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Route des Lucioles, BP93, F-06902, Sophia-Antipolis Cedex, France

email: bermond@sophia.inria.fr

bDept. of Mathematics and Statistics, University College of the Fraser Valley, Abbotsford,

B.C., Canada, V2S 4N2

email: joseph.yu@ucfv.ca

Abstract

We study the problem of designing a survivable WDM network based on covering

the communication requests with subnetworks that are protected independently from

each other. We consider here the case when the physical network is T (n), a torus of

size n by n, the subnetworks are cycles and the communication scheme is all-to-all

or total exchange (where all pairs of vertices communicate). We will represent the

communication requests by a logical graph: a complete graph for the scheme of all-to-

all. This problem can be modeled as follows: find a cycle partition or covering of the

request edges of Kn2 , such that for each cycle in the partition, its request edges can be

routed in the physical network T (n) by a set of vertex disjoint paths (equivalently, the

routings with the request cycle form an elementary cycle in T (n)). Let the load of an

edge of the WDM network be the number of paths associated with the requests using

the edge. The cost of the network depends on the total load (the cost of transmission)

and the maximum load (the cost of equipment). To minimize these costs, we will search

for an optimal (or quasi optimal) routing satisfying the following two conditions: (a)
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each request edge is routed by a shortest path over T (n), and (b) the load of each

physical edge resulting from the routing of all cycles of S is uniform or quasi uniform.

In this paper, we find a covering or partition of the request edges of Kn2 into cycles

with an associated optimal or quasi optimal routing such that either (1) the number

of cycles of the covering is minimum, or (2) the cycles have size 3 or 4.

Keywords: WDM networks, fault tolerance, protection by cycles, torus, cycle covering.

1 Introduction

This paper is motivated by the problem of designing an optical survivable WDM network,

where the protection is ensured by covering the family of communication requests by a set of

cycles. The subnetworks are chosen to be cycles in order to minimize the complexity of the

routing problem with full survivability. Given the failure of any single link, we can reroute

the traffic going through the failed link via the other part of the cycle. (More precisely one

can associate two wavelengths to each cycle of the covering: one for the normal traffic and

another as a spare one.) This problem was asked by France Telecom R & D (see [3] for more

details). Similar problems were also considered by several authors [6, 7, 8, 9].

We model the physical communication network by a graph, called the physical graph

and denoted by G. It is a symmetric digraph, but we will see that we only need to consider

the underlying undirected graph. The family of communication requests (or an instance of

communications) is modeled by another graph, called the logical (or virtual or request) graph

and denoted by I. The vertex set of the logical graph is the same as that of the physical

graph and the edges correspond to the requests between these vertices. We will suppose

that the requests are symmetric. Therefore, the logical graph will be a symmetric digraph.

Routing an instance consists of associating a directed path in the physical graph G to each

request (arc of I).

Finally we suppose that the routing of symmetric requests is done by symmetric routing

(that is the way done in backbone networks of telephone companies). The symmetry of the

routing implies that we can consider undirected graphs instead of symmetric digraphs for
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both the physical and logical graphs. Therefore, routing an instance consists of associating

an undirected path in the physical graph G to each (symmetric) request (edge of I). A

routing is called a shortest path routing if each path in the routing is a shortest path in the

physical graph G. The load of an edge of G is the number of paths of the routing which

contain this edge.

The survivability problem mentioned above can be modeled by finding a cycle partition

or covering of the edges of I with an associated routing over G. For the protection reason, or

minimizing the damage causing by the failure of the vertices, we have an additional constraint

which is defined as follows.

Definition 1.1. A routing is said to satisfy the Disjoint Routing constraint, or DR con-

straint, if the requests involved in a cycle of the covering are routed via vertex disjoint paths

(equivalently, their routings form an elementary cycle in the physical graph G).

Our aim is to minimize the cost of the network. The cost function of a network is a

complex function which depends on many parameters. The transmission cost depends on

the total load of the network. The equipment cost (which is the most important in particular

for local networks) depends on the size of the OADM (Optical Add-Drop Multiplexers) put

in the vertices, which itself depends on the load of the edges linked to the vertex.

We will try to find a routing which minimizes the total load (it suffices to use a shortest

path routing) and also makes the load on each edge as uniform as possible.

Definition 1.2. A routing is called optimal (resp. quasi optimal) if it satisfies the following

conditions:

(a) all paths are shortest paths,

(b) the DR constraint is satisfied,

(c) the load for the edges of G is uniform (resp. quasi uniform).

Remark. In some cases, it is impossible to have the same load on all edges and this happens

when the total number of edges in the paths of the routing is not divisible by the number of

edges in the physical graph. In this case, a uniform load means that the difference between
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the maximum and minimum load is one and a quasi uniform load corresponds to a difference

of two.

