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Abstract

This paper deals with the problem of feedback control of competition between two species with one
substrate in the chemostat with nonmonotone growth functions. Without control, the generic behavior
is competitive exclusion. The aim of this paper is to find a feedback control of the dilution rate,
depending only on the total biomass, such that coexistence holds. We obtain a sufficient condition
for the global asymptotic stability of a unique equilibrium point in the positive orthant for a three-
dimensional differential system which arises from this controlled competition model. This paper
generalizes the results obtained by De Leenheer and Smith in (J. Math. Biol. 46 (2003) 48).
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1. Introduction

The model presented in this paper concerns the competition and coexistence of two
species in a chemostat with a single substrate. Biological motivation for chemostat models
can be found if14]. Competition theory for chemostat models predicts thaptineciple
of competitive exclusioholds, i.e., at most one species survives and the other one tends to
extinction (se¢3,14]).

In several chemostat models, control theory (see E.§,16] for a general reference)
obtains coexistence between species. While substrate and species are the state variables, the
dilution rate and input substrate concentration can be used either or both of them as control
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variables.Open-loop controle.g., periodic input) an@feedback controare two control
laws that give coexistence results. In this paper we are interested in the last control law.

De Leenheer and Smiff7] studied the linear feedback control for a well-known model
of competition between two species and one substrate in a chemostat with monotone uptake
functions, considering the dilution rate as a feedback control variable and keeping the input
substrate concentration at a fixed value.

However, as it has been pointed out by several works (see[2,§,15), the use of
monotone uptake functions cannot be valid for substrates which are growth limiting at low
concentrations but are inhibitory for the species at higher concentrations. Common examples
of those cases are the inhibitionMitrobacter winogradskyandNitrosomady nitrite and
ammonia, respectively, (s¢2]), the inhibition ofPseudomonas putidandThricosporon
cutaneunby phenol (se¢6,15]) and the inhibition ofCandida utilisby ethanol (sefl]).

In the field of bioprocess, nonmonotone models are also widely used. The most common
example is the so-called Haldane model, employed in the methanogenesis step of anaerobic
digestion (see e.g4]).

The aim of the work presented in this paper is to extend the results obtaifiédtm
nonmonotone uptake functions. We have obtained sufficient conditions for the coexistence
of two species; to prove our main result, we will proceed in analody]ltdHowever, non-
monotony properties of uptake functions make the study more complex than the monotone
case, mainly because there are several types of nonlinearities to consider.

This paper is organized as follows: in Section 2 we have compiled some basic facts
concerning the chemostat model with nonmonotone growth functions. In Section 3 we
provide an exposition of the feedback control law and show the main result of coexistence.
Section 4 presents some preliminary results related to the asymptotic behavior of the model
with and without competition. The proof of the main result and some extensions are stated
in Section 5; the robustness of the model is studied in Section 6.

2. Model of competition in the chemostat

The chemostat model with competitifitd] is described by the differential equations:
. X1, X2
§ = D(sin —5) — — f1(s) — — fa(s),
n y2 L

1 =x1(f1(s) = D), 1)

x2 = x2(f2(s) — D).
In model (1),s denotes the concentration of substrate at tirmed.x; denotes the biomass
density of theith population of microorganisms at tinbe f; (s) represents the per capita
growth rate of nutrient of théth population and sg; is a growth yield constanD) andsjn
denote, respectively, the dilution rate of the chemostat and the concentration of the input

substrate.
We state the general assumptionsfp = 1, 2):

(F1). f; : Ry — R4 and is%™.
(F2). f;(0)=0.
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(F3). f; is unimodal (i.e., there exists a numbgr> 0 such thatf; is increasing fos e
[0, s7) and decreasing for> s) and moreover lim., ; fi(t) =c¢; >0.
(F4). There is* € (0, sin) such thatfi(s*) = f2(s*) = D*; moreover,

{fl(S) > fa(s) if s € (0,5%),
f1(s) < fa(s) if s € (s*, +00).

Assumptions (F1)—(F2) state the general properties of population growth models; (F3)
reflects the inhibition of growth of species andx, for high concentrations of substrate
An important function with properties (F1)—(F3) often found in the bioprocess literature
is the Haldane function
s

O = Kev a2k

@
whereu*, KsandK; are positive constants. Biological motivations for models with Haldane
function can be found if2].

Other examples are the functions proposed by Sokol and Howdlbin

K1s £ols) K1s
-V . o> §S)= —F—%-»
Ko + 52 2 K> + sKs
with K1, K» > 0 andK3 > 1.

