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Abstract. In this paper we consider a control problem for an uncertain
chemostat model with a general growth function and cell mortality. This
uncertainty affects the model (growth function) as well as the outputs (mea-
surements of substrate). Despite this lack of information, an upper bound and
a lower bound for those uncertainties are assumed to be known a priori. We
build a family of feedback control laws on the dilution rate, giving a guaran-
teed estimation on the unmeasured variable (biomass), and stabilizing the two
variables in a rectangular set, around a reference value of the substrate. We
give two realistic applications of this control law to a depollution process and
to phytoplankton culture.

1. Introduction

The chemostat is a continuous bioreactor used to culture microorganisms with
concentration x which consume a substrate s to grow. Mathematical modeling
of chemostat has been extensively developed, mainly using ordinary differential
equations, and several results have been validated experimentally. See [1],[22] for a
review of mathematical results on the theory of chemostat.

Feedback control of bioreactor models has been a focus of intensive research
[1],[6],[9]; the problem we investigate in this paper deals with the feedback stabi-
lization of an uncertain chemostat model. In this control context, uncertainty must
be understood in two basic types:

(1) Internal : Some parts of the model are not precisely known; for example
the functions that describe the kinetic reactions or some parameters.

(2) External : The measure of the variables is susceptible to undergo different
kinds of noise such as unknown additive or multiplicative disturbances.

We shall present two examples of robust stabilization of an uncertain chemostat:
The first one is a water depollution process and the second one is the culture of
phytoplankton and the simulation of marine environments.

• We can consider the chemostat as a simple wastewater plant (see for exam-
ple [21],[24]), where a selected microorganism x consumes a contaminant s
and is expected to make decrease its concentration toward an acceptable
level given by environmental laws. This goal is considerably complicated
by uncertainties of the kinetic model and the output.

• Chemostat has been used currently in marine laboratories (see [2],[3]) to
simulate in vitro the growth of unicellular phytoplanktonic algae in marine
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ecosystems, where the phytoplankton feeds on limiting substrate (e.g. ni-
trate, iron, silicon, etc.) supplied at a constant rate. As it is easy to see,
the standard equilibrium point in a chemostat with a monotone classical
growth function as the Michaelis–Menten function corresponds to a low
level of substrate: it comes from the fact that the growth function has a
large slope at the origin, attaining very fast its maximum. In fact, exper-
imentally, the value of the substrate at the equilibrium is often so small
that it is non measurable with the usual apparatus. To reproduce growth
conditions with a high level of nutrient in vitro, we wish to be able to
maintain a high level of substrate at the equilibrium. At this level, the risk
of washout (loss of biomass) is very high if there are uncertainties in the
model. Therefore we need a control to stabilize the chemostat and avoid
washout.

Feedback stabilization of a chemostat becomes nontrivial if we take into account
that the model is inaccurate, thus the real dynamics is ill–known and the output
available is corrupted by noise.

Feedback stabilization of nonlinear uncertain systems [4],[15] deals with several
approaches: e.g. deterministic, stochastic, adaptive control, etc: in [4] it is supposed
that the behavior of the uncertainties can be described by differential equations.
Stochastic control (see [15, Ch.4]) supposes that the uncertainties satisfy some
statistical properties. In this article we will only suppose that the uncertainties are
deterministic and bounded.

An interesting deterministic issue for this stabilization problem has been given
in the framework of the game–theoretical control theory (see e.g. [14]). Roughly
speaking, it assumes that the real system is not known to us, but there exists
a (relatively wide) class of admissible systems, including the real one. This as-
sumption implies that, given a stabilization objective, it must be satisfied for any
system too. This idea has been complemented with a worst case approach (see
[7],[8],[17],[19],[20]) by using the fact that (under some transformation of variables)
a system Σ (e.g. bioreactor equations) can be studied using monotone dynami-
cal systems theory [23]. Moreover, supposing that the bounds of uncertainties are
known a priori, a couple of well known systems (Σ−, Σ+) verifying the inequality
Σ− ≤ Σ ≤ Σ+ (in a sense that will be explained later on) is built. Hence, instead
of satisfying a feedback stabilization objective for any admissible system, we will
need only to satisfy this one for the “bounds” of the admissible systems.

Using these systems (Σ−, Σ+), interval observers for uncertain bioreactor models
have been developed in [7],[8],[19],[20], allowing a partial estimation for the non-
measured variables. Moreover, in [20] a feedback stabilization law is built using
these interval observers. In almost all those articles (except [19]) it is supposed
that the output available is unperturbed and the mortality rate of the biomass(es)
is negligible. This last assumption is one key step in reducing many chemostat
models to a monotone dynamical systems where strong convergence properties are
in evidence.

In this paper, we assume that the output undergoes multiplicative disturbances.
Moreover, we drop the assumption of neglecting the mortality rate. Nevertheless,
we are able to follow the ideas stated above, arriving to stabilize the uncertain
chemostat without using interval observers.
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This paper is organized as follows: in section 2 we recall some facts of the
chemostat model and state the assumptions about uncertainty. Section 3 presents
the robust regulation problem in detail. The main result and its proof is given in
section 4. The application and simulations are given in section 5.

2. Modeling of an uncertain chemostat

Let us recall the chemostat equations (see, for example [22, Chapt.1]):

(1)

{
ṡ = D(sin − s) − αxf(s),

ẋ = x(f(s) − D − m).

Where s(t) and x(t) are the concentration of the nutrient and the density of the
biomass at time t, sin > 0 denotes the input concentration of nutrient (in this paper
we will suppose that is a constant), D > 0 is the dilution rate, α > 0 is a growth
yield constant. The function f : R+ 7→ R+ represents the per capita growth rate
of nutrient of the biomass and m > 0 is the mortality rate. In general, the mor-
tality rate is neglected and a “conservation law” for total biomass implies that the
weighted sum of microbial concentration and substrate concentration equilibrates.
Hence, the substrate equation can be asymptotically eliminated.

