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Abstract This paper deals with output feedback control
of phytoplanktonic algae growthmodels in the chemostat.
The considered class of model is of variable yield type,
meaning that the ratio between the environmental nutri-
ent absorption rate and the cells’ growth rate varies, which
is different from classical bioprocesses assumptions. On
the basis of weak qualitative hypotheses on the analytical
expressions of the involved biological phenomena (which
guarantee robustness of the procedure toward modeling
uncertainties) we propose a nonlinear controller and
prove its ability to globally stabilize such processes.
Finally, we illustrate our approach with numerical simu-
lations and show its benefits for biological laboratory
experiments, especially for ensuring persistence of the
culture facing classical experimental problems.

Keywords Algae growth Æ Chemostat Æ Variable yield
model Æ Nonlinear control

Introduction

The first models describing micro-organisms growth in
continuous controlled laboratory devices, so-called
chemostats, were proposed by Monod [14]. This class of
models are based on the assumption that the micro-
organisms growth rate is proportional to their con-
sumption rate of some extracellular limiting nutrient.
Thus, these models are often referred to as constant yield
models [18]. Constant yield models predictions remain
good compared to experimental data for micro-organ-
isms like bacteria, but some important differences ap-
pear as unicellular photosynthetic algae are considered.
This phenomenon was first described by Droop [4]. He,

therefore, proposed a new approach dedicated to phy-
toplanktonic algae growth, reconsidering the ‘‘constant
yield’’ hypothesis. Droop assumed that unicellular algae
growth on a limiting nutrient is a two-step phenomenon:
first, uptake of the nutrient in the cell and then, use of
the intracellular nutrient to support cell’s growth. As a
result, the ratio between cells growth rate and nutrient
consumption rate is no more constant. Hence, these kind
of models are called variable yield models [18].

In previous works, we exhibited new nonlinear feed-
back controls for constant yield models, coming from
the more general theoretical framework proposed in [9,
10]. A crucial point of these works is that the control
procedure requires only qualitative hypotheses on the
micro-organisms’ growth rates, what is important for
the robustness toward modeling uncertainties that are
common in biological models [11, 12]. Here, we propose
to extend these results to variable yield models.

This paper is organized as follows: first, we state the
general variable yield model for unicellular algae growth
in chemostats and we make some qualitative hypotheses
about the algae’s substrate uptake and growth rates.
Then, we propose the nonlinear controller and prove the
global asymptotic stability of the closed loop resulting
system. Finally, some numerical simulations, assuming
various experimental operating conditions or failures,
illustrate our approach.

The variable yield model

A chemostat is a laboratory apparatus consisting of a
vessel enclosing the liquid culture medium. The micro-
organism population grows in this medium consuming a
nutrient (i.e., substrate). A liquid flow (F) passes through
the vessel; the inflow feeds the chemostat with the sub-
strate at concentration sin, while the outflow is composed
by the same compounds than inside the chemostat. The
volume of the culture medium V remains constant since
the inflow and the outflow are equal. Let us define the
dilution rate D ¼ F =V :
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The model

The model variables are the extracellular limiting
nutrient concentration (denoted s), the intracellular
nutrient per unit of biomass (called cell quota and
denoted q) and the biomass concentration (denoted x).
Have a look at the nomenclature in Appendix A for
the variables’ units. All the concentrations are sup-
posed to be homogeneous. The function q(.),
depending on the substrate concentration s, is the
substrate uptake rate while the function l(.), depend-
ing on the cell quota q, is the growth rate of the algae.
According to [4, 18], we obtain the following variable
yield model:

_s ¼ Dðsin � sÞ � qðsÞx
_q ¼ qðsÞ � lðqÞq
_x ¼ lðqÞx� Dx
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It is well known in biology that the most crucial
problem in modeling the considered phenomenon is to
propose some realistic analytical expressions for the
biological functions q(.) and l(.). As in [16], in order to
bypass these modeling difficulties, we only suppose
qualitative hypotheses about q(.) and l(.).

Hypothesis 1(H1) q(0)=0 and q(s) is C1; increasing and
bounded; l(q) is C1; non-negative, increasing and bounded;
there exists qm > 0 such that l(qm)=0

These hypotheses mean that: if substrate s is available
then the cell uptakes it. More the substrate available, the
higher the uptake rate. Boundedness of both q(.)
and l(.) comes from biological evidences. The parameter
qm stands for the minimum cell quota: when q drops
below qm, there is insufficient internal nutrient for the
cell to grow, and when more internal quota q is avail-
able, the cell grows more.