Assumption (F4) involves a geometrical property on the graplfs ahd f»; this implies
several results about asymptotic behavior of solutions of (1) as we will see later on.

f1(s) =

Remark 1. Clearly, f5(s*) > f(s*). Moreover, we have three possibilities for functions
/1 and f> satisfying (F1)—(F4), depending on the relative order of the intersection oint
and the maximum pointg' ands;. A graphical representation of all these cases is given in
Figs. 1-3

*
s*s7 s}

Fig. 1. Graph off1 and f>. Case (a);f5(s*) > f{(s*) >0, that is equivalent te* < min{sj, s3}.
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Fig. 2. Graph off1 and f>. Case (b)if; (s*) <0< f5(s*), that is equivalent te] < s* <s3.

A

Sh sy s

Fig. 3. Graph off1 and f>. Case (c)if1(s*) < f5(s*) <0, that is equivalent to* > max(sj, s5}.

This model has been studied 5] for nspecies. Next, we consider its main result tailored
for n = 2 and functions that verify (F1)—(F4).

If D # D*, there exist uniquely two defined positive real numbgrandy; such that
N, << +oo(i=1,2)and

{ﬁ(s)<D it séln, wl,
ﬁ(S))D |f S € [V]i,,ul'].
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Withoutloss of generality we will suppose that nfay, i»} < sin. Other cases can be studied
similarly.

The results irff6] can be summarized coupling the relative order of numbpets?, s5}
stated in Remark 1 and>, D*}:

Proposition 1 (Butler and Wolkowici6]). With the exception of a set of initial conditions
of Lebesgue measure zeadl solutions of(1) are initial condition dependent and satisfy
If D < D* or D > D* ands™* > max{s], s3}:
t_'jTOO (s(1), x1(2), x2(2)) = (11, y1lsin — 111, 0)

or
f—llTOO (S(t)v Xl([), XZ(I)) = (Sins 07 O)

If D> D* ands] <s* <s3:
Jim (5@, x2(0), x2(1)) = (11, yalsin = 111, 0),
Jim (s(0), x1(0), x2(1)) = (1, 0, yalsin — 12])
or
Jim (@), x2(0), x2(1)) = (5in, 0, 0).
If D> D* ands*™ < min{sy, s5}:
im (@), xa(0), x2(1)) = (112, O, y2lsin — n2])

or
t—llTOO (S(t)7 xl(t)s x2(f)) = (Sin, 07 O)

Note that Proposition 1 is a result qualitatively different from the model with functfpns
strictly increasing: the novelty is that extinction of the two species can be expected because
(sin, 0, 0) is a locally asymptotically stable solution (see €/,14] for details).

In the remainder of this paper we assume that~ y». In the sequebmin, ymax denote
min{y1, y2} and maxy1, y2}, respectively.

3. The uniform persistence in a control setting

Until now, we have used the term coexistence as the survival of the two species. Hence-
forth, we will use the concepts gersistencenduniform persistencéVe recall the defi-
nitions given by Butler et al. ifb]:

Definition 1. A component;(¢) of a given ODE system is said to be persistent if for any
x;(0) > 0 it follows thatx; (t) > 0 for all t > 0 and lim inf,_, ; - x; (¢) > 0.

If there existsd > 0 independent ok; (0) such that component () is persistent and
lim inf;_ 4o x; (t) > 9, thenx; (¢) is uniformly persistent.
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Uniform persistence of the species is usually observed as the existence of a globally
attracting periodic solution or a globally asymptotically stable solution. As we have seen in
Proposition 1, persistence of two species is not possible in system (1).

3.1. The feedback control problem

In several works (see e.§14]), uniform persistence of competition models in chemostat
has been obtained considering the inggtor the dilution rateD as periodic functions.
In this paper we will follow another approach, using control theory and feedback control
with dilution rateD. Our goal is to obtain sufficient conditions for uniform persistence
considering the following hypotheses:

Hypothesis 1(Control Hypothesis Dilution rate D is the feedback control variable

Hypothesis 2(Output Hypothesjs The only output available is
y = X1+ X2.

Output hypothesis is considered because in several cases, technical difficulties do not
allow to measurer; andx, independently and it is necessary to consider total biomass.
For example, the measurement is done often by photometric methodgl §esnd the
references given there) that do not allow to distinguish between the two species.

We define the feedback control lafw: [Ri — Ry by

D(x1, x2) = g(x1 + x2). 3
We also make the following assumptions on the function

(G1). g : Ry — R, is %' and globally Lipschitz.
(G2). g(0) € [0, fi(sin)), gis strictly increasing and there és > 0 such thag (s.) = D*.

