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Abstract— A formalism based on piecewise-linear (PL) differ-
ential equations has been shown to be well-suited to modelling
genetic regulatory networks. The discontinuous vector field
inherent in the PL models leads to the approach of Filippov,
which extends the vector field to a differential inclusion. We
study the stability of equilibria (called singular equilibrium sets)
that lie on the surfaces of discontinuity. We prove several theo-
rems that characterize the stability of these singular equilibria
directly from the state transition graph, which is a qualitative
representation of the dynamics of the system.

I. INTRODUCTION

A class of piecewise-linear (PL) models, originally pro-
posed by Glass and Kauffman [11], has been widely used
in modelling genetic regulatory networks. The properties of
these PL models have been well-studied in the mathematical
biology literature, by for example Glass and Pasternack [12],
Plahte et al [16], Thomas et al [19], Edwards [8], Gouzé and
Sari [13], and more recently in the hybrid systems literature
by Ghosh and Tomlin [10], Alur and Belta [1], and Belta et al
[2]. The variables in the piecewise-linear differential equation
(PLDE) models are the concentrations of proteins encoded
by the genes, while the differential equations describe the
regulatory interactions in the network by means of step
functions. The use of step functions is motivated by the
switch-like behaviour of many of the interactions in genetic
regulatory networks [17], but it does lead to some difficulties.
The vector field for the PLDE model is undefined when one
of the variables assumes a value where the step function is
discontinuous, referred to as a threshold value. Recent work
by Gouzé and Sari [13] uses an approach due to Filippov
[9] to define the solutions on the threshold hyperplanes. The
approach involves extending the PLDE to a piecewise-linear
differential inclusion (PLDI).

The study of the stability of equilibria in switching do-
mains (singular equilibria) for PL models of genetic regu-
latory networks is the focus of this paper. The stability of
equilibria for PL systems is an important subject in hybrid
systems and control theory. See, for example, the review
of Decarlo et al [6]. We here give several results on the
stability of singular equilibria based on properties of the state
transition graph.

Due to space limitation, some of the proofs are not
included and can be found in [3].
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II. PIECEWISE-LINEAR MODELS OF GENETIC

REGULATORY NETWORKS
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Fig. 1. Example of a genetic regulatory network of two genes (a and b),
each coding for a regulatory protein (A and B). The notation follows in a
simplified form the conventions of Kohn [14].

The schematic diagram in Figure 1 describes a simple
genetic regulatory network. In this example, the genes a and
b code for the proteins A and B, which in turn control the
expression of the two genes a and b. Protein A inhibits gene
a and activates gene b above certain threshold concentrations,
which are assumed to be different. Similarly protein B
inhibits gene b and activates gene a above different threshold
concentrations.

The dynamics of genetic regulatory networks can be mod-
elled by a class of dynamical systems proposed originally by
Glass and Kauffman [11]. The model has the general form

ẋi = fi(x) − γixi, 1 ≤ i ≤ n, (1)

where x = (x1, . . . , xn)t is a non-negative vector of protein
concentrations. The non-negative quantities fi(x) and γixi

represent synthesis and degradation rates for each protein xi

respectively. We can write the system (1) more compactly as

ẋ = f(x) − γx, (2)

where f(x) = (f1(x), . . . , fn(x))t and γ = diag(γ1, . . . , γn)
is a constant diagonal matrix.

The functions fi : R
n
+ → R+ represent the dependence of

the rate of synthesis of a protein encoded by gene i on the
concentrations x of protein in the cell. They are defined by a
sum of terms κilbil(x), where κil > 0 is a rate parameter, and
bil : R

n
+ → {0, 1} is a boolean-valued regulation function.

The regulation functions bil capture the conditions under
which the protein encoded by gene i is synthesized at a rate
κil. These conditions are written down as combinations of
step functions s+, s− where

s+(xi, θi) =

{
1, xi > θi,

0, xi < θi,
and s−(xi, θi) = 1−s+(xi, θi).