In summary, we are interested in finding a cycle partition of the edges of a logical graph

I such that the routing associated with the requests is optimal or quasi optimal.

Two other natural optimization criteria for the problem are: (1) minimize the number

of cycles in the partition (which is related to the problem of minimizing the number of

wavelengths used and the cost of transmission; see the remark at the end of the section)

and (2) minimize the length of the cycles (short cycles are easier to manage and in case of

failures, rerouting is easier).

In [3] and [4], the case is studied when the physical graph G is Cn, a cycle of length n,

and the logical graph I is Kn, which corresponds to the instance of communication called

total exchange or all-to-all, where each vertex wants to communicate with all the others

simultaneously. In this case, the DR constraint implies that the paths associated with the

routing of a request cycle form the Cn and they give a load 1 to each edge. So all the

optimization criteria are reduced to minimizing the number of cycles in the partition. We

determined the minimum number of cycles needed in an optimal covering and showed that

it could be realized by using only C3 and C4. We also studied the case where only C4’s are

used in the covering.

In this paper, another particular case of the general problem is considered. We assume

that the physical graph is a square torus T (n), which can be considered as the Cartesian

product of two Cn’s, and the logical graph is the complete graph Kn2 corresponding to

all-to-all communication.

Notice that for n odd, as the degree of all vertices of Kn2 is even, a possible optimal

solution is a cycle partition (instead of a cycle covering) which satisfies the requirements.

For n even, as each degree in Kn2 is odd, at least n2/2 edges (requests) have to be covered

twice in any cycle covering of Kn2 . The best we can do is to have a cycle partition of Kn2 +F ,

where F is a 1-factor, and in this case, for minimizing the load, the edges of the 1-factor

should be routed by paths of length one in T (n).
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The following two problems are considered:

Problem 1. Find a cycle partition (of the edges) of Kn2 (or Kn2 +F , where F is a 1-factor)

with an associated optimal or quasi optimal routing over T (n) such that the number of cycles

is minimized.

Problem 2. Find a {C3, C4}-cycle partition (of the edges) of Kn2 (or Kn2 + F , where F is

a 1-factor) with an associated optimal or quasi optimal routing over T (n).

Concerning Problem 1, we prove the following theorems.

Theorem A. Let n be odd. The minimum size of a cycle partition of Kn2 , with an associated

optimal routing over T (n), is exactly n(n2 − 1)/4.

Theorem B. Let n = 2k. There exists a cycle partition of Kn2 + F , where F is a 1-factor,

of size n3/4 + cn2 with an associated optimal routing over T (n) when k is odd and a quasi

optimal routing when k is even.

Remark: Theorem A gives an optimal solution, but Theorem B only gives a solution which

is asymptotically optimal with respect to the size of the partition as a lower bound on the

number of cycles is (n3 + 4)/4.

Concerning Problem 2 we prove the following theorems.

Theorem C. Let n be odd. There exists a {C3, C4}-partition of Kn2 with an associated

optimal routing over T (n).

Theorem D. Let n = 2k. There exists a {C3, C4}-partition of Kn2 + F , where F is a

1-factor, with an associated optimal routing over T (n) when k is odd and a quasi optimal

routing when k is even.

Remark: A related problem well studied in optical networks consists of finding the minimum

number of colors (wavelengths), denoted w(G, I), required to color the edges of the logical

graph I such that the paths associated with the requests having the same color are edge-

disjoint in the physical graph G. Many results have been obtained, in particular when I is a
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complete graph (all-to-all communication). For the torus, the value of w(T (n), Kn2) has been

determined to be n(n2−1)/8 if n is odd and n3/8 if n is even [1, 2, 5, 10]. When the physical

graph is Cn, the problem of determining w(Cn, I) is similar to that of finding a partition of

I into the minimum number of cycles with a routing satisfying the DR constraint. But for

the torus, these two problems are different. Indeed, if we consider the paths associated with

the requests having the same color, they are edge-disjoint, not vertex disjoint. Furthermore,

the solutions obtained do not consist of the union of vertex disjoint cycles. Therefore, the

previous results on w can not be used here.

2 Minimum cycle covering and its routing

In this section, we prove Theorem A and Theorem B. First some notation and lemmas are

introduced.

Throughout the paper, we will always assume that V (T (n)) = V (Kn2) = Zn × Zn,

where Zn is the set of integers modulo n. We will represent a vertex by its coordinates

(x, y) in the Cartesian plane, 0 ≤ x, y ≤ n − 1. A vertex (x, y) is adjacent to four vertices

(x, y + 1), (x, y − 1), (x + 1, y) and (x − 1, y) in T (n). An edge (x, y)(x + 1, y) is called

horizontal and an edge (x, y)(x, y + 1) is called vertical.

