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Abstract In this paper, we build bounded error observ-
ers for a common class of partially known bioreactor
models. The main idea is to construct hybrid bounded
observers ‘“‘“between” high gain observer, which has an
adjustable convergence rate but requires perfect knowl-
edge of the model, and asymptotic observer which is
very robust towards uncertainty but has a fixed con-
vergence rate. An hybrid bounded error observer which
reconstructs the two state variables is constructed con-
sidering two steps: first step is similar to a high gain
observer meaning that fast convergence rate but error
depending on the knowledge of the model are obtained;
second step is a switch to an observer similar to the
asymptotic one meaning that fixed convergence rate
towards an error as small as desired is obtained. Thus, a
better convergence rate of estimated variables than the
classical asymptotic observer is obtained.

Keywords Uncertainty modeling -
Nonlinear observers - Bioreactor models

Introduction

The bioreactor is a continuous device where microor-
ganisms consume nutrient to grow. This nutrient is
provided by a constant inflow ¢, and a blend of nutrient
and of microorganisms is retrieved in the outflow ¢ [1].
Generally, no reliable biological sensor for each variable
of a biological system exist. In this context, building
observers is very interesting in order to estimate con-
centration of the main chemical or biological species in
the bioreactor.

Firstly, let us recall the classical observer definition.
Consider the dynamical system:
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x=F(x,u),
y = h(x),
withxeR'ueR" m< n,yeR

An observer for Eq. 1 is the following dynamical
system

(1)

x=F(u,y),

whose task is state estimation. It is expected to provide
an estimated state ¥ of x. One usually requires at least
that || * — x || goes to zero when ¢ tends to oo ; in some
cases, exponential convergence is also required [12].

Often it happens that some functions of the state
variables are partially known in the original model [9].
Then, we define a bounded error observer giving X with
|| X —x || bounded by a ‘“reasonable” constant; “‘rea-
sonable” meaning that it is small enough to have a good
approximation of the unmeasured states.

In all the paper, we always consider the following
class of bioreactor models [1]:

x = p(s)x —dx 5

§ = —ap(s)x + dsin — ds, @)
where d=g¢/V is the dilution rate with V' the volume of
the bioreactor and ¢ the constant flow passing through
the bioreactor, o is the growth yield, s;, is the input
substrate concentration, p(s) is the specific growth rate
per unit of biomass. Let us notice that the inputs d and
sin are fixed (see Remark 3.5).

Different models exist in the literature; for example,
the Monod specific function p(s)=,,s/(k+s) is often
used (u,, maximum growth rate and k half saturation
constant).

Moreover, we assume that the output is:

y==s.

The goal of the paper is to adapt the observer design
to the available knowledge of the growth rate u(s). First,
we recall classical observers built for bioreactor model 2.
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When the growth rate p(s) is perfectly known, a high
gain observer which has an adjustable convergence rate
is recalled; if p(s) is unknown, then an asymptotic ob-
server which has a fixed convergence rate is considered.

Then an intermediate approach is proposed to deal
with partial knowledge of u(s). A bound on the error
depending on the knowledge we have on the model is
obtained: it can be adjusted in some way as in [4]. These
hybrid observers evolve between two limit cases: high
gain observer and asymptotic one in the same way than
the asymptotic-Kalman observer proposed by [3].

Finally, we illustrate all the results by simulation
studies.

Classical observers for the bioreactor model
The high gain observer

First, we recall briefly the notion of high gain observer
for general system. Consider the differential system de-
fined on a domain Q C R” :

i

where f: R" — R” and #: R" — R are smooth. More-
over, if we assume that Hypotheses 2.1 hold [5], we can
design high gain observers.

Hypotheses 21

(3)

1. The system 2 is observable. rank (dy,dy,...,
dy(nfl)) = n.

2. The map ®© defined such that:
o:R"— R"

Y=o

y=z
X .
n—l)'

b =Zn

is a diffeomorphism of Q C R" on ®(Q).
Under the hypotheses 2, the system 3 becomes:

21 V)
22 zZ3
z= = = F(2)
(4)
Zy ¢(2)
y =12

3. @ can be extended to R" in a map € global Lipschitz
on R".

Notice that for biological systems, these hypotheses
are often verified [2]. Then we obtain the high gain ob-
server definition as follows.