Chemostat is called also CSTR (continuous stirred tank reactor) because, as we
can deduce from system (1), the rate of the input flow is the same as that the rate
of the output flow. We will assume that initial conditions of system (1) are in the
box [s−0 , s+

0 ] × [x−

0 , x+
0 ] ⊂ Ω, where the set Ω is defined by:

Ω =
{
(s, x) ∈ R

2
+ : 0 < s < sin, x > 0 and s + αx + sin < v∗

}

where v∗ is a constant related to the volume of the chemostat.
Now, we make the assumptions about uncertainty of chemostat model:

(H1) The function f is unknown but locally Lipschitz and functionally bounded,
i.e. there exist a couple of well known maps f− and f+ such that:
• f− and f+ are continuous and have at most one local maximum in (0, sin).
• f− and f+ satisfy the inequalities (See Fig.1):

f−(s) ≤ f(s) ≤ f+(s), for any s ≥ 0 and f−(0) = f+(0) = 0.

(H2) The only output available takes the form:

y(t) = s(t)[1 + ∆(t)]

where the function ∆: R+ 7→ R is bounded and Lebesgue measurable.
Moreover, there exist two bounds for ∆(t):

−1 < ∆− ≤ ∆(t) ≤ ∆+.

Output y(t) is known as a deterministic multiplicative disturbance (see e.g. [18]).
It will be useful to define the lower and upper increasing envelope of the functions

f− and f+ respectively, that means a couple of continuous and increasing functions
l and u, satisfying l(s) ≤ f−(s) ≤ f+(s) ≤ u(s) for any s ∈ [0, sin] (see Fig.2).

Remark 1. (i) Assumption (H1) follows from the fact that the explicit formulation
of the function f is based on experimental evidence. Indeed, in several experiments
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Figure 1. Geometrical interpretation of (H1) x–axis: Substrate;
y–axis: f and its upper bounds
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Figure 2. l is a lower envelope of f− and u is an upper envelope of f+

it has been observed that according to substrate, the Michaelis–Menten function or
the Haldane function (see [22]) defined respectively by:

f(s) =
µms

s + ks

and f(s) =
µms

s + ks + s2

ki

µm, ks, ki > 0

provide a reasonable approximation for the experimental data. µm is the maximum
specific growth rate of limiting nutrient, ks is the half-saturation constant (also
called Monod’s constant) and ki is the inhibition constant. Normally, there are
uncertainty in the identification of these kinetic parameters (see for example [1],[6,
Chapt.3–5],[12][21]).
(ii) Assumption (H2) is very common in the measure of biological variables: the
information about the state variables is restricted and the available data are few
and biased, the inequality ∆− > −1 follows from the fact that the outputs are
always positive. Notice that there is not any statistical assumption for disturbance
∆(t) because every measurable function between [∆−, ∆+] is considered to be as
good as any other one: we need only deterministic bounds on the uncertainties.
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Moreover, (H2) gives a priori bounded estimates for the substrate:

(2)
y(t)

1 + ∆+
≤ s(t) ≤

y(t)

1 + ∆−
.

Recall that (H1) and (H2) will be assumed for the remainder of this paper.

3. motivation and formulation of stabilization problem

In several bioprocesses, the goal is to stabilize the substrate in a neighborhood
of level s∗; moreover it is important to produce an estimation –even during the
transient of systems– for the unmeasured variable x. Nevertheless this task is made
difficult by the uncertainties of the model summarized by (H1)–(H2).

We wish to motivate the abstract work that follows, and display two concrete
examples.

• A model of depollution using a chemostat: Water quality management is
facing enormous difficulties in conserving standard levels in order to keep it usable
for drinking and tourism. In this context, a considerable interest has been focused
in toxic contaminants and its stabilization under an acceptable level.

Phenol is a troublesome contaminant in surface water and biological oxidation
of phenol has been an important waste treatment process for years. Briefly, this
process of depollution consists in a continuous well–stirred tank in which the phe-
nol is pumped into with a concentration sin, higher than an acceptable level of the
contaminant in the water defined by s+ (relatively near to zero) and fixed by envi-
ronmental authorities. This tank also contains a microorganism x, which can resist
the adverse effects of organic solvents as phenol and is capable of decontamining
the tank because it is able to utilize phenol as limiting substrate.

Notice that, if we choose a fixed dilution D < f+(s+), the concentration of con-
taminant will be convergent to an acceptable level. Nevertheless, as the dilution
rate is relatively small, the convergence toward the equilibrium point is too slow,
furthermore numerical simulations and linear analysis around the critical points
suggest that the introduction of a feedback control law increases the speed of con-
vergence.

• Simulation of marine environment using a chemostat: Chemostat has
been used to model some aspects of marine environment (see e.g. [2],[3]). In fact,
several features of the sea (e.g. temperature and light intensity) can be reproduced
in the laboratory. Moreover, controlling chemostat allows reproduction of several
fixed levels s∗ of limiting substrate, and consequently, makes possible to study the
growth of unicellular phytoplanktonic algae in a wide range of substrate levels,
temperature and/or brightness.

We are interested in stabilize the chemostat to a high level of limiting substrate
s∗ close to sin to reproduce high levels of nitrate under the sea. Notice that, if we
choose a dilution rate D near to f+(s∗) and the function f− is a Michaelis–Menten
type function satisfying D > f−(sin), the critical point E0 = (sin, 0) becomes a
globally stable solution of system (1) taking f = f−, forcing the washout of biomass
from the chemostat.

The washout of biomass must be avoided in any experiment concerning unicellu-
lar phyoplanktonic algae because it will be necessary to start the experiment again
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with a loss of time and material. So, we introduce a feedback control law that
stabilizes the output in an interval [s−, s+] containing s∗.

Motivated by these technical difficulties, we formulate the following problem:

Problem 1 (The robust regulation problem P). Given a reference value s∗ ∈
(0, sin) and considering D as a feedback control variable; find a family of positive

feedback control laws D : R+ ×Ω 7→ R+ \ {0} such that the closed–loop system (1)
has the following properties :

(a) There exist two bounded intervals, an upper one and a lower one, for the

unmeasured variable x(t) and the substrate s(t), that improve the estimation

given by Eq.(2). That means a set of well known functions s−,s+,x− and

x+ : R+ 7→ R+ such that :

x−(t) ≤ x(t) ≤ x+(t) and s−(t) ≤ s(t) ≤ s+(t) for any t ≥ 0.