Hence, we do not consider neither the possibility of
inhibition of substrate that is modeled by nonmonotone
functions (e.g., Haldane model). However, this phe-
nomenon may also be addressed with a quite similar
procedure [11, 12].

Throughout the paper, we only consider initial
conditions for the state variables belonging to the
open biological meaningful cone X ¼ fs > 0; q > qm;
x > 0g: Observe that the closure of X is invariant by
system 1. In order to exhibit a better form of system
Eq. 1, we use the change of coordinates z=s+qx. z
represents the total amount of intracellular and
extracellular nutrient in the chemostat. Then, we ob-
tain the following system, which is easier to deal with,
especially due to the autonomous and almost linear z
dynamics:

_z ¼ Dðsin � zÞ
_s ¼ Dðsin � sÞ � qðsÞx
_x ¼ l

z� s
x

� �
x� Dx

8
><

>:
ð2Þ

Behavior of the open loop model

The asymptotic behavior of system Eq. 1 has been
thoroughly studied in [2, 7, 18]; results are of two dif-
ferent types depending on the value of D compared to
sin: either there exists a positive equilibrium point and
each forward positive orbit initiated in X goes toward it,
either not and every forward orbit goes to the washout
point corresponding to the disappearance of the algae
from the chemostat (x=0).

It is clear that washout of the culture must not hap-
pen. Here, via the control of the model, we aim at pre-
venting the disappearance of the positive equilibrium,
i.e., at preventing biomass washout. In other words, we
intend to impose the convergence of the state toward a
positive equilibrium point. Specifically, we want to drive
and keep biomass concentration toward a chosen posi-
tive value. Moreover, uncertainty in feeding substrate
concentration sin may sometimes destabilize the system
leading to biomass washout. Another point important to
be addressed is the possible algae stress (unpredicted fall
of cells growth rate) that may as well lead to biomass
washout. Then, it is crucial to guarantee that the bio-
mass goes toward its chosen positive value, indepen-
dently from sin variations and/or potential algae stress.

Nonlinear control design

Statement of the control framework

Applied control of biological systems generally differs
from the classical framework of control where it is
usually assumed that the model is perfectly known [15].
To control biological systems, we have to take into ac-
count that the model may be only qualitatively known
and that the outputs may be some unknown nonlinear
functions of the state variables. Moreover, inputs are
considered unconstrained in classical control theory,
whereas they usually fulfill some constraints (e.g., posi-
tivity) in biological systems.

Due to the high variability of biological phenomena,
we consider here a qualitatively known model, qualita-
tive outputs and constrained input. Therefore, we can-
not apply classical linearisation techniques requiring a
detailed analytical expression of the model (see e.g., [5]).

However, we still have to define the manipulated
variable (input), and the online measured variable
(output). In chemostat-like systems, it is well known that
the (non-negative) dilution rate D is easy to manipulate,
thus, we use it as the (constrained) input of the system.
Now, we define the output; here, we suppose that our
chemostat is instrumented with sensors that can mea-
sure, either the uptaked carbon or the produced oxygen
due to the algae photosynthesis. Note that both quan-
tities are proportional to the cells growth. Hence, we
assume that the output y=l(q)x, namely the cells pop-
ulation growth velocity, is available online from the
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plant. Let us summarize these assumptions in the fol-
lowing hypothesis.

Hypothesis 2 (H2) D‡ 0 is the constrained input of
system 1; y=l(q)x is an output of system Eq. 1

Nonlinear control design

Now, we state and prove our main result, using the
notation n for the state vector.
Proposition 1 Under assumptions (H1) and (H2), the
nonlinear output feedback control law:

Dð:Þ ¼ cy ¼ clðqÞx with c >
qm

sin
ð3Þ

globally stabilizes system Eq. 1 toward the single positive
equilibrium nH; determined by the value of c.

By ‘‘positive’’ equilibrium point, we refer to a point
whose elements are all positive. For instance, the
washout point that corresponds to the disappearance of
algae from the chemostat (x=0) is an equilibrium point
of Eq. 1, but not a positive one. Moreover, note that
with expression Eq. 3, the input D(.) remains non-neg-
ative and therefore, fulfills its positivity constraint
(see (H2)).