Proposition 22 For 0 large enough, the following differ-
ential system 5 is an exponential observer for 3

t=F@E) +5'C'(y-C2), (5)
with S the solution of the equation 6S + A'S + SA = C'C,
whered € M ,(R) with a;;+1=1 and a;;=0 for all
i,j=1,..,n—land C=(10...0)

S = (s;) € M ,(R) can be analytically computed

(D) (i+j—-2)!
Sij = — - - .
N (R )]
In particular, assuming that the specific growth rate p(s)

is given by the “Monod function™, we get the differential
standard equations for the model (2):

§ = —afw — ds + dsin

v HwSX

X = —dx (6)
y=:s

We obtain the following high gain observer for the
system 6 applying Proposition 22 [5]:

§ = "2t 4 (s — §) — 20(3 — »)
f =t di ot (20 g+ 0 S 5 - ).

s+k (k+3)s

Simulations

We make two simulations: one when the model is well
known and one when the model is partially known (i.e.,
we take fi(s) instead of p(s) in the high gain observer
(Fig. 1)).

We take for parameters values s;, =50, d=0.1, a=1,
6=3 and for initial conditions §(0) = 10,%(0) = 20. In
the model, we choose u(s) =s/(140 +s) and when the
model is not well known ji(s) = 0.8s/(140 + ).
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Fig. 1 In dash line the high gain observer when the growth rate is
partially known (bold) and when the model is perfectly known, in
plain line the model



In the two following simulations, 6 is fixed and s is
measured. In dash bold line, we can see the high gain
observer when the growth rate is partially known, and in
dash line when the model is perfectly known, in plain
line the model.

A very strong peak (giving negative values for the
observed biomass) appears at the beginning of the sim-
ulations. The large value of the gain 6 and the large
initial output error explain this phenomenon. Moreover,
to obtain this exponential observer, the model must be
perfectly known: we can see that the observer converges
towards the model rapidly. If we do not know the model
(n(s) is replaced by ji(s) in the observer equation), we
can see that the error does not go to zero. Then a better
bound for this error must be obtained.

The asymptotic observer

The main idea of asymptotic observer is to eliminate the
unknown function and then obtain an error between
estimated and modeled variables equal to zero.
Consider the dynamical system 2 and take z=a x +s.
Assume that s is exactly measured and that p(s) is un-
known [1].
The dynamics of z is given by the following equation:

(7)

z= dSin —dz.
An asymptotic observer for Eq. 7 is given by
Z = dsi, — dz.

If we consider the error e =z — z, we can immediately
conclude that é = —de that is to say the asymptotic
observer converges towards z with a constant con-
vergence rate e .

Moreover, x can be reconstructed considering x =
(Z—1s)/o.

The advantage of this kind of observer is its robust-
ness opposed to high gain observer but its convergence
rate is fixed by the model.

Bounded error observers

We define a bounded error observer as a dynamical
system such that we do not require the error between the
estimated and the modeled variables to converge to zero
anymore but to be bounded by a “‘reasonable” constant;
“reasonable” meaning that this constant is small enough
with respect to measurement errors. Moreover, this
bound is zero if the model is perfectly known.

Definition 31 A4 bounded error observer of Eq. 1 will
be a dynamical system

x=F(%u,y) with limsup|lx —x|| <m
t—o0

m a positive real constant depending on the knowledge of F
such that m=0 if F is perfectly known.
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For the class of bioreactor model we consider in this
paper, we assume that p (s) is partially known (i.e., 1
(0)=0), fi(s) is perfectly known (i.e., ji(s) is a Monod
function for example). Then the knowledge of u (s) is
defined such that:

|i(s) — u(s)] < a,

with a a positive real constant. In this case, m given in
definition 3.1 depends on a.

One-dimensional bounded error observer

In this section, we assume that s is measured exactly.
Then we only reconstruct the biomass variable x. This is
what we define as a one-dimensional bounded error
observer.

Consider the system 2 and make the change of vari-
able (s,x) = (s,z) with

z = ox + 0Os,

where 0 is a fixed real constant. The dynamics of z is
given by:

z=(1—0)u(s)ax — dz + Odsi, (8)

Proposition 32 The system
2= (1—-0)u(s)ox — dz + Odsin

is a bounded error observer of 8 whereji(s) is chosen such
as|fu(s) — u(s)| < a witha € R** and 0 is a gain (6 > 1).
Proof See [7].

This bounded observer has a positive static error
depending on 0. Indeed, this error is equal to zero if 6 =1
and is fixed if 0 is large.

Then to improve this observer, a good idea seems to
choose 0 time dependent (large at the beginning of the
integration and equal to 1 at the end). Thus, this
bounded observer can be seen as a switch between a kind
of high gain observer and a kind of asymptotic one.