(3)
Here xi is a component of the concentration vector

x for the proteins, and the parameters θi are threshold
concentrations. The use of such step functions has been



motivated by the observation that the activity of a gene
changes in a switch-like manner at a threshold concentration
of a regulatory protein. The model (2) is piecewise-linear
(PL) with the above definition of the fi. Note that the step
functions are not defined for xi = θi, so neither are the
regulation functions.

The equations modelling the example network in Figure 1
can be written down as

ẋa = κa s+(xb, θ
1
b ) s−(xa, θ2

a) − γa xa, (4)

ẋb = κb s+(xa, θ1
a) s−(xb, θ

2
b ) − γb xb. (5)

Gene a is expressed at a rate κa if the concentration xb of
protein B is above the threshold θ1

b and the concentration
xa of protein A is below the threshold θ2

a. Similarly, gene b
is expressed at a rate κb if the concentration xa of protein
A is above the threshold θ1

a and the concentration xb of the
protein B is below the threshold θ2

b .

A. Domains in Phase Space

The dynamics of the piecewise-linear system (2) can be
studied in the n-dimensional phase space Ω = Ω1×. . .×Ωn,
where each Ωi is defined by Ωi = {xi ∈ R+ | 0 ≤ xi ≤
maxi}, for some positive parameter maxi, with maxi >
maxx∈Ω(fi(x)/γi). A protein encoded by a gene will be
involved in different interactions at different concentration
thresholds, so for each variable xi we assume there are
pi ordered thresholds θ1

i , . . . , θpi

i . The (n − 1)-dimensional
hyperplanes defined by these thresholds partition Ω into
hyper-rectangular regions we call domains. Specifically, a
domain D ⊂ Ω is defined to be a set D = D1 × · · · × Dn,
where each set Di, for 1 ≤ i ≤ n, is given by one of the
following equations

Di = {xi ∈ Ωi | 0 ≤ xi < θ1
i },

Di = {xi ∈ Ωi | xi = θ1
i },

Di = {xi ∈ Ωi | θ1
i < xi < θ2

i },
Di = {xi ∈ Ωi | xi = θ2

i },
...

Di = {xi ∈ Ωi | xi = θpi

i },
Di = {xi ∈ Ωi | θpi

i < xi ≤ maxi}.
Let D denote the set of all domains in Ω. A domain D ∈ D
is called a regulatory domain if none of the variables xi

has a threshold value in D. In contrast, a domain D ∈ D
is called a switching domain if at least one of the variables
has a threshold value in D. The corresponding variables xi

are called switching variables in D. For convenience, we
denote the sets of regulatory and switching domains by Dr

and Ds respectively. Following Mestl et al [15], we define the
order of a switching domain to be the number of switching
variables in that domain.

Definition 1: The order of a domain D ∈ D is the number
k ∈ N, 0 ≤ k ≤ n equal to the number of switching variables
in D, denoted order(D).

Definition 2: For every domain D ∈ Ds of order k ≥ 1,
define supp(D) ⊂ Ω to be the (n − k)-dimensional hyper-
plane containing D. If D ∈ Dr then we define supp(D) to
be equal to Ω.
For every domain D we also define the boundary ∂D of D
in supp(D) and the sets

A(D) = {D′ ∈ D | D′ ⊆ ∂D}, and

R(D) = {D′ ∈ Dr | D ⊆ ∂D′}.
Two domains D and D′ will be said contiguous if D ∈
A(D′) or D′ ∈ A(D).

B. Classical Solutions and Focal Points

For any regulatory domain D ∈ Dr, the function f(x) is
constant for all x ∈ D, and it follows that the piecewise-
linear system (2) can be written as a linear vector field

ẋ = fD − γx, x ∈ D, (6)

where fD is constant in D. Restricted to D, this is a classical
linear ordinary differential equation. Clearly x(t) → φ(D)
monotonically as t → ∞, until x(t) reaches the boundary of
the regulatory domain D.