We denote by [a1, a2, ..., ak] and (a1, a2, ..., ak) a path of length k − 1 and a cycle of

length k respectively. Also [a1, a2, ..., ak] + p and (a1, a2, ..., ak) + p are the same as [a1 +

p, a2 + p, ..., ak + p] and (a1 + p, a2 + p, ..., ak + p), respectively. If P1 = [a1, a2, ..., as] and

P2 = [as, as+1, ..., aq] are two paths, then
⋃2

i=1 Pi = [a1, a2, ..., aq] is the concatenation of the

two paths. We define a vertex transformation α for T (n) (or Kn2) as follows:

α((x, y)) = (n − 1 − y, x) = (−y, x) (in fact, α is the rotation by π/2)

This operation can be easily extended to edges: α((x1, y1)(x2, y2)) = α((x1, y1))α((x2, y2)).

Similarly, we can extend this operation to a path or a cycle.
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Let ρ(T (n)) be the minimum number of cycles in a partition of Kn2 (when n is odd) or

Kn2 +F (when n is even and F is a 1-factor) satisfying the DR constraint (see Definition 1.1).

In the rest of this section, first we derive a lower bound for ρ(T (n)). Then we find a cycle

partition with an optimal routing over T (n) which attains the lower bound if n is odd, and if

n is even, a quasi optimal routing over T (n) which attains the lower bound asymptotically.

Lemma 2.1: Let n ≥ 2. Then

ρ(T (n)) ≥ n(n2 − 1)/4, if n is odd, and

ρ(T (n)) ≥ (n3 + 4)/4 if n is even.

Proof: Let u and v be two vertices of a graph. We denote by d(u, v) the distance or the

length of a shortest path in the graph between vertices u and v. Let u ∈ V (T (n)). We define

Du(i) = {v ∈ V (T (n)): d(u, v) = i}. Hence Du(i) ∩ Du(j) = ∅ if i 6= j.

Let n = 2k + 1. It is clear that |Du(i)| = 4i if 1 ≤ i ≤ k and |Du(i)| = 4(2k + 1 − i) if

k + 1 ≤ i ≤ 2k. So |Du(i)| = |Du(2k + 1 − i)| = 4i. The sum of the total distances between

any two vertices of T (n) can be computed as follows:

∑
u,v d(u, v) = (n2/2)

∑
v d(u, v)

= (n2/2)
∑2k

i=1 i|Du(i)|

= (n2/2)(2k + 1)
∑k

i=1 4i

= (n2/2)(2k + 1)4(1 + 2 + · · · + k) = n3(n2 − 1)/4.

One of our aims is to minimize the number of cycles in the covering of Kn2 . For each

cycle of the covering, the sum of the distances of the requests of each cycle is at most

n2 as the paths of the associated routing are vertex disjoint. Therefore, these paths will

use at most n2 edges of T (n). Hence, we have the lower bound for the size of the cycle

covering: ρ(T (n)) ≥ n(n2−1)/4. Note that this constraint also implies the degree constraint:

ρ(T (n)) ≥ (n2 − 1)/2.

Let n = 2k and u ∈ V (T (n)). Then |Du(i)| = 4i if 1 ≤ i ≤ k − 1, |Du(k)| = 4k − 2,

|Du(i)| = 4(2k − i) if k + 1 ≤ i ≤ 2k − 1 and |Du(2k)| = 1. The sum of the total distances

in T (n) is
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∑
u,v d(u, v) = (n2/2)

∑2k

i=1 i|Du(i)|

= (n2/2)[8k(1 + 2 + · · ·+ k − 1) + k(4k − 2) + 2k]

= 4k3n2/2 = n5/4

Recall that n2/2 request edges have to be covered twice and each of the associated routings

is a path of length at least one. Hence, at least n5/4 + n2/2 distances need to be covered by

the requests in Kn2. By the same argument as before, the routing of each cycle will use up

to n2 edges in T (n). Therefore the lower bound in this case is (n3 + 2)/4. �

We next show that when n is odd, the lower bound can be attained with an optimal

routing.

Proof of Theorem A: Let n = 2k+1. We first remark that if the above bound is attained,

then for each cycle of the covering of Kn2, the sum of the distances covered by the routing

(that is, the sum of the lengths of the paths used in the routing) in T (n) is n2. Therefore,

the routing of the cycle is an Hamilton cycle of T (n).

We partition the edge set of Kn2 into 2k(k + 1) sets as follows:

Ai,j = {(x, y)(x + i, y + j) : (x, y) ∈ T (n)}, where 0 ≤ i ≤ k and 1 ≤ j ≤ k, and

A′
i,j = {(x, y)(x + i, y − j) : (x, y) ∈ T (n)}, where 1 ≤ i ≤ k and 0 ≤ j ≤ k.

