of the major challenges in the analysis of models of gensgulatory networks
lies in the difficulty of obtaining accurate parameters. rEfi@ere, one has to develop
methods to identify the qualitative behavior of the systemiten the parameters are
linked together through inequalities (instead of beingdiré given values), we would
like to be able to say something about the stability of theldxmjia. Some interesting
results have been obtained on that subject in [3], as wasrsiho8ection 2, and we
would like to identify other cases where stability resulis de deduced.

As we have seen in the analysisnfcoli, we are able to mathematically analyze PL
models that are not trivial (dimension 6). However, actuaigfic regulatory networks
are much larger than that. It is therefore of paramount irtgyare to develop methods
that will help analyzing such large systems. Two major refedirections are explored
for that purpose: the model reduction approach (througartzahg or through singular
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perturbations, in the linear case) and the separation oftigegnal model into smaller,
interconnected pieces that can be easily analyzed, as veeshawn here.

Moreover, experimental techniques (e.g. gene deletiamhaw available and al-
low to modify the production or degradation terms of someegeaf the networks.
This leads to problems of mathematical control of piecewifi@e genetic networks,
similar to more general problems for hybrid affine systend.[TThe global problem
is to control the trajectories through some prescribed seqge of rectangular regions.
Some preliminary results have been obtained in [8]. For @lapwe have shown that
a simple two-gene inhibitor system with a single equilibmigan be controlled to a
bistable switch. We believe that interesting and origimedteol problems are still to be
solved in this domain.
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