ReplacingD by the feedback control law (3), system (1) becomes

. X1 X2
s =g(x1+ x2)(sin — ) — — f1(s) — — fa(s),
y1 Y2

1= x1(f1(s) — g(x1 + x2)), )
X2 =x2(f2(s) — g(x1 + x2)).

Remark 2. Nonnegativity of functiong is supposed because dilution rddecannot be
negative. Assumption (G1) ensures the existence and uniqueness of the initial value problem
and (G2) implies the existence of a new critical point.

3.2. Choice of the control

Our goal is to obtain sufficient conditions on the functgpand its relations withf; and
f2 to have existence and global asymptotic stability of the interior critical point.
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First, let us define the following equations that will be used to study the asymptotic
behavior of system (4):

f1(s) — g(yilsin — s1) =0, (5)
f2(s) — g(y2lsin — s) =0. (6)

We will make the assumptions

(Hl)- & (ymaxlsin — s*]) > D* > & (yminlsin — s*].
(H2). Egs. (5) and (6) have one positive solution and 2, respectively. Moreover,
if y1 > y2 we have thatl; € (s*, sin) andAz € (0, s*).

(H3). yming'(x1+x2) > — f| (sm ~0 2) for all (x1, x2) € 0,
Yooy

(H4)- )’ming/(xl + x2) > — fz/ (Sin - % - ;2> for all (x1, x2) € O,
1 2

where

@={(x1,x2) € Ri:ogﬂ_kggsm}'
yrooy2

Remark 3. As we can choose the strictly increasing functgrassumptions (H1)—(H2)
are always satisfied with reasonable choices. In fact, these assumptions can be interpreted
geometrically with the graph of functions defined in Eqgs. (5) and (6) K&ped).

Note that, in some cases it can be difficult to find a functjochecking assumptions
(H3)—(H4). Otherwise, if] > sin (respectively; > sin) then assumption (H3) (respectively
(H4)) is always verified.

9(ya[sin=s])
—
fo(s)
9(yalsin=s]) 4)
)\2 s* )\1 Sin

Fig. 4. Geometrical interpretation of (H1)—(H2).
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Inequalityy1 # y, implies that system (4) has a critical poiat, x3, x3) defined by

o dalsin =5 —g7HDNT o yalgTHD®) — yatsin — 5]
! y2 —y1 T2 y2 —y1 '

Assumption (H1) implies thats*, xJ, x3) < intR3, (H2) implies that there are two
hyperbolic critical points of system (4) in the boundaryﬂﬁf defined by

E1= (41, y1lsin — 411,00 and Ez = (42, 0, y2[sin — 42]).
Finally, note that ifg(0) = 0, then
A=A{(s, x1,x2) € Ri 1520, x1=x2=0}

is a set of nonhyperbolic critical points of system (4). In the remainder of this paper we
assume that the initial conditions of system (4) ar@ﬁg\/l.

3.3. Main result

The main result of this paper provides a sufficient condition for the global asymptotic
stability of the critical poini(s*, x7, x3).

Theorem 1. Let ymax = y1, if at least one of the following conditions is verified

(i) AssumptiongH1)—(H4)hold.
(if) AssumptiongH1)—(H3) hold and inequalities™ < min{s}, s3} or s* e (s7,s;) are
verified
(iif) AssumptiongH1)—(H2)hold ands* < min{sj, s5}.

Then the critical point(s*, x7, x3) is a globally asymptotically stable solution of system
(4) for all initial conditions inint[R{i.

Note that the relative order of point$, s3 ands; summarized in Remark 1 implies differ-
ent requirements on assumptions (H1)—(H4); in fact, the functions depickeg.it—case
(a)—satisfy (H1)—(H2). Secondly, the functions depictedFig. 2—case (b)—satisfy
(H1)—(H3). Finally, the functions depicted kig. 3—case (c)— satisfy (H1)—(H4). This is
important because assumption (H4) is unnecessarily restrictive for case (ii) and assumptions
(H3)—(H4) are unnecessarily restrictive for case (iii). Furthermore, as we have pointed out
in Remark 3, there are some cases where checking assumptions (H3)—(H4) can be rather
complicated.