(b) There exists a compact set K = [s−, s+] × [x−, x+] ∈ Ω and a finite time

T ≥ 0 such that (s(t), x(t)) ∈ K for any t > T ; moreover s∗ ∈ (s−, s+).

There exists some problems related to (P): in [19], the system (1) is studied
under the following assumptions: m = 0, (H1) holds and the only output available
is the substrate with additive perturbations i.e. y(t) = s(t) + ∆(t). Using mono-
tone dynamical systems theory, an interval observer has been built, allowing the
estimation of the non–measured variable (the biomass).

In [20], a more general bioreactor is studied under the following assumptions:
m = 0, (H1) holds and the only output available is the substrate i.e. y(t) = s(t).
The non–measured variables are estimated with an interval observer and using
these estimations, a feedback control law that stabilizes the substrate s(t) in a
neighborhood of the reference value s∗ has been built.

4. Feedback control law

Let us consider the following family of feedback control laws:

(3) D(y(t)) = D∗ + h(y(t))

where D∗ is a constant satisfying the inequality f−(s∗) < D∗ + m < f+(s∗) and
the function h : R 7→ R satisfies the following assumptions (G):
(G1) h is Lipschitz, decreasing such that:

h(s∗) = 0, −D∗ < h(sin[1 + ∆+]) < h(sin) < l(sin) − (D∗ + m).

(G2) The bounds ∆− and ∆+ are such that the equations:

D∗ − u(s) + h(s[1 + ∆+]) + m
{D∗ + h(s[1 + ∆+])

D∗ + h(s[1 + ∆−])

}
= 0,

D∗ − l(s) + h(s[1 + ∆−]) + m
{D∗ + h(s[1 + ∆−])

D∗ + h(s[1 + ∆+])

}
= 0

have one single root sl ∈ (0, s∗) and su ∈ (s∗, sin) respectively.
(G3) The death rate satisfies the following inequalities:

m < inf
r∈(0,sin)

{
l(r)

h′(r[1 + ∆+])

h′(r[1 + ∆−])

1 + ∆+

1 + ∆−
− l′(r)

D∗ + h(r[1 + ∆−])

[1 + ∆−]h′(r[1 + ∆−])

}
,
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m < inf
r∈(0,sin)

{
u(r)

h′(r[1 + ∆−])

h′(r[1 + ∆+])

1 + ∆−

1 + ∆+
− u′(r)

D∗ + h(r[1 + ∆+])

[1 + ∆+]h′(r[1 + ∆+])

}
.

(G4) The death rate satisfies the following inequality:

m < min

{
sin

D∗ + h(0)

v∗ + sin

,

(
sin − su

sin − sl

)
[D∗ + h(su[1 + ∆+])]

}
.

Remark 2. Notice that assumption (G1) can always be satisfied with reasonable
choices of h. Moreover, Eq.(2) implies that the output y(t) is bounded by the
interval [sin(1 + ∆−), sin(1 + ∆+)]. Hence, assumption (G1) implies that D(y(t))
is defined on a bounded interval, we will be able to fulfill the physical constraints:

0 < D∗ + h(sin[1 + ∆+])︸ ︷︷ ︸
Dmin

< D(y(t)) < D∗ + h(sin[1 + ∆−])︸ ︷︷ ︸
Dmax

for any t ≥ 0.

Assumption (G2) can be satisfied if |∆−| and |∆+| are relatively small. Indeed,
notice that if ∆− = ∆+ = 0, the equations stated in (G2) becomes:

D∗ − u(s) + h(s) + m = 0 and D∗ − l(s) + h(s) − m = 0,

by using (G1), it is straightforward to prove that these equations have only one
single root s̃l ∈ (0, s∗) and s̃u ∈ (s∗, sin). Finally, using implicit function the-
orem we can prove the existence of a bound ∆0 > 0 such that the inequality
max{|∆−|, ∆+} < ∆0 implies (G2).

Remark 3. Assumptions (G3)–(G4) gives an upper bound for the mortality rate.
Notice that mortality rate m cannot exceed some threshold, otherwise the solution
(sin, 0) of system (1) could become globally attractive. Moreover, notice that when
m is relatively small with respect to Dmin, assumptions (G3)–(G4) can be satisfied
with reasonable choices of h .

4.1. Main result. In this section, we give sufficient conditions to solve the problem
(P) summarized in Theorem 1. The key idea of the proof is to transform the closed–
loop system (1) into a system that can be compared with cooperative systems i.e.

a system such that the off diagonal entries of the Jacobian matrix are nonnegative.
Planar cooperative systems theory (see Appendix) will be the main tool employed.

Theorem 1. The problem (P) is solvable by a family of output feedback control

defined by (3) satisfying (G1)–(G4).

Proof. We will verify the properties (a) and (b) separately.
Step1: Replacing D by D(y(t)), system (1) becomes:

(4)





ṡ = {D∗ + h(s[1 + ∆(t)])}(sin − s) − αxf(s),

ẋ = x
[
f(s) − D∗ − h(s[1 + ∆(t)]) − m

]
,(

s(0), x(0)
)
∈ [s−0 , s+

0 ] × [x−

0 , x+
0 ] ⊂ Ω.

Notice that, after (H1)–(H2), system (4) satisfies Carathéodory conditions (see
e.g. [5, Th 2.1.1]), that guarantees existence and uniqueness of solutions. Moreover,
it is straightforward to verify that system (4) is positively invariant in Ω.

Let (s, x) be the solution of system (4). Using a standard argument, we build
the function v : Ω 7→ R defined by:

(5) v = s + αx − sin.
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Clearly, it follows that (x, v) is a solution of the system:

(6)





ẋ = x
[
f(v + sin − αx) − {D∗ + h([v + sin − αx][1 + ∆(t)]}) − m

]
,

v̇ = −{D∗ + h([v + sin − αx][1 + ∆(t)])}v − αmx,

x(0) > 0, −sin < v(0) < v∗.