Definition 3: Given a regulatory domain D ∈ Dr, the
point φ(D) = γ−1fD ∈ Ω is called the focal point for
the flow in D.
Generally we make the assumption that φ(D) �∈ supp(D′),
for all D′ ⊆ ∂D, for otherwise solutions can take infinite
time to reach a focal point in the boundary of their domain.
This is a special case of a more general assumption we
make in Section 2.3. What happens when a solution leaves
a regulatory domain D and enters a switching domain in
the boundary of D? Since the step functions are not defined
when a variable xi takes some threshold value θqi

i , the vector
field is undefined on the switching domains.

C. Filippov Solutions and Focal Sets
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Fig. 2. Behavior of the system of Figure 1 at some of the thresholds.
The domains D1, D6, D11, D13, D14 and D15 are shown, in addition to
the focal points φ(D1) = (0, 0), φ(D11) = (0, κb/γb), φ(D13) =
(κa/γa, κb/γb) and φ(D15) = (κa/γa, 0). (a) The solution trajectories
in D11 can be continued in D1, so D6 is a transparent wall, whereas
in (b), the solution trajectories in D13 cannot be continued in D15. The
behavior of the system in D14 cannot be determined without a Filippov-like
approach.

In order to define the solutions on switching domains, we
use a construction originally proposed by Filippov [9] and
recently applied to PL systems of this form [13], [5]. The
Filippov approach is classical in control theory, where the



solutions on switching domains are known as sliding modes
[7], [20]. The method consists of extending the system (6)
to a differential inclusion,

ẋ ∈ H(x) (7)

where H is a set-valued function. If D is a switching domain,
for x ∈ D, then

H(x) = co({fD′ − γx | D′ ∈ R(D)}), (8)

where we recall R(D) = {D′ ∈ Dr|D ⊆ ∂D′} is the set of
all regulatory domains with D in their boundary, and co(X)
is the closed convex hull of X . For switching domains,
H(x) is generally multi-valued so we define solutions of
the differential inclusion as follows.

Definition 4: An absolutely continuous function ξt(x0) is
a solution of (7) on [0, T ] in the sense of Filippov if ξ0(x0) =
x0 and ξ̇t ∈ H(ξt), for almost all t ∈ [0, T ].
Hereafter we will usually refer to “solutions in the sense of
Filippov” as “Filippov solutions” or simply as “solutions”
when discussing solutions of the differential inclusion ẋ ∈
H(x).

It is useful to define a concept analogous to the focal
points defined for regulatory domains, extended to deal with
switching domains.

Definition 5: Let D ∈ D be a domain. If D is a regulatory
domain then its focal set Φ(D) is given by Φ(D) = {φ(D)},
where φ(D) is the focal point of D ∈ Dr as in Definition 3.
If D is a switching domain of order k, and supp(D) is the
(n−k)-dimensional hyperplane supporting D, then its focal
set Φ(D) is

Φ(D) = supp(D) ∩ co({φ(D′) | D′ ∈ R(D)}). (9)
Thus Φ(D) can be a singleton, but more generally is a closed
convex bounded set and hence is referred to as a focal set.
The solutions that remain in a switching domain are called
sliding modes. These sliding modes can occur in D when
Φ(D) is non-empty [13].

Further, for D ∈ Ds, if Φ(D) �= {} and Φ(D) ∩ D = {},
then all solutions will eventually leave the switching domain.
If Φ(D) �= {} and Φ(D) ∩D �= {}, then there are points in
D that behave like a set of equilibrium points in the classical
sense. Under what conditions a set Φ(D) with Φ(D)∩D �=
{} will be stable in some sense is the subject of the remainder
of the paper.

For a switching domain D with Φ(D) �= {}, all solutions
converge towards Φ(D) in a restricted sense. The conver-
gence is monotonic in the sense that for all components
(ξt)i of Filippov solutions ξt(x) in D, each (ξt)i mono-
tonically converges towards the projection of Φ(D) onto Ωi.
This monotonic convergence property is summarized in the
following lemma, see also [5], [3].