It is clear that these sets are disjoint, each set contains exactly n2 edges and these sets

form a partition of the edge set of Kn2 . Notice that if e ∈ Ai,j, then α(e) ∈ A′
j,i and

α(Ai,j) = A′
j,i.

The following lemma will allow us to pair two As,t’s (and, by rotation, two A′
s,t) such

that their edges can be partitioned into cycles.

Lemma 2.2. For 0 ≤ s ≤ k, 1 ≤ t ≤ k, let Cs,t = As,t ∪Ak−s,k+1−t. The edges of Cs,t can be

partitioned into n 2n-cycles with a shortest path routing giving a load of k on the horizontal

edges and k + 1 on the vertical edges of T (n).

Proof. Each set Cs,t can be partitioned into n 2n-cycles as follows:
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(0,0)

(0,1)

(1,0)

Figure 1: R0,1,0, R0,2,0 and R1,1,0 over T (5).

Cs,t,x =
⋃n−1

i=0 [(x, 0), (x + s, t), (x + k, k + 1)] + i(k, k + 1),

where 0 ≤ x ≤ n − 1.

Notice that each cycle here is obtained by concatenating n paths of length two. It is easy

to check that the Cs,t,x’s are edge disjoint as k and k + 1 are relatively prime.

For each Cs,t,x, we associate the routing

Rs,t,x =
⋃n−1

i=0 {[(x, 0), (x, 1), ..., (x, t), (x + 1, t), ...(x + s, t)],

[(x + s, t), (x + s + 1, t), ..., (x + k, t), (x + k, t + 1), ..., (x + k, k + 1)]} + i(k, k + 1)

See Figure 1 for the routings R0,1,0, R0,2,0, R1,1,0 over T (5) (the corresponding cycles are

those formed by the black vertices over the routings).

The routings defined above are shortest path routings. Furthermore, the routings asso-

ciated with the 2n edges (requests) of the cycle Cs,t,x are vertex disjoint. In fact, Rs,t,x is a

Hamilton cycle of T (n).

The routings corresponding to the n cycles Cs,t,x give a load k to the horizontal edges

and k + 1 to the vertical ones. �

Let s and t be given. Let C ′
s,t,x = α(Cs,t,x) with the routings R′

s,t,x = α(Rs,t,x). We can

partition the edges of C ′
s,t into n 2n-cycles with a load k + 1 on the horizontal edges and k

on the vertical ones. So Cs,t ∪ C ′
s,t can be partitioned into 2n 2n-cycles with a uniform load

k + k + 1 = 2k + 1 on each edge.
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To complete the proof, it suffices to note that the edge set of Kn2 can be partitioned into

(k2 +k)/2 = (n2−1)/8 sets, namely Cs,t C ′
s,t with 0 ≤ s ≤ b(k−1)/2c and 1 ≤ t ≤ k, plus if

k is even, s = k/2 and 1 ≤ t ≤ k/2. So we obtain a partition of 2n(n2 − 1)/8 = n(n2 − 1)/4

cycles with a uniform load on each edge of n(n2 − 1)/8. �

Now for the rest of the section, we assume that n = 2k . We give an asymptotic solution

with an optimal routing for k odd, and a quasi optimal routing for k even.

Proof of Theorem B: Let n = 2k. We note that some of the Ai,j and A′
i,j are identical in

this case, namely, A′
k,s = Ak,s and A′

s,k = As,k. Here we will use the sets Ai,j for 0 ≤ i ≤ k−1,

1 ≤ j ≤ k, Ak,k and A′
i,j, for 1 ≤ i ≤ k, 0 ≤ j ≤ k− 1. So we have only 2k2 +1 sets, 3 sets of

size n2/2 (A0,k, A′
k,0 and Ak,k) and 2k2 − 2 sets of size n2, and so altogether the n2(n2 − 1)/2

edges.

The idea of the proof is similar to that of the odd case. If k is even, we can use the fact

that k−1 and k+1 are relatively prime to each other, but for k odd, this will not be the case.

Furthermore, we have to use an extra 1-factor of Kn2 and altogether we obtain a quasi optimal

solution. We define a 1-factor F for this use. Let F = {(2p, q)(2p + 1, q) : 0 ≤ p ≤ k − 1,

0 ≤ q ≤ 2k−1} if k is even, and F = {(2p, q1)(2p+1, q1), (2p+1, q2)(2p+2, q2) : 0 ≤ p ≤ k−1,

0 ≤ q1 ≤ k − 1, k ≤ q2 ≤ 2k − 1} if k is odd.