The control law Eq. 3 leads to the following closed
loop system:

_z ¼ Dð:Þðsin � zÞ
_x ¼ Dð:Þ 1

c � x
� �

_s ¼ Dð:Þðsin � sÞ � qðsÞx

8
<

:
ð4Þ

We first want to show that for the closed loop system
Eq. 4, both variables z and x converge (asymptotically)
to sin and 1/crespectively. Let us integrate the equations
_z and _x of system Eq. 4, we have:

zðtÞ ¼ sin þ ðzð0Þ � sinÞe�
R t

0
DðsÞds

xðtÞ ¼ 1

c
þ xð0Þ � 1

c

� �

e
�
R t

0
DðsÞds

8
<

:
ð5Þ

Thus, we have to prove that the quantity
R t
0 DðsÞds di-

verges toward infinity as time tends to infinity to show
the convergence of z and x toward sin and 1/c.

Therefore, before proving Proposition 1, we show the
following:

Lemma 1 Under hypotheses (H1) and (H2) and with the
control procedure Eq. 3 applied to model Eq. 1, we have:

lim
t!þ1

Z t

0

DðsÞds ¼ þ1:

Proof Since D(.) is non-negative, it is straightforward

that: e
�
R t

0
DðsÞds 2 ½0; 1�: Then, we have:

8t � 0
maxðsin; zð0ÞÞ � zðtÞ � minðsin; zð0ÞÞ > 0

max 1
c ; xð0Þ
� �

� xðtÞ � min 1
c ; xð0Þ
� �

> 0

(

ð6Þ

Let us suppose that limt!þ1
R t
0 DðsÞds is bounded. Thus,

since D(.)‡0, a necessary condition is that:

lim
t!þ1

DðtÞ ¼ 0

From Eqs. 6 and 3, since c is positive and x lower
bounded by a positive constant, it implies at least that:

lim
t!þ1

lðqðtÞÞ ¼ 0) lim
t!þ1

qðtÞ ¼ qm

Since q(t) is a time-Lipschitz function ( _q is bounded), it
is uniformly continuous in time. Then, using Barbalat’s
lemma (see Appendix B), we show that:

lim
t!þ1

_q ¼ 0

that leads to (see Eq. 1): limt!þ1 qðsðtÞÞ ¼ 0 and thus:

lim
t!þ1

sðtÞ ¼ 0

Observe that these points, corresponding to q=qm and
s=0, are equilibria of the system Eq. 4 for all values of
the variable x. Since x is positively lower bounded, they
are defined, for all x � minð1=c; xð0ÞÞ; by:

nu ¼ ðs ¼ 0; q ¼ qm; xÞT

Now, we want to show that these equilibria are not
reachable from initial conditions belonging to the cone
X. To achieve this purpose, let us compute the Jacobian
matrix at these equilibrium points, in the ðs; q; xÞT vari-
ables. With q0ð0Þ ¼ @q=@sð Þs¼0 and l0ðqmÞ ¼
@l=@qð Þq¼qm

we have:

J ðnuÞ ¼
�q0ð0Þx cl0ðqmÞxsin 0
q0ð0Þ �l0ðqmÞqm 0

0 cl0ðqmÞx 1
c � x
� �

0

0

B
@

1

C
A ð7Þ

It is straightforward that one of the eigenvalues is zero,
with the associated eigenvector (0,0,1)T, which corre-
sponds to the fact that we have a continuum of equi-
libria along the x direction.

Now, let us wonder about the two other eigenvalues.
These are the same eigenvalues as the matrix B:

B ¼ �q0ð0Þx cl0ðqmÞxsin
q0ð0Þ �l0ðqmÞqm

� �

ð8Þ

Remember that since (H1) holds, q¢(0) and l¢(qm) are
positive, then the trace of matrix B is obviously negative.
Now, we compute the determinant, we have:

detB ¼ q0ð0Þxl0ðqmÞðqm � csinÞ

This determinant is negative since c > qm=sin; then there
exists a positive real eigenvalue and unfortunately a
negative real one that generates a stable manifold of the
point nu. Now, we focus only on the stable manifold,
since the equilibrium point nu can only be reached from
this set.

Hence, we want to show that the stable eigenvector,
at nu, does not point from the cone X toward the point
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nu, which will prove that nu cannot be locally reached
from X.