Lemma 2.1: For every regulatory domain D ∈ Dr, all
solutions ξt in D monotonically converge towards the focal
set Φ(D). For every switching domain D ∈ Ds, and
every i ∈ I , the component (ξt)i of the solution ξt in D
monotonically converges towards the closed interval

πi(Φ(D)) = {φi ∈ Ωi | φ ∈ Φ(D)},

the projection of Φ(D) onto Ωi, if (ξ0)i �∈ πi(Φ(D)). This
holds for all components (ξt)i of ξt, 1 ≤ i ≤ n.

The proof also gives the following corollary. By a slight
abuse of notation, we will denote Π(D) the smallest closed
hyperrectangle in supp(D) containing Φ(D), that is the
hyperrectangle the projection of which on the i-th axis is
πi(Φ(D)) for all i.

Corollary 1: All solutions ξt in D converge towards
Π(D), if ξ0 �∈ Π(D). Π(D) is positively invariant.

Corollary 2: If Φ(D) is a point, all solutions ξt in D
converge monotonically towards Φ(D).

Moreover, we make a technical assumption on the focal
sets for our system.

Assumption 1: For all domains D ∈ D,

Φ(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (10)
For regulatory domains, Assumption 1 is equivalent to the

assumption that φ(D) �∈ supp(D′) for all D′ ⊆ ∂D.
Corollary 3: Under Assumption 1, for all domains D ∈

D,
Π(D) ∩ supp(D′) = {}, ∀D′ ⊆ ∂D. (11)

III. EQUILIBRIA AND STABILITY

A. Regular Equilibrium Points

It is clear that, if D is a regulatory domain with focal point
φ(D), and if φ(D) ∈ D then x = φ(D) is an asymptotically
stable equilibrium point of (2).

Hence (0, 0) is a regular equilibrium point for the example
network, and is asymptotically stable (see Figure 3). This
stable regular equilibrium point represents a state of the
network where both gene a and gene b are off.
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Fig. 3. (a) Phase space box Ω for the PL model in Figure 1 showing all
the domains. (b) Sketch of the vector field for the PL model in Figure 1,
with the parameter values from Section 2. There is a regular equilibrium
point at (0, 0) ∈ D1 and there are singular equilibrium points in D7 and
D19.

B. Singular Equilibrium Points and Sets

We say that a point y ∈ Ω is an equilibrium point for the
differential inclusion if 0 ∈ H(y). In case that y is contained
in a switching domain, we call such a point a singular
equilibrium point. Given a switching domain D ∈ Ds, we
can check for singular equilibrium points by computing the
focal set Φ(D). Under Assumption 1, if Φ(D)∩D �= {} then
we can deduce that Φ(D) ⊆ D, i.e. that D strictly contains
or equals its focal set (Φ(D) being a closed set, equality



only occurs if D is a point). In fact, then every φ ∈ Φ(D)
is a singular equilibrium point of the differential inclusion.
That is, for each φ ∈ Φ(D), there exists a solution ξt such
that ξt(φ) = φ, ∀t ≥ 0. Hence Φ(D) is a set of singular
equilibrium points for the system, and we refer to such a
Φ(D) as a singular equilibrium set.

In the example network of Figure 1, it can be seen from
applying Definition 5 to the switching domain D19 that the
focal set Φ(D19) is given by D19 itself. In this example,
D19 has order 2 in a 2-dimensional phase space Ω, so
D19 is simply a point and Φ(D19) is a singleton. Hence
Φ(D19) is a singular equilibrium point and from examining
the local behaviour of the vector field in Figure 3, it appears
to be stable in some sense. Similarly, Φ(D7) is a singular
equilibrium point and from examining the local behaviour
of the vector field, it appears to be a saddle-like point and
hence unstable.

The fact that equilibria in switching domains can be set-
valued, in addition to the non-uniqueness of solutions to
differential inclusions, requires some extended definitions of
stability. Filippov uses the term weakly stable to describe
a equilibrium point that is stable in the sense of Lyapunov
for some solution of the differential inclusion [9]. The term
stable is reserved for a stronger concept of stability, and
describes a equilibrium point that is stable in the sense of
Lyapunov for every solution of the differential inclusion.
Asymptotically stable and weakly asymptotically stable can
be defined similarly. These concepts of stable and weakly
stable equilibrium points can be extended naturally to define
stability for equilibrium sets (cf. [3] for precise definitions).