First we deal with Ak,k ∪ F ∪ A0,k ∪ A′
k,0 in the following lemma which will be used also

in the next section.

Lemma 2.3. The edge set Ak,k ∪ F ∪ A0,k ∪ A′
k,0 can be partitioned into n2/2 cycles.

Furthermore, there exists a shortest path routing for the cycles such that the load on each

edge is uniform if k is odd and quasi uniform if k is even.

Proof. We partition the edges in Ak,k ∪ F and A0,k ∪ A′
k,0 into 4-cycles as follows.

For 0 ≤ p ≤ k − 1 and 0 ≤ q ≤ k − 1:

Cp,q = ((0, 0), (k, k), (k + 1, k), (1, 0)) + (2p, q)

Bp,q = ((0, 0), (k, 0), (k, k), (0, k)) + (p, q)
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In order to balance the load, we choose the following routings for the above cycles.

For 0 ≤ p ≤ k − 1 and 0 ≤ q ≤ k − 1:

RCp,q = {[(0, 0), (0, 1), ..., (0, k), (1, k), ..., (k, k)],

[(k, k), (k + 1, k)],

[(k + 1, k), (k + 1, k − 1), ..., (k + 1, 0), (k, 0), ..., (1, 0)],

[(1, 0), (0, 0)]} +(2p, q).

For 0 ≤ p ≤ dk/2e − 1 and 0 ≤ q ≤ k − 1:

RB2p,q = {[(0, 0), (2k − 1, 0), ..., (k + 1, 0), (k, 0)],

[(k, 0), (k, 2k − 1), ..., (k, k)],

[(k, k), (k + 1, k), ..., (0, k)]

[(0, k), (0, k + 1), ..., (0, 2k − 1), (0, 0)]} +(2p, q)

For 0 ≤ p ≤ bk/2c − 1 and 0 ≤ q ≤ k − 1:

RB2p+1,q = {[(1, 0), (2, 0), ..., (k + 1, 0)],

[(k + 1, 0), (k + 1, 2k − 1), ..., (k + 1, k)],

[(k + 1, k), (k, k), ..., (1, k)],

[(1, k), (1, k + 1), ..., (1, 0)]} + (2p, q)

With the above routings, the load on the vertical edges is k. For the horizontal edges, if

k is odd, the load is k on the edges (2r, x)(2r + 1, x), where 0 ≤ r ≤ k − 1, and k + 1 on the

rest; if k is even, the load is k + 2 on the edges (2r, x)(2r + 1, x), where k/2 ≤ r ≤ k − 1,

and k otherwise.

Note that by a counting argument, it is not possible to have the same load on every edge

in this case (recall that the routing consists only of shortest paths). Therefore, when k is

odd, the load of the routing is uniform and when k is even, it is quasi uniform. �

Lemma 2.4. Ak−1,1 ∪ A′
1,k−1 can be partitioned into 2n n-cycles with a uniform load k on

the edges.
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Proof. We partition As,1 into n n-cycles and associate the routings with them as follows:

For 0 ≤ x ≤ n − 1:

Cs,x =
⋃n−1

j=0 [(x, 0), (x + s, 1)] + j(s, 1)

Rs,x =
⋃n−1

j=0{[(x, 0), (x, 1), (x + 1, 1), ..., (x + s, 1)] + j(s, 1)}

The resulting load from this set of routings is s for all horizontal edges and 1 for all

vertical edges.

Now we consider A′
1,s. As A′

1,s = α(As,1), we partition A′
1,s by letting C ′

s,x = α(Cs,x)

and associate R′
s,x = α(Rs,x) as the corresponding routing. Then this gives a load 1 to the

horizontal edges and s to the horizontal edges.

Therefore, in total, we have 2n n-cycles and the associated routing gives a uniform load

s + 1 to each edge of T (n). �

Now we divide the rest of the proof of Theorem B into two cases.

Case 1: n = 2k and k is even.

Lemma 2.5. For 0 ≤ s ≤ k/2 − 1, 1 ≤ t ≤ k, except (s, t) = (0, k), the edges of

Cs,t = As,t ∪Ak−1−s,k+1−t can be partitioned into n 2n-cycles with a routing giving a load of

k − 1 on the horizontal edges and k + 1 on the vertical ones.

Proof. We partition As,t ∪ Ak−s−1,k−t+1 into n 2n-cycles and associate routings with them

as follows.