4. Preliminary results

In the following results, we establish some properties related to the asymptotic behavior
of solutions which are needed in the proof of Theorem 1.
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Lemma 1. Let(s(z), x1(z), x2(¢)) be asolution of syste) with initial condition inintRi.
Then this solution is bounded and verifies

lim s—l—ﬂ—l—gzsin. (7)
t—+00 y1 y2

Proof. The main idea of the proof is taken frail]. LetV : R4 — R be defined by
t t
x@ | xa() _Sin>'

V()= <S(t)+

Clearly, V' = —g(x1 + x2) V; the lemma follows ifV (¢) is convergent to 0 when— +oc.
Case(i): If g(0) > 0 the result is a consequence of LaSalle invariance principle.
Case(ii): If g(0) = 0; clearly, Eq. (7) follows if and only if

‘
lim / g(x1(s) + x2(s)) ds = +o00.
t—+00 Jo

Conversely, if we suppose that

'
lim / g(x1(s) + x2(s)) ds < + o0,
0

t—+00

it is easily seen that the function— g(x1(¢) + x2(¢)) is nonnegative and integrable.
Moreover, we can prove that every solution of system (4) is bounded: In factQ)f< 0 it
follows thatV (r) <0 for anyr >0 and every solution is bounded by the plane

X X
2= {(s,X1,X2IS+—l+—2=sm},
Y1 Y2

if V(0) > 0itfollows thatV () > 0 andV’(z) is negative; hence, the boundedness follows.
Using this fact, combined with the mean value theorem implies that every solution of

system (4) is uniformly continuous df, co) and finally we conclude that the function

t > g(x1(r) + x2(r)) is uniformly continuous; therefore, Balat's lemma (see e.fl0])

yields

lim  g(x1(¢) + x2(¢)) = 0.
t—+00

As g(0) = 0 andg is strictly increasing, we obtain that lim ; , x; (¢) = 0. On the other
hand, by continuity of we have that

t .
lim e’fp[fo fils@)dl iy =0
1—=+00 expl fo g (x1(u) + x2(u)) du]  1=+o0

and it follows that

t
t—llr-ir—]oo exp (/c; fi(s(u)) du) =0,

but this is not possible, hence (7) holds, which completes the praodf.
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If g(0)=0, it follows by Lemma 1 that critical points id\{(sin, 0, 0)} are not attractive.
We will denote byU; andU> the positively invariant sets:

Up ={(s, x1, x2) € Ri :5>0,x1>0 andxo =0},
Uy = {(s, x1, x2) € [R?f’r :520,x2>0 andxy=0}.

As we are interested in persistence of spegieandxy, it is important to know if each
species is persistent in the chemostat without competition. Each species must be able to
survive alone in the chemostat if it is to be able to survive with a competitor. The following
result gives an affirmative answer.

Lemma 2. Let (s(¢), x1(¢), x2(¢)) be a solution of systerd) with initial condition in
U; (i =1, 2). Then this solution is bounded and verifies

im s+ 28 = sin, @)
t——+00 Vi
JTOO x; () = yilsin — 4] and tﬂrpoo s(t) = 4. 9

Proof. We give the proof for the case=1; the other case is similar. Eq. (8) is an immediate
consequence of Lemma 1. Cleartyg(r) = 0 for r > 0. We consider the second equation
of system (4) and insert the solutie(y) initiated ats(0). Then we obtain the following
nonautonomous differential equation:

X1 =x1(f1(s(2)) — g(x1)). (10)

By (8), it follows that for each initial condition(0), Eq. (10) is asymptotically au-
tonomous (see e.d17] for details) with limit equation

1=121 (fl (Sin - Z—1> - g(Zl)) ~ (11)
Y1

Assumption (H2) implies that the solutian(r) of Eq. (11) satisfies
lim z1(#) = yalsin — 4al.
t——+00

Applying corollary 4.3 from[17], it follows that each solution of Eq. (10) converges to
vilsin — 41] and (8) makes it obvious that lim_ ., s(t) = s*, which proves the
Lemma. [

Lemma 3. If ymax= y1, then every componen(r) of a solution of systerf#) with initial
condition inint[R{fL is uniformly persistent

Proof. Let X = {(s, x1, x2) € [R?i : 5§ <Sin, x1 + x2< L}, whereL > yysip andg(L) >

max{ f1(s7), f2(s5)}. Lemma 1 implies that X is positively invariant and every solution of
system (4) reaches X in finite time and cannot leave it. Hence, we can consider only the
initial conditions in X.
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Let M =X N (U1 U Uy); following the method developed [A], we will prove thatM is a
repeller set that is equivalent to uniform persistence. Next, we buildwbrmge Lyapunov
functionP : X — R, defined by

P(x1, x2) = x1x2.