A proof of convergence when 0 is time dependent can
be found in [10, 11].

Simulations

We take for parameters values: s;, =50, d=0.1, and the
difference a between p(s) and fi(s) equal to 0.2. More-
over, we take =1, 6=2 and 0 time dependent (sig-
moidal or exponential) (see Figs. 2 and 3).

We can see in this simulation that a better conver-
gence rate is obtained by taking a bounded observer
with 0 time dependent rather than with an asymptotic
observer (i.e., 6=1). Moreover, the bounded observer
with 0 time dependent converges towards 0 whereas the
bounded observer with 6 =3 converges towards a fixed
bound.
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Fig. 2 In dash line the one-dimensional bounded observer for 6=1
and 6=3 , in dash dot line for 6 time dependent, in plain line the
model

Comments

The main problem of this bounded observer is the dif-
ficulty to adjust the gain to have a better convergence
rate: the time of the switch between a large gain and a
gain equal to 1 is hard to obtain. Indeed, as we don’t
reconstruct the measured variable we cannot use the
output error (i.e the difference between the measured
and the estimated state) as a control parameter.

To avoid this problem, we construct a two-dimen-
sional hybrid bounded error observer (i.e., the measured
variable is reconstructed) with the following view: when
the error between the measured and the observed vari-
able is large, a kind of high gain observer is constructed;
when the error is small enough, a kind of asymptotic
observer is built.
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Fig. 3 0 values and biomass error for 6 =1 in plain line, for 6=3 in
dash line, for 0 time dependent in dotted line and in dash dotted line

Two-dimensional hybrid bounded error observer

In this section, we assume that s is measured. Then the
biomass variable x and the substrate variable s are
reconstructed. This is what we define as a two-dimen-
sional hybrid bounded error observer.

We consider the system 2. We make the change of
variables (s, x) > (s, z) with z=a x+s. The new
dynamical system is obtained as follows:

§=—A(s)(z—s) —ds +dsin + (1 — p)(z — )
—dz + dsi,

z

©)

We assume that Hypotheses 2.1 and in [6] are verified.
Proposition 33 The dynamical system

§=—(s)(z2 —58) — ds +dsin — ki 0(5 — s) (10
Z= —dz + dsyy — k0% (5 — 5)
with 9 a positive fixed gain , k; and k, fixed gains

verifying 11, ky depends on the errors —s such that
ky=0 whens — s (e a fixed small constant), is a bounded
error observer for Eq. 9 whereju(s) is chosen such that:
|i(s) — u(s)| < a with a € R™.

To prove the proposition, we need the following
lemma.

Lemma 34 [t exists a constant € >0, such that s(0)>¢
implies s(t)> € and w(s(t)) > we) for all t.

The proof is easy using standard techniques for
invariant sets [8]. Thanks to this lemma, we can always
choose € such that ji(s) > ji(e) = /.

Another useful property of the system 2 is the
boundedness of s and x.

Proof The ideas are the same as in [6] for the high gain
observer. The main steps of the proof are:

First step (kind of high gain observer)

— Consider the error e between modeled and estimated
variables.

— Consider the change of variable e; = A, e.

— Prove that the positive definite function V = ¢! Se; is
bounded.

— Then come back to the initial variable e and prove
that e is bounded. More precisely, the limit of the
bound when ¢ tends to e and 0 is fixed (large) does not
depend on 0.

Second step (kind of asymptotic observer)

— Switch to the asymptotic observer taking k,=0.

— Inject e.(¢) in é&,.

— Prove that e, is as small as we want with a fixed
convergence rate.

Third step (conclusion)
— Conclude that e is as small as we want.

In the following, we detail these steps.



First step

— Consider e the error in s, and z such that

(es =5— s>

e= . .

e,=2—z

It verifies the following equation:

(—k0 —als) ils)—d 0

e_(—k292 o )T\ 0 —a)f

. 1

) = )= o )

1
— Taking e; = A;'e = <ies> with Ag' = <g (;)2>’

2z

we obtain the following equation for e;:

_k292 (;M(S) Age,

(9 e

ne-9(o )

Jr
>
< |
—
=
—~
t”
~
|
=

0 0
it exists a real constant A>0, a vector K € R*,K' =
(k1 k») and a symmetric, positive definite 2 X 2 matrix S
only depending on the bounds of ji(s) such that:

Consider the matrix 4 = (0 —,u(s)>, C=(1 0). Then

S(4—KC)+ (4 —KC)'S < —ild. (11)