For 0 ≤ x ≤ n − 1:

Cs,t,x =
⋃n−1

j=0 [(x, 0), (x + s, t), (x + k − 1, k + 1)] + j(k − 1, k + 1),

Rs,t,x =
⋃n−1

j=0{[(x, 0), (x, 1), ..., (x, t), (x+1, t), ...(x+s, t)], [(x+s, t), (x+s+1, t), ..., (x+

k − 1, t), (x + k − 1, t + 1), ..., (x + k − 1, k + 1)]} + j(k − 1, k + 1)

To finish case 1, let C ′
s,t,x = α(Cs,t,x), R′

s,t,x = α(Rs,t,x) and C ′
s,t = α(Cs,t). Then Cs,t∪C ′

s,t

can be partitioned into 2n 2n-cycles with a uniform load of 2k.
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Note that the edge set of Kn2, except those edges in A0,k, A′
k,0, Ak−1,1, A′

1,k−1 and Ak,k,

can be partitioned into k2/2− 1 sets, namely, Cs,t ∪C ′
s,t with 0 ≤ s ≤ k/2− 1 and 1 ≤ t ≤ k

except (s, t) = (0, k). Altogether we have 2n(k2/2 − 1) = n3/4 − 2n cycles plus the n2/2

cycles of the partition of Ak,k ∪ F ∪A0,k ∪A′
k,0, and 2n n-cycles from Ak−1,1 ∪A′

1,k−1, giving

n3/4 + n2/2 cycles.

Case 2. n = 2k and k is odd. We first prove a lemma similar to Lemma 2.5.

Lemma 2.6. For 0 ≤ s ≤ (k − 3)/2, 2 ≤ t ≤ k, except (s, t) = (0, k), the edges of

Cs,t = As,t ∪ Ak−2−s,k+2−t can be partitioned into n 2n-cycles with an associated routing

giving a load of k − 2 on the horizontal edges and k + 2 on the vertical ones.

Proof. Consider Cs,t = As,t∪Ak−s−2,k−t+2. We partition this set into n 2n-cycles as following.

For 0 ≤ x ≤ n − 1:

Cs,t,x =
⋃n−1

j=0 [(x, 0), (x + s, t), (x + k − 2, k + 2)] + j(k − 2, k + 2),

Rs,t,x =
⋃n−1

j=0{[(x, 0), (x, 1), ..., (x, t), (x + 1, t), ...(x + s, t)],

[(x+s, t), (x+s+1, t), ..., (x+k−2, t), (x+k−2, t+1), ..., (x+k−2, k+2)]}+j(k−2, k+2)

Let C ′
s,t,x = α(Cs,t,x), R′

s,t,x = α(Rs,t,x) and C ′
s,t = α(Cs,t). Then Cs,t ∪ C ′

s,t can be

partitioned into 2n 2n-cycles with a uniform load of 2k. �

In this case, Cs,t∪C ′
s,t, where C ′

s,t = α(Cs,t), with 0 ≤ s ≤ (k−3)/2 and 2 ≤ t ≤ k, except

(s, t) = (0, k), covers all the edges of Kn2 except those of Ak,k, A0,k ∪ A′
k,0, Ak−2,2 ∪ A′

2,k−2,
⋃k−1

i=0 Ai,1∪A′
1,i and

⋃k

i=2 Ak−1,i∪A′
i,k−1. Now Ak,k, A0,k ∪A′

k,0 and F can be dealt by Lemma

2.3. For the others, we will need some more lemmas.

Lemma 2.7. For 2 ≤ s ≤ k, 0 ≤ t ≤ (k − 3)/2, except (s, t) = (k, 0), the edges of

As,t ∪ Ak+2−s,k−2−t can be partitioned into n 2n-cycles.

Proof. The proof is similar to Lemma 2.6 by exchanging the vertical edges and horizontal

edges. �
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Lemma 2.8. For 0 ≤ s ≤ (k−1)/2, 1 ≤ t ≤ k, except (s, t) = (0, k) or ((k−1)/2, (k+1)/2),

the edges of As,t ∪ Ak−1−s,k+1−t can be partitioned into 2n n-cycles.

Proof. The proof is similar to Lemma 2.6. However, as 2 divides both k − 1 and k + 1 in

this case, we obtain only n-cycles.

For 0 ≤ x ≤ n − 1:

C1
s,t,x =

⋃k−1
j=0 [(x, 0), (x + s, t), (x + k − 1, k + 1)] + j(k − 1, k + 1)

C2
s,t,x = Cs,t,x + (0, 1) and

R1
s,t,x =

⋃n−1
j=0{[(x, 0), (x, 1)...(x, t)(x + 1, t)...(x + s, t)],

[(x+ s, t)(x+ s+1, t)...(x+k − 1, t)(x+k− 1, t+1)...(x+k − 1, k +1)]}+ j(k− 1, k +1)

R2
s,t,x = R1

s,t,x + (0, 1). �

Similarly we have the following result.