Note that the matrix B is off-diagonal positive and
irreducible. Then, we apply a corollary of the Perron-
Frobenius theorem (see Appendix C), showing that the
positive eigenvectors are only associated with the
eigenvalue of largest real part (here the positive one).
Then, the stable eigenvector of matrix B is not positive
(not all its elements are positive).

From matrix B, since none of its components is zero,
straightforward calculus show that the stable eigenvec-
tor has no zero component and then, both its compo-
nents have different signs. Remind that these two
components are the first two of the stable eigenvector of
J ðnuÞ: Considering the opposite sign of the first two
components of the stable eigenvector, it is clear that this
vector does not point toward the positive cone R3

þ;� and
thus not to X (a translation of R3

þ;�Þ:
Therefore, the stable eigenvector does not point from

X to nu. Then, nu cannot be locally reached from X.
From the invariance of the closure of X by system Eq. 4,
the stable manifold of nu can not be reached from X and
no trajectory initiated in X converges toward nu.

Remember that the convergence toward nu is a nec-
essary condition for the boundedness of limt!1

R t
0

DðsÞds; hence, it cannot be bounded, and since D(.)‡0,
we have:

lim
t!þ1

Z t

0

DðsÞds ¼ þ1

h
Now, using Lemma 1, we can prove Proposition 1.

Proof Note that Lemma 1 together with Eq. 5 implies
that:

limt!þ1 zðtÞ ¼ sin
limt!þ1 xðtÞ ¼ 1

c

�

ð9Þ

Then all forward trajectories of system Eq. 4 converge
toward the set E ¼ fn 2 X; z ¼ sin; x ¼ 1=c; sing:

Now, let us consider the ‘‘reduced’’ system Eq. 4, in s,
under the constraint n 2 E:, we have:

_s ¼ ðsin � sÞlðcðsin � sÞÞ � qðsÞ
c

ð10Þ

which, using a time scale change, is equivalent to (see,
e.g., [3]):

_s ¼ cðsin � sÞlðcðsin � sÞÞ � qðsÞ ð11Þ

From the invariance of the cone X and since l(.) is an
increasing function, it is straightforward that:

gðc; sÞ ¼ cðsin � sÞlðcðsin � sÞÞ

is a decreasing function of s. Furthermore, g(c, s) is an
increasing function of c. This situation corresponds to
Fig. 1, which shows that there exists a single, positive,
equilibrium s for Eq. 11 which is globally asymptotically
stable. Note that sH increases as c increases.

Then, system Eq. 4 has a single, positive, equilibrium
denoted nH ¼ ðzH ¼ sin; xH ¼ 1=c; sHÞT: Note that the
choice of the gain c allows to choose either the value sH

or the value xH:
Now, let us come back to system Eq. 4 and consider

the _s equation, injecting the solutions z(t) and x(t) ini-
tiated at z(0) and x(0), respectively. Then, for each
couple of initial conditions (z(0), x(0)), we obtain the
following nonautonomous system:

_s ¼ Dðs; zðtÞ; xðtÞÞðsin � sÞ � qðsÞxðtÞ ð12Þ

Note that Lemma 1 implies that for each couple of
initial conditions (z(0), x(0)), the non-autonomous system
Eq. 12 is ‘‘asymptotically autonomous’’ (see Appendix D)
with limit Eq. 10. Applying a theorem on asymptotically
autonomous systems from [13, 19] (see Appendix D), we
conclude that for each couple of initial conditions (z(0),
x(0)), each forward trajectory of system Eq. 12 converges
toward the globally asymptotically stable equilibrium
point sH of the limit autonomous system Eq. 10. Thus, for
each initial state vector nð0Þ 2 X; the forward orbit of
system Eq. 4 converges asymptotically toward the point
nH ¼ ðzH ¼ sin; xH ¼ 1=c; sHÞT; which is therefore glob-
ally attractive on X.