‘ Clearly, P (x1, x2)=0for (x1, x2) € M andP (x1, x2) > 0for(x1, x2) € X\M.Moreover,
P(x1, x2) = ¥(s, x1, x2) P(x1, x2) where¥: X — R is the continuous function

W(s, x1, x2) = f1(s) + f2(s) — 2g(x1 + x2).

Let W*(E;) and W“(E;) be the stable and unstable manifold, respectively, of critical
pointsE;. By ymax= y1 and Lemma 2, we have th&t are included ifW* (E;); moreover,
(H2) implies thatE; are saddle-points anf(E;) > 0. Finally, theorem 12.2.2 frori9]
(see also corollaries 1 and 2 froj@]) implies thatM is a repeller set and the proof is
complete. [J

5. Proof of main result

Let us return to system (4) in equatiofysandx, and insert the solution(z?) initiated at
s(0). Then, for each initial condition(0) we obtain the nonautonomous system:

{X1=x1(f1(S(t)) —g(x1+ x2)), (12)

X2 =x2(f2(s (1)) — g(x1 + x2)).

Note that Lemma 1 implies that for each initial conditiq), system (12) is asymptot-
ically autonomous with limit system

) 1 22
71=21 <f1 (Sin - — = —) —g(z1+ zz)) ,
y1 y2

) 71 22
2=122 (fz <Sin - — = —) —g(za +zz)> .
iy

(13)

Moreover, system (13) defines a dynamical system in thé set[RfL and the relation
between asymptotic behavior of both systems is summarized by the following result:

Proposition 2 (Thiemg17]). Letw be thew-limit of a forward bounded solution ¢1.2).
Assume that there exists a neighborhood wfhich contains at most finitely many equilibria
of (13). Then the following trichotomy holds

(@) o consists of an equilibrium df.3).

(b)) w is the union of periodic orbits afL3) and possibly of centers ¢13) that are sur-
rounded by periodic orbits living im.

(¢) w contains equilibria 0f13) that are cyclically chained to each other in by orbits
of (13).
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The critical points of system (13) are the projections in th&'sgftthe hyperbolic critical
points stated in the previous section begigg, 0, 0) € A:
E{ = (0,0,
E{ = (yilsin — 411, 0),
E} = (0, y2lsin — Z2D),
El = (x], x3).

The local properties of critical points of (13) are summarized in the following Lemma:

Lemma 4. Let assumptionfH1)—(H2)and ymax = y1 hold. Then all the critical points of
(13) are hyperbolic moreover

(a) Critical point E{)’ is a repellet
(b) Critical points £ are saddle-pointsW*(E?) are inintR2. (i = 1,2) and

WH(EY) ={(z1,22) € 0: 0<z1 <yisin and z2=0}
W (ED) ={(z1,22) € 0 : 0<zp < ypsin and z1=0}.

Moreover E{ and E5 cannot belong teo(Z(0)) whenz(0) € int(.

(c) Local asymptotic stability of critical point! is always verified whest < min{s}, s3},
is verified by assumptiofiH3) whens* e (s7, s5) and by assumption@i3) and (H4)
whens* > max{sj, s3}.

Proof. Result (a) is obtained from the standard linearization procedure and (G2). Result (b)
is obtained following the lines of the proof of Lemma 3. Finallyygsx = y1 a necessary
and sufficient condition for local stability dt? is

S8 > = T A6 + 2 (7). (14)
yi y2
Now, the proof of result (c) is straightforward[]
The proof of the theorem will be divided into three steps:
(1) Letx(0) € int[R?%r be an initial condition of system (12). We will prove that system (13)
cannot have periodic orbits or a cycle of critical points. A consequence of Proposition
2 is that the set»(x(0)) is a critical point of system (13).
(2) Lemma 3 implies that this critical point cannot bedifi, hencew(x(0)) = (x7, x3).
(3) Finally, Eq. (7) makes it obvious that ljm - s(¢) = s*, which proves the theorem.

We will prove all the cases (i)—(iii) in the statement of Theorem 1.
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5.1. Proof of case (i)

LetZ(0) € int® be an initial condition of (13). The asymptotic behavior of a solution
with this initial condition is described by the following Lemma:

Lemma 5. LetZ(¢) be a solution o{13)with initial conditionZz(0), then there exists a real
numberT > 0 such that the solutiong (¢) are monotone on> T'. In particular we know
that w(z(0)) is a critical point

Proof. By (H3)-(H4) we have that system (13)dempetitiveon ¢ (i.e., the off-diagonal
entries of the Jacobian matrix @dhare negative or zero). As the forward orbitg0) is a
relatively compact set, we apply Theorer2.2 from[12] and the Lemma follows. [J

A consequence of Lemma 5 is that system (13) cannot have periodic orbits or a cycle of
critical points, which proves the theorem.