Lemma 2.9. For 1 ≤ s ≤ k, 0 ≤ t ≤ (k−1)/2, except (s, t) = (k, 0) or ((k+1)/2, (k−1)/2),

the edges of As,t ∪ Ak+1−s,k−1−t can be partitioned into 2n n-cycles.

Proof. The proof is similar to Lemma 2.8 by exchanging the vertical edges and horizontal

edges.

Now we will use these lemmas to deal with the edges of Kn2 which are not covered by

the general construction (Cs,t ∪ C ′
s,t). For example, Ak−1,k−2 can be paired by Lemma 2.9

with A2,1 to be decomposed into n-cycles. Ak−1,k−3 can be paired with A3,1 by Lemma 2.7

to be decomposed into 2n-cycles. Ak−1,k can be paired with A0,1 by Lemma 2.8. For the

other cases, we have to delete some of the pairs used in the general construction and then

use them differently. For example, Ak−1,k−4 can be paired by Lemma 2.7 with A3,2. If we

delete the set C3,2, we can re-use Ak−5,k (previously paired with A3,2 by Lemma 2.6) and

pair it with A4,1 by Lemma 2.8.

In general, to deal with Ak−1,k−4p−α (with p such that k − 4p− α > 1 and α = 0, 1, 2, 3),

we add the pairings for i = 0, 1, ..., p − 1, Ak−1−4i,k+4i−4p−α and A3+4i,4p−4i+α−2 by Lemma

2.7, and delete A3+4i,4p−4i+α−2 and Ak−1−4(i+1),k+4(i+1)−4p−α used in Lemma 2.6.
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Then it remains to match Ak−1−4p,k−α with

if α = 2, A4p+2,1 by Lemma 2.9

if α = 3, A4p+3,1 by Lemma 2.7

if α = 0, A4p,1 by Lemma 2.8

if α = 1, A4p,2 by Lemma 2.8, then delete the pair A4p,2 and Ak−2−4p,k used with Lemma

2.6 and add the pair Ak−2−4p,k and A4p+1,1 by Lemma 2.8.

Doing so we have paired all Ak−1,i for 2 ≤ i ≤ k and all Ai,1 for 0 ≤ i ≤ k− 2. It remains

to deal with Ak−1,1 and A′
1,k−1, but Lemma 2.4 can be used here.

To finish case 2, we count the number of cycles in the partition obtained. In the above

regrouping steps, we use n extra cycles each time when we use Lemmas 2.8 and 2.9 which

never happens for α = 3, happens once for α = 0, 2 and twice for α = 1. Altogether we use

(k − 2)n (about n2/2) cycles. Therefore, we have n3/4 + c(n2) cycles in this case. Hence,

the size of the partition meets the lower bound asymptotically. �

Remark: By choosing the 1-factor F differently, we can have a cycle partition with an

associated routing where the difference between the maximum and minimum loads is 1.

However the edges of F will need longer paths to route. Recall that in the above construction

the edges in F are all routed by paths of length one which is optimal; by a counting argument,

it is impossible to achieve the same load for all edges.

3 Small cycle covering and its routing

In this section, we will prove Theorem C and Theorem D.

Proof of Theorem C: Let n = 2k +1. We define Ai,j and A′
i,j as in Theorem A in the last

section, but define some new sets from these sets as follows.

Let Bi = A′
i,0

⋃
A0,i, Ci = Ai,i

⋃
A′

i,i and D{i,j} = Ai,j

⋃
Aj,i

⋃
A′

i,j

⋃
A′

j,i, where 1 ≤ i 6=

j ≤ k.
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Note that D{i,j} = D{j,i} with 1 ≤ i < j ≤ k, from the set notation. Hence the Bi’s, Ci’s

and D{i,j}’s form a partition of the edge set of Kn2 .

We remark that α(Ai,j) = A′
j,i.

Lemma 3.1: Let n = 2k + 1. The following edge sets can be partitioned into 2n2 C3’s or

C4’s:

(1) D{i,j} ∪ D{i,r},

(2) Ci ∪ Cj ∪ D{i,j},

(3) Bp ∪ Bq ∪ D{i,j} with p + q = 2i or p + q = 2j,

(4) Bp ∪ Bq ∪ Br with p + q + r = n, where p, q, r are distinct,

(5) B2i ∪ D{i,j}, and

(6) Cp ∪ D{i,j} and Ci ∪ D{j,p} with i + j = p.

Furthermore, in each case there exists a shortest path routing over T (n) and the resulting

load is uniform.

Proof. We give a proof in detail for (1) only and for the rest, we will give the cycles and

show the figures of the corresponding routings as they are very similar to (1). For (1),(2) and

(3), the sets are partitioned into 4-cycles and for (4), (5) and (6), the sets are partitioned

into 3-cycles.