We make the time transformation

r =

∫ t

0

{
D∗ + h(s(τ)[1 + ∆(τ)])

}
dτ

Notice that we have build a function R+ 7→ R+ defined by t → r(t), Using
Remark 2 it can be proved that is invertible. We see at once that dx

dr
= ẋ{D∗ +

h(s[1 + ∆(t)])}−1 and dv
dr

= v̇{D∗ + h(s[1 + ∆(t)])}−1. As this function is injective,
we can define also t(r). Hence, the solutions of system (6) can be written as:

(7)






dx
dr

= x
[

f(v + sin − αx) − m
D∗ + h([v + sin − αx][1 + ∆(r)])

− 1
]

= F (r, x, v),

dv
dr

= −v − αmx
D∗ + h([v + sin − αx][1 + ∆(r)])

= G(r, x, v).

Let us define the set:

Ω1 = {(x, v) ∈ R
2 : x < α−1[v + sin], v ∈ (−sin, v∗)}.

System (7) is positively invariant in Ω1, now we build the following comparison
system in Ω1:

(8)





dφ
dr

= φ
[

u(z + sin − αφ)
D+(z + sin − αφ)

− m
D−(z + sin − αφ)

− 1
]

= F+(φ, z),

dz
dr

= −z = G+(φ, z),

x(0) ≤ φ0 and v(0) ≤ z0 (φ0, z0) ∈ int Ω1.

Where the functions D+,D− : R+ 7→ R+ are defined as follow:

D+(s) = D∗ + h(s[1 + ∆+]) and D−(s) = D∗ + h(s[1 + ∆−]) for any s ≥ 0.

System (8) is positively invariant in Ω1. Indeed, notice that if there exists a
finite time r0 > 0 such that the function L(r) = z(r) + sin − αφ(r) –where (φ, z)
are solution of the system– verify L(r0) = 0, it follows that dL

dr
|r=r0

> 0 and the
invariance is verified. Moreover, by assumption (G3) it follows that system (8) is
cooperative. Finally, by (H1)–(H2) and (G1) the inequalities:

F (r, x, v) ≤ F+(x, v) and G(r, x, v) ≤ G+(x, v)

follow for any (r, x, v) ∈ R+ × Ω1.
Applying comparison theorem for cooperative systems (see Prop.1 in the Ap-

pendix) to the systems (7) and (8), we see that:

(9) x(r) ≤ φ(r) and v(r) ≤ z(r) for any r ≥ 0.

Let
(
φ(r), z(r)

)
be the solution of system (8). Now, we use this function φ(r) to

build the following comparison system in Ω1:
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(10)






dη

dr
= η
[

l(χ + sin − αη)
D−(χ + sin − αη)

− m
D+(χ + sin − αη)

− 1
]

= F−(η, χ),

dχ

dr
= −χ −

αmφ(r)
D+(χ + sin − αη)

= G−(r, η, χ),

0 < η0 ≤ x(0) and χ0 ≤ v(0) and (η0, χ0) ∈ int Ω1.

Notice that by (G4) we have that system (10) is positively invariant in Ω1.
Moreover, it follows from assumption (G3) that system (10) is cooperative. Finally,
assumptions (H1)–(H2),(G1) and Eq.(9) imply that:

F−(x, v) ≤ F (r, x, v) and G−(r, x, v) ≤ G(r, x, v)

follow for any (r, x, v) ∈ R+ × Ω1.
Applying again Prop.1 to systems (7) and (10), we see that:

(11) η(r) ≤ x(r) and χ(r) ≤ v(r) for any r ≥ 0.

Using Eqs.(9) and (11), the functional bounds for the biomass are:

x−(r) = η(r) ≤ x(r) ≤ φ(r) = x+(r).

Moreover, using Eq.(5), the estimation for the substrate given by Eq.(2) can be
improved by s−(r) ≤ s(r) ≤ s+(r), where s−(r) and s+(r) are defined by:

s−(r) = max
{
sin−αφ(r)+z(r), y−(r)

}
, s+(r) = min

{
sin−αη(r)+χ(r), y+(r)

}
.

Indeed, to obtain the bounds on s(t), we take the minimum of the bounds given
by the output and of those given by the comparison systems and property (a) is
verified.
Step 2: In order to verify property (b), notice that assumptions (G2) and (G4)
imply that the critical points of system (8) are:

E+
1 = (α−1[sin − sl], 0) and E+

2 = (0, 0).

A linearization procedure combined with assumptions (G2)–(G4) shows that
E+

1 and E+
2 are respectively locally stable and unstable.

It can be proved that the critical point E+
2 cannot be an ω–limit set for any

initial condition (φ0, z0). We will sketch this proof:
• It is straightforward to verify that the stable manifold of the critical point E+

2 is
defined by the set:

W s(E+
2 ) = {(φ, z) ∈ Ω1 : φ = 0}.

• We build the functional P : Ω1 7→ R defined by P (φ, z) = φ. Clearly P = 0 in
W s(E+

2 ) and P > 0 in Ω1 \ W s(E+
2 ).

• It follows from system (8) that Ṗ = Ψ(φ, z)P where Ψ: Ω1 7→ R is the continuous
function:

Ψ(φ, z) =
u(z + sin − αφ)

D∗ + h([z + sin − αφ][1 + ∆+])
−

m

D∗ + h([z + sin − αφ][1 + ∆−])
− 1.

• It follows from (G2) that Ψ(E+
2 ) > 0. This imply that P is an average Lyapunov

function (see e.g. [10],[11]) and using Th.12.2.2 from [11] it follows that E+
2 cannot

be attained from int Ω1.
Since the solutions of system (10) are bounded, applying Prop.2, it follows that:

lim
r→+∞

(
φ(r), z(r)

)
= E+

1 .
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Hence system (10) is asymptotically autonomous (see for example [25],[26] and
the references given there) with limit system:

(12)





dη

dr
= η
[

l(χ + sin − αη)
D−(χ + sin − αη)

− m
D+(χ + sin − αη)

− 1
]

= F−(η, χ),

dχ

dr
= −χ −

m[sin − sl]
D+(χ + sin − αη)

= G−(η, χ),

0 < η0 ≤ x(0) and χ0 ≤ v(0) and (η0, χ0) ∈ int Ω1.