A proof of this lemma can be found in [6]. We can notice
that A—KC is stable, meaning k; >0 and k, <0. With
matrix notation, we obtain the equation for e;: €] =

0(4 — KC)ey + Bey + (u(s) — iu(s))(z—s) g with B =
i(s)—d 0 <0>

0 —d
— Consider the positive definite function

1 1
V=3 ¢iSer = el

We want to prove that } is bounded. We have:

. A
V<= 0Zlleills + N(S)-N(B)-llea]l5
1 .
+gllenllo N ()-lu(s) = fls) |z — s

where N(S), N(B) are the induced matrix norm corre-
sponding to the Euclidean one

N(M) = max{V/, . € Spect(M*M)}
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We remark that in our case N(B) is equal to ji(s) —d
which is between fi(e) — d and j,,, — d using lemma 3.4.
Moreover, since the states variables are bounded:

0axmaxN (S)

. 04
< (= 5+ NENE el + 22 e

As all the norms are equivalent in R”, we have

Tilleills < llerlls < vallenlls.

Hence:
V<2IV + 20/,

with Ty =3 (=%+N(S).N(B)) and I =1y, 7“”)‘““‘51\/“) :
Thus:
v dvV
LA LA STV N Y
27 dr ! ?

Using the Gronwall lemma:

W<<\/W+ll:—?>er"—ll:—?.

We easily see that for + — oo, v/V is bounded.

— We come back to the initial variable ¢ and we con-
clude on the convergence. We prove by a simple
computation that

2 2

m
Fete< V< Fete,

with m, M positive real constants chosen such that

m2
Aa'SAg — Fld positive
M? .
A;lSAg - Fld negative.
Finally, we conclude:
M 021-2 92F2
! et Z o2 el
ee<<m e'(0)e(0) + T )e T

When ¢ — oo, we can easily see that ||e|| is bounded.
More precisely, the limit of the bound:

(12)

. (M 0°Ty\ ., 07T, 0°T 5

m t 1t _ - __ =
tll>oo<m ¢/(0)e(0) + I )e I I'
does not depend on 6 when we focus on the expressions

of Fl and Fz (le,% ~ g) .

Second step
— We switch to an asymptotic observer like taking k, =0
when |§ — s| stays during some time less or equal to &

(¢ a fixed small constant). We obtain the new bounded
error observer:

§=—u(s)(2 —8) — d5 + dsin — k1 0(5 — s).

1
E— —dz +dsi, (13)
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The equation of the error becomes:

. (—k19 —ﬂ(S)) (—ﬂ(S) -d 0 )
e= e+ e
0 0 0 —d
) 1

#06) = i) =) o)
— Thus, solving the second equation and injecting it in

the first one, we obtain:
é, = —ki0es — fi(s)e-(0)e ™

+ (ils) — d)es + (u(s) — i(s))(z — )

e. =e.(0)e ™

This observer is a kind of asymptotic one since conver-

gence rate of e. is fixed by the model and is equal to e~

moreover, e. goes asymptotically to zero.
— Let us consider |eg|. It dynamics is given by

les| = sgn(ey)és.
That is:
les| = sgn(ey) (u(s) — u(s))(z — s)
+ (fu(s) — d — k1 0)|es| — sgn(ey)ju(s)e-(0)e ™.

But sgn(e;) < 1 and for all s, ji(s) — d — k0 for 0 fixed
(large) and k; > 0; thus, we obtain:

|eS‘ S A0Xmax + (lamax —d - k19)|eS| + :amax‘ez(oﬂe_dt'

Hence, by Gronwall lemma:

i o0 A
les| <(les(0)] + M)e(umdho)t

max d—k0
A0Xmax (fmax—d—hk10)¢
+,\—e max
_Hmax+d+k10 (14)
_/:Lmax + d + kl 0
T AxXmax

_ﬂmax +d+ kl()

The bound of |ey| 14 depends on k; 6 meaning that as k0
increases, the bound decreases. Thus, the error ¢, is as
small as we want with a fixed convergence rate of order
eidt/(_ﬂmax +d+ k10>

Third step

— Finally, the global error e is as small as we want (i.e.,
e tends to 0 and ¢, is as small as we want) with a large
convergence rate at the beginning of the integration
and with a fixed convergence rate at the end.

Before the switch between the two different observers,
one can see that the error of the first converges, when
t — oo, towards a bound independent of the gain 6 12.