Now, let us compute the Jacobian matrix of the
closed loop system Eq. 4 around the equilibrium point
nH in the (z, x, s)T coordinates. Remark that this matrix
is lower triangular, then, we only consider the diagonal
terms (d stands for any possible term). We have:

J H ¼
�DðnHÞ 0 0

0 �DðnHÞ 0

� � �DðnHÞ � q0ðsHÞ
c

0

B
@

1

C
A

Since q(.) is an increasing function, c is positive and
DðnHÞ ¼ lðcðsin � sHÞÞ is positive, it is straightforward

ρ(s)

g(s,

g(s,

g(s,

(s)

S0

g(s,
small
γ)

medium
γ)

g(s,γ) large
γ)

very large
γ)

ρ

S*
large very large

SinS*S*S*

γ

γ

γ

γ

γγγγ small medium

Fig. 1 Existence, unicity and stability of sI for system Eq. 11 from
the intersection of q(s) and g(s,c)

322



that nH is locally stable for system Eq. 4. Since nH is
globally attractive too, we conclude that nH is a positive,
globally asymptotically stable equilibrium point for the
closed loop system 4. h

Remark 1 Remember that the demonstration is not
based on any analytical expression for the ‘‘biological’’
functions l(.) and q(.) which is particularly important
regarding the difficulty of modeling and identification of
these functions.

Remark 2 It is important to note that the asymptotic
behavior of biomass concentration x does not depend on
parameter sin. Then, even for a time varying parameter
sin(t), biomass concentration x will asymptotically con-
verge toward 1=c; provided that for all time
c > qm=ðsinðtÞÞ:

Remark 3 Observe that the condition c > qm=sin im-
poses, for a fixed feeding substrate concentration sin, an
upper limit on the reachable biomass concentration.
This limit is independent from the analytical modeling
of the growth rate l(.), and moreover, the uptake rate
of extracellular substrate q(.) does not affect this limit
at all, which is only determined by the minimum cell
quota qm.

Numerical simulations

We consider as an example the growth of Dunaliella
tertiolecta, a green micro-algae. Then, according to [1],

the uptake and growth rates are (for all the following
simulations):

qðsÞ ¼ qms
k þ s

and lðqÞ ¼ max 0; lm 1� qm

q

� �� �

Parameters values and units are to be found in the
nomenclature (Appendix A).

Simple noisy simulation

We first show in Fig. 2 a simple noisy numerical simu-
lation of the controlled process. The parameter sin is
assumed to be equal to 20\simg:L�1: In addition, we
corrupt the output y=q(q)x with a relative white noise
of 30% amplitude.

The obtained results agree with the predicted theo-
retical behavior of the controlled plant (see Proposition
1). From the biological point of view, the control law
Eq. 3 drives the state variables toward the desired
equilibrium determined by the value of the feedback
gain c; indeed, since c=0.1.10�6L.c�1, biomass concen-
tration reaches asymptotically xH ¼ c�1 ¼ 10:106 �
c:L�1. Furthermore, note that despite the high level of
noise on the output (30%) perturbations are almost
completely filtered and do not really affect the state
variables.

Controlled process facing varying sin

To illustrate the fact that time variations of influent
substrate concentration sin do not change the biomass
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loop system; constant sin; 30%
relative white noise on y
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concentration x behavior, we consider a piecewise con-
stant time-dependent sin that moves from 40 lg.L�1 to
2.5 lg.L�1 and back to 40 lg.L�1 each half day. Results
are shown in Fig. 3. We check that, despite fast and
large sin variations, the behavior of the variable x re-
mains almost the same than with fixed sin: it converges
toward its equilibrium xH ¼ 1=c:

From the controllers point of view, note that the
only required knowledge for control is the output y
and the feedback gain c. It ensures (provided that
c > qm= ½mintðsinðtÞÞ�) a very simple behavior for bio-
mass concentration x that goes asymptotically toward
1/c like a first order, independently from sin(t), even
for quick and/or large variations. Of course, since
model Eq. 1 is not controllable in the usual sense [15],
some other state variables may change in time as x
remains at equilibrium xH (here, s does vary; so does q
but its variations remain so small that they do not
appear on the graph).

Controlled process facing periodic algae stress

We show in Fig.5 a comparison between open and
closed loop chemostats facing a periodic ‘‘algae stress’’
that corresponds to a fall of the algae growth rate. This
problem is frequently encountered while carrying out
chemostat experiments: the medium feeding the vessel
(particularly with substrate concentration sin but with a
blend of nutrient required for algae growth too) has to
be regularly changed (usually each week). Even if one
tries to use medias which are very similar, there always
remain little differences in the composition, the pH or
the temperature between the new medium and the pre-
viously used one. These differences may cause what is
referred to as algae stress.