Assumptions (G3)–(G4) imply that the system (12) is positively invariant and
cooperative in Ω1. Moreover, its critical points are:

E−

1 =
(
α−1[sin − su + ξ0(∆

+)], ξ0(∆
+)
)

and E−

2 = (0, χ̄).

where ξ0(∆
+) =

−m(sin − sl)

D∗ + h(su[1 + ∆+])
and χ̄ ∈ (su − sin, 0) is the unique root of

the function (−sin, 0) 7→ R defined by

r 7→ −r −
m(sin − sl)

D∗ + h([r + sin][1 + ∆+])
.

By assumptions (G2)–(G4) combined with a linearization procedure, it follows
that E−

1 and E−

2 are respectively locally stable and unstable. Moreover, following
the lines of the proof given for the point E+

2 , we can prove that the critical point
E−

2 cannot be an ω–limit set for any initial condition (η0, χ0).
Since the solutions of system (8) are bounded and Th.1 implies that E−

1 is
a global attractor of system (12), it follows by Poincaré–Bendixson trichotomy for
asymptotically autonomous systems (see for example [25, Th.1.6],[26, Th.1.5]) that:

lim
r→+∞

(
η(r), u(r)

)
= E−

1 .

Combining these estimates with Eq.(5) gives that property (b) is verified with:

K = [sl, su] × [α−1(sin − su + ξ0(∆
+)), α−1(sin − sl)].

�

4.2. Some extensions. This subsection deals with some improvements of the main
result. Notice that the area of the set K is A(K) = α−1(su−sl)[(su −sl)−ξ0(∆

+)]
and using (G2) we can realize that A(K) is strongly determinate by the feedback
control law chosen. So, motivated by practical applications, it will be desirable to
reduce the area of K by choosing an adequate feedback control law. In this sense,
we have the following result:

Corollary 1. Given ε > 0, there exists an appropriate function h such that :
∣∣∣∣∣
sl

su
−

1 + ∆−

1 + ∆+

∣∣∣∣∣ < ε.

Proof. We can choose a neighborhood V of s∗ such that (s−, s+) ⊂ V . Hence,
using (G1)–(G2) and mean value theorem we obtain:

∣∣∣∣∣
su

sl
−

1 + ∆+

1 + ∆−

∣∣∣∣∣ =
|u(sl) − l(su)| + m

[D+(sl)

D−(sl)
+

D−(su)

D+(su)

]

su|h′(ρ)|[1 + ∆+]
≤

C

|h′(ρ)|
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for some ρ ∈ (sl, su) and C > 0 is a constant defined by

C = (s∗[1 + ∆+])−1
[

max
r∈[0,sin]

|u(r) − l(r)| + 2m
Dmax

Dmin

]
.

Now, choosing a control law such that |h′(u)| > Cε−1 for any u ∈ V completes
the proof. �

Moreover, we can build a decreasing sequence of sets {Kj}j (K0 = K) of sets
verifying A(Kj+1) ⊂ A(Kj) for any integer j ≥ 0. This is the content of the
following result:

Corollary 2. There exist two sequences {ηj}j,{φj}j of functions in C(R+, R+)
satisfying the following properties :

(i) The first one is nonnegative and the second one is upperly bounded by x+
0 ,

and they satisfy the inequalities :

(13) 0 ≤ ηj−1(r) ≤ ηj(r) ≤ . . . ≤ x(r) ≤ . . . ≤ φj(r) ≤ φj−1(r) ≤ α−1(v∗ + sin)

for any integer j ≥ 1 and r ≥ 0.
(ii) The functions have the asymptotic behavior for any integer j ≥ 0:

(14) lim
r→+∞

φj(r) =
sin − sl + ξj(∆

−)

α
and lim

r→+∞

ηj(r) =
sin − su + ξj(∆

+)

α

where the sequences ξj(∆
−) and ξj(∆

+) are recursively defined by :

ξj(∆
−) =






0 if j = 0,

−
m[sin − su + ξj−1(∆

+)]

D∗ + h(sl[1 + ∆+])
if j ∈ {1, 2, . . .}.

ξj(∆
+) = −

m[sin − sl + ξj(∆
−)]

D∗ + h(su[1 + ∆−])
j ∈ {0, 1, . . .}.

(iii) These sequences are uniformly convergent in BC([0,∞), R) (the Banach

space of bounded continuous functions on R+ taking values in R) to the

functions η∞ and φ∞ respectively.

Proof. (i) For any integer j ≥ 0, let us build the systems:

Σ+
j =






dφ

dr
= φ

[
u(z + sin − αφ)

D+(z + sin − αφ)
− m

D−(z + sin − αφ)
− 1
]

= F+
j (φ, z),

dz
dr

= −z −
αmγj(r)

D−(z + sin − αφ)
= G+

j (r, φ, z),

x(0) ≤ φ0 and v(0) ≤ z0 and (φ(0), z0) ∈ int Ω1.

Σ−

j =





dη

dr
= η

[
l(χ + sin − αη)

D−(z + sin − αη)
− m

D+(χ + sin − αη)
− 1
]

= F−

j (η, χ),

dχ

dr
= −χ −

αmλj(r)

D+(χ + sin − αη)
= G−

j (r, η, χ),

x(0) ≥ η0 and v(0) ≥ χ0 and (η0, χ0) ∈ int Ω1.

where the functions γj ,λj : R+ 7→ R+ verify:

0 ≤ γj(r) ≤ x(r) ≤ λj(r) ≤ α−1(v+ + sin).

Notice that these systems are cooperative in Ω1. Moreover, given these bounds
for γj(r) and λj(r), assumption (G4) implies that systems Σ−

j and Σ+
j are positively

invariant in Ω1.
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Let
(
φj(r), zj(r)

)
and

(
ηj(r), χj (r)

)
be the solutions of systems Σ+

j and Σ−

j

respectively. Now, we define recursively a particular couple of sequences {γj}j and
{λj}j as follows:

γj(r) =

{
0 if j = 0
ηj−1(r) if j ∈ {1, 2, . . .}

and λj(r) = φj(r) j ∈ {0, 1, . . .}.