To obtain a faster convergence rate than the asymp-
totic one, the initial error on the unmeasured variable

must be bigger than the limit error on this variable (re-
lated to 12). Under this condition, the first step, which
can be seen as a high gain observer, goes rapidly towards
the bound 12; then, when the output error (i.e the dif-
ference between the measured and the observed variable)
is small enough, we switch to the asymptotic like ob-
server. Let us remark that the switch takes place rapidly
because the output error reaches a low value very fast.
One can notice that the final error bound 14 depend
on 0, that is to say if 0 is large this bound goes to zero,
and we go as near as we want: it is the idea of ““practical
observer” [4].
Remark 35 A/l proofs and simulations have been done for

fixed d and s;,. However, it is easy to see that these proofs

are valid for s(t) (ie., eliminated in error dynamic
equations) and d(t) > dmin > 0. For example, in this case,
bound 14 is valid with dn;, instead of d.

Simulations

We take for parameters values: s;, =50, d=0.1, and the
difference a between p(s) and fi(s) equal to 0.2. More-
over, we choose k, = —1.5 when the absolute value error
between § and s is bigger than 0.1 else, we take k,=0.
The other gains are 6=3 and k;=5.

We take for initial conditions $(0) = 10, 2(0) = 30
that is to say x(0) = 20 (Fig. 4).

The peak which appears at the beginning of the
simulations provides non positive observed variables;
this is the same phenomenon put into relief in high gain
observer when gain and output error are large (Fig. 5).

We see that hybrid observer converges faster than
asymptotic one; indeed, if we choose s —§ = 0.1 (see the
first part of Figure 5), hybrid observer reaches this
bound for ¢ = 10, asymptotic observer for 1 = 20 and

Substrate

Time

Fig. 4 In dash line the hybrid bounded observer, in dash-dotted line
the asymptotic one, in plain line the model



Substrate error
Biomass error

Time

Fig. 5 In plain line the biomass error and the substrate error of the
asymptotic observer; in dash line of the hybrid bounded observer

after this bound hybrid bounded observer is always be-
low asymptotic one (see the second part of Fig. 4).

Conclusion

The purpose of bounded observers is to provide a tool
allowing the state variable estimation when the model is
poorly known, that is usually the case in biology.

We build observers reconstructing variables with a
reasonable error. The convergence rate of one-dimen-
sional observer cannot be improved because we cannot
consider the output error as a control parameter. Thus,
we build a two-dimensional observer and we obtain a
faster convergence rate than the asymptotic observer if
the initial error is large enough.

A way to improve the convergence seems to build a
more adaptive version of the hybrid observer taking a
smooth gain k, (depending on a differential equation for
example). Some simulations studies seem to support this
idea [11].

In this paper, we only consider two dimensional
systems, a generalization to higher dynamical system is
evidently possible. For example, we can show that for
the 4-dimensional system in the canonical form, defined
by the following equations, an hybrid observer can be
built. Consider the system:

X1 = fi(x1,x2)

X2 = fo(x1,x2,x3)

)'63:ﬁ(x,z)—i-(]%(x,z)—fg(x,z)) (15)
z=—-Kz+4+u
Yy =X,

with x, ERi=1,2,3, z€ R and K,u € R" fixed con-
stants, and z defined such that:
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4 1
z= E cixi & x4 =—(z — c1x] — X2 — €3X3),

- Cy4

i=1

with ¢; positive fixed constants.
~ We assume that f3(x,z) is partially known and that
f3(x,z) is defined such that:

|f3(x,2) —]A%(x,z)‘ <a with a>0.
An hybrid observer can be built:

X1 = fi(x1, %) — k10 —x1)

X2 = folkr,F2,%3) — ka0 (%1 — x1)

X3 = f3(f1, %0, %3,2) — k07 (61 — xp)
é: —Kz+u— k494()€1 —xl)

Yy =X.

The main hypotheses are that the error of the model is in
the penultimate unmeasured variables (x3) and the last
variable z is a linear combination of the state variables
verifying a linear differential equation. There are also
more technical hypotheses on the f; similar to [4].

To prove the convergence towards an error as small
as we want, the same steps detailed before can be used.

First, in the hybrid bounded observer, we take k4 #
0, we have a kind of high gain observer with a partially
known model; then, bounded observer converges to-
wards a fixed bound with a large convergence rate.

Moreover we take k;=0 and we have a kind of
high gain observer with a bounded error on the pen-
ultimate unmeasured variable (x3) and an asymptotic
observer for the last state (z); we can prove using the
results of Farza et al. [4] that the hybrid observer
converges towards an error as small as we want with a
fixed convergence rate (because of the asymptotic
observer).

We obtain a better convergence rate than the
asymptotic observer. More details can be found in [11].
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