Assume now that* < min{sj, s5} ors* € (s7, s3) and (H4) is not verified. Note that in
this case, system (13) is not necessary competitive and Lemma 5 cannot be applied.

As before, letz(r) be a solution of system (13) with initial conditiait0) € int@. We
will prove thatz(¢) cannot be a periodic orbit and thatz(0)) cannot be a cycle of critical
points.

5.2. Proof of case (ii)

Lets e (s*, s3). We define an increasing*-function e: [§, +00) — R such that

eg‘)(ﬁ) = fz(k)(ﬁ) for k =0, 1. Let us denote by, the increasing envelopef f> as the
function

B f2(s) if s €]0,s],
mZ(s)_{eg(s) if s>5. (15)

Let us consider the system:

. ui uz
01 =u1 (fl <Sin - = —) —guy+ uz)) ,
yioy2

. u u 16
U =up (mz (Sin -2 —2> —g(u1+142)>, (16)
y1 y2

u1(0) = z1(0) > 0, u2(0) = z2(0) > 0.

Notice that system (16) has the same critical points as system (13) with the same local
properties summarized by Lemma 4. Assumption (H3) implies that system (16) is compet-
itive and replacingfz by m» in the case (i) of Theorem 1 we have that

t_leoo (ua(t), uz(1)) = (x7, x3).
Using the ordeX g 1) and Proposition 3 (see Appendix) we have the inequalities

(21(0), 22(0)) > k5, (1(0), u2(0)) > g (O, u2(0))



684 J.-L. Gouzé, G. Robledo / Nonlinear Analysis: Real World Applications 6 (2005) 671—690

and

(21(1). 22()) = kg3, (UL(1), u2(1)) = 1, (0. u2(1))
for all t > 0. Lettingr — +o00, we have that:

liminf z1(r) >x7 and lim supza2(r) <x3 < yolsin — A2]. a7)
1—+00 t—+00

This gives thain(z(0)) is a subset of(x1, x2) € Olx1>x}, 0<x2<x3}; hencez(r)
cannot be a periodic orbit. Indeed, otherwise we would have a periodic orbit paraﬁmetrized
by ¥ and by Poincaré-Bendixson theorem, the critical poiit x5) would be inside/,
obtaining a contradiction.

It remains to prove that there is no cycle of critical points. If we suppose the existence of
one, Lemma 4 implies thzﬂg is a repeller andz? is locally asymptotically stable; hence,
they cannot belong to this cycle. Moreover, Eq. (17) implies ﬂ’ﬁatzannot belong to this
cycle, so onIyEf could possibly belong to it.

But Lemma 4 implies thav* (E{) N W (EY)\ EY = #; hence E{ cannot belong to this
cycle, which proves the Theorem.

5.3. Proof of case (iii)

Lets e (s*, max(s], s5}). We define a couple of continuous increasing functiens, :
[s, +00) — R such thatefk) $) = fl.(k)(§) for k =0, 1 andea(s) > e1(s) for all s > 5. Let
us denote byn; theincreasing envelopef f; as the functions

fits) if s €l0,s],

i(s) = . 18
mi(s) {e,-(s) if s>5. (18)
Let us consider the system:
. ui  u2
i1 =u1 <M1 (Sin - —= - —) —gu1+ Mz)) ,
yrooy2
. u u 19
u2=uz(m<sm——l——2)—g(u1+uz)>, (19)
Y1 y2

11(0) > 0, u2(0) > 0.
Note that system (19) is competitive and has the same interior critical point as (13). Now,
we will prove that system (13) cannot have periodic orbits. Indeed, if we suppose that there
is a solution of system that is a nontrivial periodic orbit parametrizegilywith (x, x3)

inside, we shall arrive at a contradiction by considering the backward orbits of systems (13)
and (19), note that this orbit is a solution of reversed time cooperative system:

. v1 v2
vp=—v1|m1|sn————)—oglvi+v2) ),
y1i y2

. v v 20
V2 = —U2 (mz (Sin . —2> —Otg(v1+v2)>, ( )
yi  y2

v1(0) = u1(0) > 0, v2(0) = u»(0) > 0.
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We choose the initial conditions of systems such that

21(0) =1 (0) > v1(0) = x7,  22(0) = Y5(0) > v2(0) = x3.
Applying Theorem B.1 fronj14], it follows that

Y1) >x7 and yo(r)>x; forallr<0,

it follows that the critical point(xj, x3) is not insidenZ obtaining a contradiction with
Poincaré—Bendixson theorem.