Now, we will verify (13) and (14) using mathematical induction. Indeed, when
j = 0, systems Σ+

0 and Σ−

0 are equivalent to (8) and (10) respectively and using
Th.1 the inequalities (13) and the limits given by Eq.(14) are verified for j = 0.

Now, we assume that inequalities (13) and the limits given by Eq.(14) are verified
for any integer j ∈ {0, . . . , k−1}, we will prove that they are verified also for j = k.

Hence, it follows that the inequalities:

F+
k (r, φ, z) ≤ F+

k−1(r, φ, z) and G+
k (r, φ, z) ≤ G+

k−1(r, φ, z)

hold for any (r, φ, z) ∈ R+ × Ω1.
Using this inequality and applying Prop.1 to systems (7),Σ+

k−1 and Σ+
k , it follows

that x(r) ≤ φk(r) ≤ φk−1(r).
This last statement implies that:

F−

k−1(r, η, χ) ≤ F−

k (r, η, χ) and G−

k−1(r, η, χ) ≤ G−

k (r, η, χ)

hold for any (r, η, χ) ∈ R+ × Ω1.
Now, applying again Prop.1 to systems (7),Σ−

k−1 and Σ−

k , it follows that ηk−1(r) ≤
ηk(r) ≤ x(r) and the inequalities (13) are verified for j = k.
(ii) Notice that systems Σ+

j and Σ−

j are asymptotically autonomous with limits:

Σ̃+
j =





dφ

dr
= φ

[
u(z + sin − αφ)

D+(z + sin − αφ)
− m

D−(z + sin − αφ)
− 1
]

= F̃+
j (φ, z),

dz
dr

= −z −
m[sin − su − ξj−1(∆

+)]

D−(z + sin − αφ)
= G̃+

j (φ, z),

x(0) ≤ φ0 and v(0) ≤ z0 and (φ0, z0) ∈ int Ω1.

Σ̃−

j =





dη

dr
= η

[
l(χ + sin − αη)

D−(χ + sin − αη)
− m

D+(χ + sin − α)
− 1
]

= F̃−

j (η, χ),

dχ

dr
= −χ −

m[sin − sl − ξj(∆
−)]

D+(χ + sin − αη)
= G̃−

j (η, χ),

x(0) ≥ η0 and v(0) ≥ χ0 and (η0, χ0) ∈ int Ω1.

Using again the results given by the Poincaré–Bendixson trichotomy and follo-
wing the lines of step 2 in the proof of Theorem 1 we can prove that the solutions of
systems Σ+

j and Σ−

j are respectively convergent to the points E+
j and E−

j defined
as follows:

E+
j =

(sin − sl + ξj(∆
−)

α
, ξj(∆

−)
)

and E−

j =
(sin − su + ξj(∆

+)

α
, ξj(∆

+)
)
.

(iii) Now, we will prove that the sequences {ηj}j and {φj}j are uniformly convergent
to a couple of functions η∞ and φ∞ verifying the inequality (13). We only prove
the result for the sequence {ηj}j , the other case can be proved analogously.

Firstly, given any T > 0, we study the properties of the sequence {ηj}j in

the interval [0, T ]. Notice that, by using the systems Σ−

j and Σ+
j we can de-

duce that the Lipschitz constant for this sequence is given by a number L ≤
α−1v∗(l(sin) + m)/Dmin and it is straightforward to verify that the sequence {ηj}j

is an equicontinuous and uniformly bounded set. By using Arzelà–Ascoli theorem,
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we have the existence of a subsequence ηjk
uniformly convergent to a continuous

function η ∈ C([0, T ], R).
We can suppose that this subsequence verifies ηjk

(r) ≤ ηjk+1
(r) for any r ∈ [0, T ].

Without loss of generality, we also can suppose that there exist an infinite number
of index jk verifying:

(15) ηjk
(r) ≤ ηj(r) ≤ ηjk+1

(r).

Letting k → +∞, Eq.(15) implies that ηj is pointwise convergent to η in [0, T ].
Now, Dini’s theorem implies uniform convergence and consequently, ηj is a Cauchy
sequence in C([0, T ], R). So, given any ε > 0, there exists a number J1(ε) > 0 such
that:

(16) |ηj(r) − ηj+l(r)| < ε for any j > J1 and r ∈ [0, T ].

Secondly, let {x−

j }j be a sequence defined by:

x−

j = α−1[sin − sl + ξj(∆
+)],

it is straightforward to verify that {x−

j }j is convergent to a number x−

∞
. Hence,

given ε > 0 there exists J2(ε) > 0 such that |x−

j − x−

∞
| < ε/4 for any j > J2.

Thirdly, Eqs.(14) imply that given ε > 0, there exists a number TJ2
(ε) such that

|ηj(r) − x−

j | < ε/4 for any r > TJ2
.

Now, let J = max{J1, J2}, hence we have that:

(17) |ηj(r) − ηj+l(r)| < ε for any j > J and r > TJ .

Finally, putting T = TJ in Eq.(16) and combining with Eq.(17) it follows that

|ηj(r) − ηj+l(r)| < ε for any j > J and r ≥ 0

and we conclude that ηj(r) is a Cauchy sequence in BC([0,∞), R) and the lemma
follows.

�

Remark 4. Corollaries 1 and 2 improve our main result in several ways:
(i) Corollary 1 means that if ∆+ ≈ ∆− ≈ 0 (small noise in the output), then we
are able to stabilize s nearly exactly around s∗ and A(K) is almost zero.
(ii) The area of the set K is reduced by Corollary 1, by choosing a feedback control
law that minimize su − sl. Moreover, using Corollary 2, we can build a decreasing
sequence of sets Kj+1 ⊂ Kj (K0 = K) verifying A(Kj+1) ≤ A(Kj).
(iii) Corollary 2 improves our estimation of the functional bounds for the biomass
x(r). Indeed, notice that η0 and φ0 of the sequence defined in (13) are the functional
bounds for the biomass given by Th.1 and as we can see, the two sequences of
functions {ηj}, {φj} improve the initial estimation.