IV. GRAPH OF THE QUALITATIVE DYNAMICS

De Jong et al have developed a discrete, qualitative de-
scription of the dynamics of the PL system that underlies the
qualitative simulation of genetic regulatory networks [5]. The
state transition graph is a discrete representation consisting
of the qualitative states of the system (the domains) and all
possible transitions between them. This description is key to
formulating and proving the results on stability of singular
equilibrium points in Section V.

A. States and Transitions

The set of domains D can be thought of as qualitative
states, since the PL system (2) behaves in a qualitatively
homogeneous manner in each domain D ∈ D.

Given two contiguous domains D,D′ ∈ D, we say that
there is transition from D to D′ if there is a solution in the
sense of Filippov lying in D and terminating in D′. We define
a transition from D to D′ more precisely below. Recall that
A(D) ⊂ Ds is the set of all domains in the boundary of D.

Definition 6: Let D,D′ ∈ D be two contiguous domains.
We say that there exists a transition from D to D′ if one of
the following two properties holds:

1) If D′ ∈ A(D), then there exists x0 ∈ D and a Filippov
solution ξt(x0) defined on a finite time interval [0, τ ]
such that

a) ξt(x0) ∈ D for all t ∈ [0, τ), and

b) ξτ (x0) ∈ D′.
2) If D ∈ A(D′), then there exists x0 ∈ D and a Filippov

solution ξt(x0) defined on a finite time interval [0, τ ]
such that

a) ξ0(x0) = x0 ∈ D, and
b) ξt(x0) ∈ D′ for all t ∈ (0, τ ].

We can prove the following two properties of transitions.
Proposition 4.1: Let D,D′ ∈ D be two contiguous do-

mains such that D′ ∈ A(D). Under Assumption 1, there
exists a transition from D to D′ iff (1) Φ(D) �= {} and (2)
for all i ∈ {1, . . . , n} such that xi is switching in D′ but not
in D,

(d′i − di)(φi − d′i) > 0, ∀d ∈ D,∀d′ ∈ D′,∀φ ∈ Φ(D).
(12)

The proof is not detailed here: it is based on the fact that
Assumption 1 implies that, if there is a transition, Φ(D) is
“on the other side” of D with respect to D′.

Proposition 4.2: Let D,D′ ∈ D be two contiguous do-
mains such that D ∈ A(D′). Under Assumption 1, there
exists a transition from D to D′ iff (1) Φ(D′) �= {} and (2)
for all i ∈ {1, . . . , n} such that xi is switching in D but not
in D′,

(d′i − di)(φ′
i − di) > 0, ∀d ∈ D,∀d′ ∈ D′,∀φ′ ∈ Φ(D′).

(13)
Proof: Similar to the proof of Proposition 4.1. �

B. State Transition Graph
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Fig. 4. Phase space and state transition graph for the PL model in Figure 1.
Nodes associated with regulatory and switching domains are indicated by
unfilled and filled dots, respectively. Domains containing equilibria are
additionally circled.

A state transition graph (STG) is a directed graph whose
vertices are the domains of the system and whose edges are
the transitions between these domains. The state transition
graph is a discrete representation of the qualitative dynamics
of the piecewise-linear system. Figure 4 shows the state
transition graph for the example two-gene network from
Figure 1. The domains represented by the nodes in the state
transition graph can be thought of as qualitative states of the
PL model.

Recall that within each domain, i.e. for each vertex of the
STG, the PL system (2) behaves in a qualitatively homoge-
neous way. Hence many dynamical properties of the full PL
system can be analyzed simply by studying the STG. Since
the STG captures the essential qualitative dynamics of the PL



system, it is useful to prove results on stability of equilibria
that can be inferred directly from the STG. For example, for
the two-gene network, the sequence 〈D21,D17,D18,D19〉 is
a path in the STG shown in Figure 4. This path corresponds
to solutions with initial conditions in domain D21 that reach
a qualitative equilibrium state in D19, corresponding to
a domain containing an equilibrium point. Whether such
qualitative equilibrium states represent equilibria that are
stable is investigated in the next section.