It remains to prove that there is no cycle of critical points. If we suppose the existence
of one, as in the proof of case (ii) Lemma 4 implies tEétandEs” cannot belong to this
cycle, so onlyE;] and/orE3; could possibly belong to it.

By Lemma 4 we have tha?*(E7) N WS (ES) = ¢ andW*(EL) N WS (E]) = ¢, then
there is no cycle connecting; andE>.

Finally, as in the proof of case (ii), the existence of a cycle conned:’;';’ﬁgi =12)to
itself is not possible, which proves the theorem.

6. Robustness of model

We consider the case when the uptake functiginef system (4) are, in some sense,
unknown Usually, the formulation of uptake functions is based on experimental evidence
with measurement error (see e[d@5]). Thus, we are not able to obtain an analytic form of
the functions, but only some qualitative properties and quantitative bounds. Our goal is to
obtain sufficient conditions for the uniform persistence in such cases.

We will suppose that the following properties are satisfied:

(R1). f1 and f> are functionally bounded, i.e., there exist a couple of well-known maps
andu; (seeFig. 5), such that they satisfy assumptions (F1)—(F4) (with maximums
noted bys; ands;"_, respectively) and verify

L)< fio)<ui(s), =20, i=12 (21)
Let us denote by~ ands™ (see Fig6) the points in(0, sin) such that~ < s* and

li(s7)=u2(s")=D" >0,

ur(sMH =b(sTH) =D >0.

(R2). ui(s) <lIa(s) forall s € (s™, sin).
“1py—y_ -1
(R3). We have thaD* > D~ of ymin > £ L= it p= pt,

Let us build systeni4) ~ substitutingfi, f> by I1,u2 in system (4). Analogously, we build
system(4)™ substitutingfy, f> by u1, I in system (4).

Let us denote by5~) and (57) Eq. (5) with f1 replaced byl; anduy, respectively.
Analogously we denote bi~) and(6™) Eq. (6) with f> replaced by, anduy, respectively.
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Fig. 5. Geometrical interpretation of (R1): Graphs of upper envelg@ad lower envelopg for f;.

s~ s*

Fig. 6. Location of point®»—, D1, s~ ands™.

We will make the assumptions for systes) and(4™):
(H1*). The following inequalities hold:
gWilsin —s7 1) > D~ > g(y2lsin — s,
g(yalsin =571 > DT > g(y2lsin — s7]).

(H2*). Egs.(57) and(6") have one positive solutiofy and/3, respectively. Eqs(5T)
and(67) have one positive solutiojnf and/, , respectively. Moreover, if1 > y2,
then’y A7 are in(s*, sin) andi; A3 are in(0, s).
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yming (x1 4+ x2) > — 1} (sm -2 )2) for all (x1, x2) € 0,

(H3%) yr oy2
| yming’ (k1 4 x2) > — uy <S|n - % - %) for all (x1, x2) € €.

X X
yming' (x1 4 x2) > — uj (Sln - y—i - y—z> for all (x1,x2) € O,

*

(H4%). -

Yming (x1 + x2) > — 15 sin — E - E for all (x1, x2) € 0.

Theorem 1 implies thats—, x;, x, ) and(s™ xl , X5 1) are solutions globally asymptot-
ically stable of(4)~ and(4)™, respectively. Moreover,; andxl are defined by:

~ ylyein—s) —g XD yalg” (D7) — yalsin — s7)]
X, = , Xy = S

Y2 —y1 y2—2
o b2Gin —sT) —g 0D L yalemHDT) — yaGsin = 5]
! Y2 — y1 T Y2 — 1 '

By assumption (R2) we have thef <x;" andx] <x; .

Theorem 2. Let ymax= y1, if the functionsf; and f> are unknown but verify assumptions
(R1)—(R3)and the functions g¢;, I; (i =1, 2) satisfy assumptiondi1*)—(H4*), then the
solutions of systerfd) verify:

x; < I|m |nf x1(1) < lim supxl(t)<x1 ,
t—400

x) < I im |nf x2(t) < lim sup xo(1) <x5

t— 400
<liminf s@) < lim sups() <s™. (22)
I—+o0 1—+00

In particular, systen(4) is uniformly persistent

Proof. Note that, even iff; and f> are unknown, the asymptotic behavior stated by Lemma
1is still valid. Then we can proceed as in the proof of Theorem 1 and we need study only
the w-limit set of the planar system (13). Moreover, we consider the restricted competitive
systems associated ¢4)~ and(4)™", respectively:

. 1) v
U1 =1 (ll <Sin - y_i - yf) —g(v1+ vz)) ,
(23)
) V1 v
V2 =12 <uz <sm - — = —) —g(v1+ vz)) .
y1 y2
. w w
w1 =w1 (ul <Sin — y—ll - y—zz) —g(wy + wz)) ,
(24)
. w1 w2
W = wp (lz (Sin -— = —) —g(wi + wz)) .
ooy
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Replacing (4) by4)~ and(4)™ in Theorem 1 we obtain that
Jim ), v2(0) = (r,x5) and - lim - (w1(), wa() = (f, xd).

Let (z1, z2) be a solution of system (13) such that0) = v; (0) = w; (0), Proposition 3
(see Appendix) implies that

v1()<z1(0) <w1(r) and wo(r) <z2(t) <va(r) forall r>0.
Lettingr — +o0, Proposition 2 implies (22) and the proof is completé]

Remark 4. Lets]; andsy, (s5 ands3,) be the maximum ofy andu; (/2 anduy), respec-
tively. In some cases, the relative order of these points allows us to drop some statements
of assumptions (H3*)—(H4*):

If s* < min{s},, s3,}, we can replace the functiary by an envelopen; as in the proof
of case (ii) of Theorem 1, hence the first inequality in (H4*) is unnecessary and the proof
of Theorem 2 runs as before.

If st <min{s},, s7,. 53, s3,} we can replace the functioms by envelopesn; as in the
proof of case (iii) of Theorem 1. Moreover, if we can build an envelagehat does not
intersectd, beforesi,, hence the second inequality in (H3*) and first inequality in (H4*)
are unnecessary and the proof of Theorem 2 runs as before.

7. Discussion

We have analyzed a model of the chemostat with competition such that the only output
available is the total biomass. The main result is that, considering the dilutioD ragea
feedback control, one has—under some hypotheses—the uniform persistence of competing
species in contrast to competitive exclusion in the classical chemostat. The novelty of this
work is to consider nonmonotone uptake functions, generalizing in some way the result
presented ifi7].

The model takes the form of a system of differential equations such that its asymptotic
behavior is equivalent to a competitive planar differential system. The theory of asymp-
totically autonomous dynamical systems and the theory of competitive dynamical systems
played a prominent role.

If we considere; to be the specific death rate of speciesand we substitut® by
D;=D+z¢; inEg. (1), the tools mentioned above cannot be used because we cannot eliminate
one variable (the substrate) to study the asymptotic behavior of the model. Handling different
death rates remains an open question, worth further study.

Moreover, from an experimental point of view, it would be very interesting to study the
same problem considering, as the feedback control variable and the subssate the
output available.

One of the strongest assumptions in our modelyigx = y1. It is clear that we must
consider other feedback control laws for the casgs = y2 andyi = y».
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Appendix A.

In this section we state a result of comparison for competitive dynamical systems that is
essential in the proof of Theorems 1 and 2 (de&13]for more details).
Let the convex con& (o, 1) be defined as

K1) ={(u1,u2) € R?: u1 >0 and uy<0}

and define an order iR? by y < k)X If X — ¥ € K(0,1), that meangy <x1 andyz > xz.
Let a continuous functio : Q — R? whereQ is an open set iR, F = (F1, ) is
said to be of typ& (o 1) if for eachi, (—1)" F;(a) < (—1)™ F;(b) for any two pointsi and
bin Q satisfyinga < K<o,1>l;' (m1, m2) = (0, 1) anda; = b;.
The object is to compare solutions of the system of differential equations

x' = F(x), (A1)
with solutions of the systems of differential equations

7 =G(), (A2)

Yy =H(®), (A3)
such that the continuous functiosH: Q > R? verify H < Koy F <k O-

Proposition 3 (Comparison Theoreyn Let F be continuous o and of typekK o, 1). Let
x(t) be a solution of(Al) defined on[a, b]. If z(z) is a continuous function ofu, b]
satisfying(A2) on (a, b) with z(a) < ko4 x (@), thenz (1) <k, x (1) for all tin [a, b]. If
y(2) is a continuous function o, b] satisfying(A3) on (a, b) with y(a) > k 4, x (a), then
V(1) = kg% (1) for alltin [a, b].

Proof. See Lemma 2 frorfiL3].

Note that, if system (A1) is competitive aiglis convex, ther is of type K (o, 1).
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