We choose to model this phenomenon assuming that
the cells growth rate is time dependent such that:

lð:Þ ¼ DðtÞlðqÞ
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Fig. 3 Simulation of the closed
loop system; varying sin(t)
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l(q) being as previously defined and D(t) following the
periodic graph of period 7 days depicted in Fig. 4. The
first 5.5 days, the algae population is in good conditions
for growth; at day 5.5, the feeding medium is changed;
the differences between this medium and the previous
one lead to a sudden fall (from 100% to 10%) of the
algae growth rate amplitude that lasts for half a day; this
features algae stress; during the last day of the period,
the algae population growth goes back to normal as the
algae adapt themselves to the new medium. D(t) is de-
fined modulo 7 days.

For the open loop process simulation, we choose the
dilution D ¼ DH; the required value so that biomass
concentration x would reach xH ¼ 10:106c:L�1 if the
algae were not stressed, while for the closed loop process
the dilution D(.) follows law Eq. 3. Results are presented
in Fig.5.

It is worth noting that the open loop strategy seems
dangerous for the culture. Note that in less than 3 weeks
(while experiments usually lasts for 2 or 3 months), the
algae population is almost completely removed from the
chemostat, which is of no more use from this time. This
leads to the restart of the experiment. On the contrary,
the controlled chemostat drives the algae concentration
to its desired value xH: Despite the algae stress, biomass
concentration dynamics still follows the predicted
behavior. Indeed, this interesting property (biomass
concentration x can only go closer to xH as time goes
forward) holds due to Eq. 5 and remains true as long as
biomass population growth stays positive, even if it is
time varying [see 10].

Conclusions

In this contribution, we have proposed a nonlinear
output feedback controller able to globally stabilize

variable yield growth models in the chemostat. The
hypotheses assumed on the model are of qualitative and
of structural type, therefore, our approach is suitable for
a wide class of variable yield models for micro-organ-
isms growth in continuous bioreactors. Some simula-
tions for Dunaliella tertiolecta growth with realistic
parameters together with realistic experimental scenarios
have been performed and have shown the relevance of
our approach. Indeed, in each of the considered case
(noisy output, time-varying sin or periodic algae stress)
the controller prevents the culture from washout and
drives biomass concentration to a chosen steady-state
value.

Acknowledgements We would like to thank the ‘‘Action Inter
EPST Bioinformatique’’ for its financial support (SEMPO II
Project).

A Nomenclature

Parameter values and units are according to [1] (for all
the simulations):

B Barbalat’s lemma

Lemma 2 (Barbalat, [6]) Let / : R! R be a uni-
formly continuous function on [0, ¥). Suppose that
limt!þ1

R t
0 /ðtÞdt exists and is finite. Then:

lim
t!þ1

/ðtÞ ¼ 0

C Corollary of the Perron-Frobenius theorem

Definition 1, (Metzler matrix, [8]) A is a Metzler
matrix iff all its off-diagonal elements are non-negative.

Corollary 1, (Perron-Frobenius, [17]) Let A be an
irreducible Metzler matrix. Then, k M, the eigenvalue of A
of largest real part is real, and the elements of its asso-
ciated eigenvector vM are positive. Moreover, any eigen-
vector of A with non-negative elements belongs to span
{vM}.

Remark 4 Actually, Smith proves more in his corol-
lary (see [17]), but the remaining results are of no use for
our purpose.

D Asymptotically autonomous systems

Definition 2 [13, 19] Consider the systems:

_x ¼ f ðt; xÞ ð13Þ

_y ¼ gðyÞ ð14Þ
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with f(x,t) and g(x) continuous in x and t and locally
Lipschitz in x on an open set h � R

n: System Eq. 13 is
asymptotically autonomous with limit system Eq. 14 if for
all compact K � h :

lim
t!þ1

f ðt; xÞ ¼ gðxÞ; 8x 2 K

Theorem 1 [13, 19] Consider the asymptotically
autonomous system Eq. 13 with limit system Eq. 14. Let e
be a locally asymptotically stable equilibrium of Eq. 14
and x the x -limit set of a bounded solution x(t,x0) of Eq.
13. If x contains a point y0 such that the forward trajec-
tory y (t,y0) of Eq. 14 converges to e, then:

lim
t!þ1

xðtÞ ¼ e

Remark 5 Observe that in our case, each forward
trajectory of the limit system Eq. 11 initiated in E:
converges toward sH; and each trajectory of the
asymptotically autonomous system Eq. 12 converges to
E: Then, each trajectory of the asymptotically autono-
mous system Eq. 12 converges to sH:
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