V. CRITERIA FOR STABILITY OF SINGULAR EQUILIBRIA

As discussed in Section III, regular equilibrium points are
known to be asymptotically stable so we focus instead on the
stability of equilibria located in switching domains: singular
equilibrium points and sets. We work under the caveat that
Assumption 1 from Section II-C holds for every domain D
in our system.

The proof in R
2 is included since it gives a geometrical

intuition for the general proof in R
n.

A. Theorem on Stability

The following theorems allow us to link the rigorous
concepts of Lyapunov stability for Filippov solutions (cf.
[3] for precise definitions) with the qualitative dynamics of
the system represented by the state transition graph. Theo-
rems 5.1 and 5.2 state that a switching domain D contains
an asymptotically stable equilibrium set if every contiguous
regulatory domain has a transition entering the domain D.
The first theorem is stated and proved for Ω ⊂ R

2, and
the second is the general case for p switching variables in
Ω ⊂ R

n.
Theorem 5.1: Assume Ω ⊂ R

2. Let D ∈ Ds be a
switching domain containing a singular equilibrium point
Φ(D). If for all D′ ∈ R(D) there exists a transition from
D′ to D in the state transition graph G, then Φ(D) is
asymptotically stable.
Proof: Let x = (x1, x2) ∈ D. In R

2 there are only two cases:
one of the variables is switching, or both are switching.

D1

D2

D

Φ(D2)

Φ(D1)

UV Φ(D)

D1

D

D2

Fig. 5. State transition graph and sketch of phase portrait for case 1 in the
proof of Theorem 5.1.

Case 1: Assume x2 is a switching variable on D and x1 is
not. The subgraph of G showing D and R(D) can be seen in
Figure 5, and the phase portrait showing the neighbourhoods.
The detailed proof is in [3]).

Case 2: Assume both x1 and x2 are switching variables on
D. Then there are four regulatory domains in R(D) and we
have the situation shown in Figure 6. For each regulatory
domain D′ ∈ R(D) = {D1,D3,D7,D9}, we can extend
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Fig. 6. State transition graph and sketch of phase portrait for case 2 in the
proof of Theorem 5.1. Only transitions from D′ ∈ R(D) are shown.

the arguments used in case 1 above to deduce that φ(Di)
(i = 1, 3, 7, 9) lie in a specific quadrant. For example, the
transition from D3 to D and Proposition 4.1 implies that
φ(D3) lies in the quarter-space defined by {x ∈ Ω|x1 >
θq1
1 , x2 < θq2

2 }. This can be seen as follows. Let D = {x ∈
Ω | x1 = θq1

1 , x2 = θq2
2 }, D3 = {x ∈ Ω | θq1−1

1 < x1 <
θq1
1 , θq2

2 < x2 < θq2+1
2 }, and D7 = {x ∈ Ω | θq1

1 < x1 <
θq1+1
1 , θq2−1

2 < x2 < θq2
2 }. Then D3 and D7 are regulatory

domains as illustrated in Figure 6. By hypothesis, there is
a transition from D3 to D in the STG, so it follows from
Proposition 4.1 that

(d1 − d3
1)(φ

3
1 − d1) > 0, ∀d ∈ D,∀d3 ∈ D3, (14)

(d2 − d3
2)(φ

3
2 − d2) > 0, ∀d ∈ D,∀d3 ∈ D3, (15)

where φ3 = φ(D3). Since d2 < d3
2, ∀d ∈ D, ∀d3 ∈ D3,

(15) implies that the focal point φ(D3) lies somewhere in
the half-space defined by {x ∈ Ω | x2 < θq2

2 }. Similarly,
since d3

1 < d1, ∀d ∈ D, ∀d3 ∈ D3, (14) implies that the
focal point φ(D3) lies somewhere in the half-space defined
by {x ∈ Ω | x1 > θq1