Moreover, uniform convergence of the sequence, give us the best estimation for
the functional bounds for the biomass x(r).

Remark 5. The convergence velocity towards the equilibrium point is increased by
the feedback law. Although numerical solutions make it clear (see next section),
it is rather difficult to prove formally the fact concerning the nonlinear system.
The classical comparison tool consists in linearizing around the equilibria, and
comparing the eigenvalues of the system with and without control. Notice that for
our system (and taking for simplicity m = 0,∆(t) = 0 and f− = f+ = f), we
obtain that the two eigenvalues are:
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-Without control: −1,−(sin − s∗)[f ′(s∗)],
-With control : −1,−(sin − s∗)[h′(s∗) + f ′(s∗)].

Therefore it can be seen that our feedback control law can (locally) increases the
convergence given an eigenvalue as negative as wanted by taking h′(0) large.

Remark 6. If the assumption (H1) is a consequence of the the uncertainty of the
kinetic parameters, that means, there exists closed intervals Ii (i = 1, 2, 3) such
that µm ∈ I1,ks ∈ I2 and ki ∈ I3 (see Section 2 and Remark 1), the properties of
the systems Σ−

j and Σ+
j make possible to enhance our estimation of the parameters

by combining our methods with some adaptive control techniques in the sense that
the “static bounds” f−(s) and f+(s) could become ”dynamic bounds” f−(r, s)
(increasing with respect to r) and f+(r, s) (decreasing with respect to r) verifying:

f−(s) ≤ f−(r, s) ≤ f(s) ≤ f+(r, s) ≤ f+(s) for any r, s ≥ 0.

Indeed, using the fact that systems Σ−

j and Σ+
j are cooperative, we can carry out

known algorithms (see e.g. [13] and references given there), to obtain new dynamic

intervals Ĩi(r) ⊂ Ii (i = 1, 2, 3) where |Ĩi(r)| is decreasing with respect to r.

5. Examples: Depollution of water and simulation of marine
environments

Let us come back to the problems of stabilization stated before (see Introduction
and section 3).

5.1. A model of depollution of phenol in the water. We suppose that s is the
phenol and the biomass x is Pseudomonas putida [21], the objective is to stabilize
the concentration of phenol below the level s+ after a finite time T . Then, the
contaminant concentration becomes upperly bounded:

s(t) < s+ < sin for any t > T .

In the following table we present some maximal concentrations allowed by the
U.S. environmental protection agency (EPA) and the Canadian evaluation of toxic
residues service (SERT) 1.

s+ (mg/L) Prevention goals Reference
0.30 Avoid pollution (water and organisms) EPA, 1980
0.49 Avoid toxicity (aquatic life) SERT, 1990
0.02 Avoid chronic effects (aquatic life) SERT, 1990

This model is affected by several uncertainties: the data presented by Sokol and
Howell [21], show that the function f that describes the growth of x(t) is of type:

f(s) =
k1(s)s

k2 + s2

where k1 : R+ 7→ R+ is an increasing and bounded function. Despite the evidence
for variability of the coefficient k1, its precise functional form is unknown. k2 is a
positive (uncertain) parameter. We summarize the experimental data presented in
[21] in the following table (Liters are denoted by L and milligrams by mg):

1See http://www.menv.gouv.qc.ca/eau
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Parameter / function Uncertainty Units

k1(s) k1(s) ∈ [9.43, 22.5] Day−1

k2 k2 ∈ [2.82, 3.09] mg/L
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Figure 3. Concentration of phenol (dashed line) and its bounds.
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Figure 4. Concentration of Pseudomonas putida and its bounds.

Hence, for any growth function f , we have that:

f−(s) =
9.43s

2.82 + s2
≤ f(s) ≤

22.5s

3.09 + s2
= f+(s).

We will work with the following function:

f(s) =
[15.96 + ω1(t)]s

2.955 + ω2(t) + s

where the functions ω1 and ω2 have been constructed interpolating two sets of
random data bounded by [−6.535, 6.535] and [−0.135, 0.135] respectively. In the
same way, we build a function ∆(t) bounded by [−0.2, 0.2].

The feedback control law is built taking D∗ = 1 and using the function h : R 7→ R,
defined by:

h(y(t)) = 0.85 tanh(s∗ − y(t)).
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Figure 5. Dilution rate v/s time
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Figure 6. Substrate concentration taking initial conditions s0 =
6.8mg/L (left) and s0 = 5.1mg/L (right): Comparison between
feedback control (dashed line) and fixed dilution (continuous line).

In the numerical simulation the following parameters are considered:

sin = 8mg/L s+ = 0.49µmg/L s∗ = 0.25mg/L m = 0.1mg/L α = 0.2.

We solve the systems using MATLAB ODE23. In order to apply Th.1, we verify
easily the conditions (G) using f− and f+. Figure 3 shows numerical results for
the concentration of phenol graduated in mg/L and time axis in days. Notice that
the phenol concentration becomes lower the value s+ = 0.49 mg/L.

Figure 4 shows the numerical results for concentration of Pseudomonas putida

(graduated in mg/L) using ten classes of random data (ω1, ω2, ∆). Notice that this
estimation could be enhanced in accuracy by using the results given in Corollary 2
and Remark 6.

We are also interested in comparing the depollution process described before
with a process carried out using a fixed dilution rate (open–loop approach). Figure
6 shows simulations with two initial conditions s0, we can see that the use of the
feedback control law defined by Eq.(3) gives a faster convergence.

5.2. Simulation of marine environments. We consider Dunaniella tertiolecta

growth (a chlorophilian phytoplanktonic micro-algae) in a chemostat with nitrate
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as limiting substrate [2], and realistic values (from experiments [3]) for uncertainties
and parameters.

For numerical simulations we take Michaelis Menten’s function defined before
with the kinetic parameters µm and ks with experimental uncertainties given in
[27] summarized in the following table (Liters are denoted by L, micro-atom grams
by µatg and number of cells by Cell):

Parameter Uncertainty Units

µm µm ∈ [1.2, 1.6] Day−1

ks ks ∈ [0.01, 0.2] µatg/L
sin sin ∈ [80, 120] µatg/L
α−1 α−1 ∈ [0.15, 0.6] non–dimensional

Hence, for any growth function f(s) it follows that:

f−(s) =
1.2s

0.2 + s
≤ f(s) ≤

1.6s

0.01 + s
= f+(s).