1 }. Thus, (14) and (15) together imply
that

φ(D3) ∈ {x ∈ Ω | x1 > θq1
1 } ∩ {x ∈ Ω | x2 < θq2

2 },
and every solution, ξt = (x1(t), x2(t)), starting in D3 has
the property ẋ1 > 0 and ẋ2 < 0. Taking a sector U3

in D3 that will form part of a neighbourhood of Φ(D),
all solutions starting in U3 will either reach one of the
switching domains D2 or D6 or go directly to D. The
transition from D3 and D1 to D in the STG result in sliding
modes along D2, with focal set Φ(D2) such that Φ(D2) ⊆
{x ∈ Ω | x1 > θq1

1 }. This is because Φ(D2) is defined
using a convex combination of φ(D1) and φ(D3), both of
which lie in the region Φ(D2) ⊆ {x ∈ Ω | x1 > θq1

1 },
hence Φ(D2) will also lie in this region. It follows that
solutions starting in U3 that reach D2 will slide along D2

until they reach D. Similarly, solutions starting in U3 that
reach D6 will slide along D6 until they reach D. Analogous
regions can be constructed in the other regulatory domains,
{D1,D7,D9}. From these sectors, {U1, U3, U7, U9}, in the
domains {D1,D3,D7,D9}, we can construct a neighbour-
hood U of Φ(D). Given any neighbourhood V of Φ(D), we
can construct such a neighbourhood U ⊂ V . From Lemma
2.1, the monotonic convergence of solutions means that all
solutions starting in a small enough U will remain in V .
The above reasoning shows that all these solutions eventually
converge to D and hence to Φ(D). This completes the proof
of Theorem 5.1. �



Below we state the general result in R
n for p switching

variables. The details are similar to the two dimensional case
(see [3]).

Theorem 5.2: Assume Ω ⊂ R
n. Let D ∈ Ds be a

switching domain of order p > 1 containing a singular
equilibrium set Φ(D) that satisfies Assumption 1. If for all
D′ ∈ R(D), there is a transition from D′ to D in the state
transition graph, then Φ(D) is weakly asymptotically stable
and Π(D) is asymptotically stable.

Corollary 4: Under the conditions of Theorem 5.2, if,
moreover, Φ(D) is a point, it is asymptotically stable.

There is no hope for proving more in the case when Φ(D)
is a set. To see that, let us suppose that n = 4, underwhich
condition Φ(D) can be a segment when D is of dimension
2. If this segment is not parallel to the axes, and if the γi

are not all equal, then there exist solutions starting from one
point φ1 of the segment and leaving the segment (but staying
in the rectangle Π(D)) to converge towards another point φ2

of the segment.
In the two-gene network of Figure 1, the switching domain

D19 satisfies the criteria of Theorems 5.1 or 5.2, since
each domain D′ ∈ R(D) = {D13,D15,D23,D25} has
a transition from D′ to D19. Hence Theorems 5.1 or 5.2
show that D19 contains an asymptotically stable singular
equilibrium point.

VI. DISCUSSION

Assumption 1 is crucial to most of the results presented
here. Assumption 1 is generic if the focal set is a point
(i.e. for regulatory domains or for switching domains in
R

2), in the sense that a specific relationship between the
independent parameters {θj

i }, {γi}, {κil} has to be specified
for Assumption 1 to be violated. However, in the case when
Φ(D) is a set, Assumption 1 is not generic anymore.

The qualitative simulation of genetic regulatory networks,
leading to the generation of the state transition graph for
PL models, has been implemented in the software tool
Genetic Network Analyzer (GNA). GNA has been used in
collaboration with experimental biologists for the analysis
of several genetic regulatory networks of biological interest:
the initiation of sporulation in Bacillus subtilis [4], quorum
sensing in Pseudomonas aeruginosa [21], and the nutritional
stress response in Escherichia coli [18]. Based on the work
presented in this paper, a module of GNA for identification
of all regular and singular equilibria and determination of
their stability could be developed.
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