We will work with the following function:

f(s) =
[1.4 + ω1(t)]s

0.105 + ω2(t) + s2

where µm = 1.42,ks = 0.105 and the functions ω1 and ω2 has been constructed
interpolating two sets of random data bounded by [−0.19, 0.19] and [−0.07, 0.07]
respectively. In the same way we build a function ∆(t) bounded by [−0.03, 0.03].

We will work with the following realistic values for parameters sin,s∗,m and α:

sin = 85µgat/L s∗ = 82µgat/L m = 0.1mg/L α = 2.

The feedback control law is built taking D∗ = 1.3 and using the function h : R 7→
R defined by:

h(y(t)) = 1.1 tanh(s∗ − y(t)).

In order to apply Th.1, we verify easily the conditions (G). Figure 7 shows
numerical results for the concentration of Nitrate (graduated in µgatL−1 and time
axis in days. Figure 8 shows the numerical results for concentration of Dunaniella

Tertiolecta (graduated in 106CellL−1) using ten classes of random data (ω1, ω2, ∆).
Finally, Fig. 9 shows the dilution rate. Notice that washout is avoided, because it
follows that the biomass is uniformly persistent, that means:

lim inf
t→+∞

x(t) > x− > 0 for any x(0) > 0.

Persistence uniform of the biomass is essential because, as we stated in section
3, the washout of the biomass must be avoided because the chemostat would have
to be inoculated again. Notice that using a fixed dilution rate, the uniform persis-
tence of the biomass cannot be ensured for dilution rates D > f−(sin) = 1.1972.
Furthermore, taking this restriction into account, it is not possible to stabilize the
substrate in a neighborhood of s∗ without control.

As before, we emphasize that the estimation given for the biomass could be
enhanced in accuracy by using Corollary 2 and Remark 6.
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Figure 7. Concentration of nitrate (dashed line) and its bounds.
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Figure 8. Concentration of Dunaniella tertiolecta and its bounds.
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Figure 9. Dilution rate v/s time

6. Discussion

The problem (P) of feedback stabilization for a chemostat with uncertainties on
its outputs and internal structure has been discussed. It has been shown that, given
known bounds for the uncertainties and some technical assumptions, we are able to
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build a family of feedback control laws, which stabilize the system in a bounded set.
Our approach is based on the theory of monotone dynamical systems. Furthermore,
we do not assume that the uncertainties satisfy some dynamical and/or statistical
properties, excluding by consequence the use of some robust control approaches
given by [4] and [15].

It must be noted that, contrarily to the bibliography stated in introduction, we
have considered models with mortality rate m > 0, that makes the problem far
more difficult because the “conservation principle” is not verified.

Many extensions are available in the spirit of (H1) and/or (H2): for example
to suppose that the parameter sin is unknown and verifies s−in(t) ≤ sin ≤ s+

in(t) for
any t ≥ 0 and the functions s−in,s+

in are bounded and measurable.
Another natural extension of the present work would be to treat outputs of

type y(t) = s(t) + ∆(t) (additive disturbance). These two extensions can be cer-
tainly solved by the methods presented in the proof of Th.1 combined with alter-
native/additional hypothesis.

There are some problems related but are far beyond the framework of this pa-
per: in Remark 5 we show how a feedback control law can improve the speed of
convergence toward a critical point. It will desirable to study global results and
their robustness. Other related problems concern the case of competition in the
chemostat, delays in some input variables (time necessary to measure the output)
and state variables (delay between changes in the substrate concentration and the
corresponding changes in the microorganisms).

Concluding the discussion of the control of an uncertain chemostat, we recall that
other formulations are known. For example, a stabilization problem for an uncertain
model of dynamics of carbon in the atmosphere is developed by Kryazhimisky
and Maksimov in [16]. Inspired by game-theoretical control problems, the authors
stabilize the amount of carbon in the atmosphere. It would be extremely interesting
to examine this approach in our future work.

Acknowledgments: The authors would like to thank O. Bernard and L. Mailleret
(INRIA–Projet COMORE) for valuable discussions. This research has been suppor-
ted in part by the science and technology council of Chile (CONICYT) in the frame
of INRIA–CONICYT cooperation agreement.

Appendix: Planar cooperative systems
In this appendix we present some definitions and results from the theory of planar

cooperative systems [22],[23].

Definition 1. A vector field in the Euclidean space determines a cooperative system

of differential equations provided that all the off–diagonal terms of its Jacobian
matrix are nonnegative on a convex domain of R

n.

Let us define an order in R
2 by ~y ≤ ~x if ~x− ~y ∈ R

2
+, i.e. yi ≤ xi for any i = 1, 2.

The goal is to study the asymptotic behavior of the cooperative system:

(18) ẋ = F (x)

and to compare its solutions with these ones of the following systems:

(19) ż = G(z),

(20) ẏ = H(y)

provided that the continuous functions G,H : Ω 7→ R
2 verify H ≤ F ≤ G.
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Proposition 1 (Comparison Theorem). Assume that system (18) is cooperative.

Moreover, let x(t) be a solution of (18) defined on [a, b], hence:

(i) If z(t) is a continuous function on [a, b] satisfying (19) on (a, b) with z(a) ≤
x(a), then z(t) ≤ x(t) for all t in [a, b].

(ii) If y(t) is a continuous function on [a, b] satisfying (20) on (a, b) with y(a) ≥
x(a), then y(t) ≥ x(t) for all t in [a, b].

Proof. See Theorem 3.5.1 from [23]. �

Proposition 2 (Asymptotic behavior). Assume that system (18) is cooperative.

Moreover, if, for any initial condition x0, ω(x0) has a compact closure, then the

solutions of system (18) are convergent to a critical point.

Proof. See Theorem 3.2.2 from [23]. �

References

[1] Bastin G, Dochain D. On–line estimation and adaptive control of bioreactors, Elsevier: Am-
sterdam, 1990.
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