(1) For 0 ≤ x, y ≤ n − 1 (and for fixed i, j and r):

let Cx,y = ((x, y), (x + i, y + j), (x + 2i, y), (x + i, y − r), (x, y))

and C ′
x,y = α(Cx,y) = ((−y, x), (−y − j, x + i), (−y, x + 2i), (−y + r, x + i), (−y, x)).

Let the corresponding routing be

Rx,y = {[(x, y), (x, y + 1), ..., (x, y + j), (x + 1, y + j), ..., (x + i, y + j)],

[(x + i, y + j), (x + i + 1, y + j), ..., (x + 2i, y + j), (x + 2i, y + j − 1), ..., (x + 2i, y)],

[(x + 2i, y), (x + 2i, y − 1), ..., (x + 2i, y − r), (x + 2i − 1, y − r), ..., (x + i, y − r)],

[(x + i, y − r), (x + i − 1, y − r), ..., (x, y − r), (x, y − r + 1), ..., (x, y)]}
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Figure 2: Rx,y and R′
x,y for case 1.

and R′
x,y = α(Rx,y) (see Figure 2).

Note that the labels in the figures are the distances for the corresponding paths in the

routings which are also shortest path routings.

The cycles Cx,y, 0 ≤ x, y ≤ n − 1, form a partition of Ai,j ∪ A′
i,j ∪ Ai,r ∪ A′

i,r and the

cycles C ′
x,y, 0 ≤ x, y ≤ n − 1, form a partition of Aj,i ∪ A′

j,i ∪ Ar,i ∪ A′
r,i. Hence we have a

cycle partition of D{i,j} ∪ D{i,r}.

In T (n), the Rx,y, 0 ≤ x, y ≤ n− 1, contribute 4i to the load of each horizontal edge and

and 2(j + r) to the load of each vertical edge, and the R′
x,y, 0 ≤ x, y ≤ n − 1, contribute

(by rotation) 2(j + r) and 4i to the load of each horizontal and vertical edge, respectively.

Altogether, the routings corresponding to the 2n2 4-cycles contribute a load of 2(2i + j + r)

to each edge of T (n).

(2) Let Cx,y = ((x, y), (x + i, y + i), (x + i + j, y), (x + i, y − j), (x, y)),

and C ′
x,y = ((−y, x), (−y − i, x + i), (−y, x + i + j), (−y + j, x + i), (−y, x)).

The corresponding routings are shown in Figure 3.

For parts (3), (4), (5) and (6), we only give in Figure 4 the basic cycles and the routings

corresponding to Cx,y as the routings corresponding to C ′
x,y are just the transformation of

Cx,y under α.
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Figure 4: Rx,y for cases 3, 4, 5 and 6.

(3) Assume p + q = 2i. Let Cx,y = ((x, y), (x + p, y), (x + p + q, y), (x + i, y − j), (x, y))

and C ′
x,y = α(Cx,y).

For p + q = 2j, we just change i to j in the above.

(4) Let Cx,y = ((x, y), (x+p, y), (x+p+q, y), (x, y)) (as p+q > r, the routing will be formed

by shortest paths) and C ′
x,y = α(Cx,y).

(5) Let Cx,y = ((x, y), (x + 2i, y), (x + i, y − j), (x, y)) and C ′
x,y = α(Cx,y)

(6) Let Cx,y = ((x, y), (x + i, y − j), (x + p, y − p), (x, y)) and C ′
x,y = α(Cx,y).

Similarly, the result is true for Ci ∪ D{j,p}. �

Now we are able to prove Theorem C. Recall that n = 2k + 1.

Case 1: k is even. Assume k = 4h or 4h + 2. First we group the following edge sets:

B4q+1 ∪ B4q+3 ∪ D{2,4q+2}, 1 ≤ q ≤ h − 1

B4q+2 ∪ B4q+4 ∪ D{2,4q+3}, 1 ≤ q ≤ h − 1

C2p+1 ∪ C2p+2 ∪ D{2p+1,2p+2}, 0 ≤ p ≤ 2h − 1
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If k = 4h, we add B1 ∪ B3 ∪ D{2,4h} and B2 ∪ B4 ∪ D{2,3}.

If k = 4h + 2, we add B4h+2 ∪ B4h+1 ∪ B2, B1 ∪ B3 ∪ D{2,4h+2}, B4 ∪ D{2,3}

C4h+1 ∪ D{1,4h} and C4h+2 ∪ D{1,4h+1}.

By Lemma 3.1, these sets can be partitioned into either 3-cycles or 4-cycles.

We now show that the remaining D{i,j}’s can be grouped by pairs which can be dealt

with using Lemma 3.1(1). It suffices to show that for a given i, there are an even number of

D{i,j}’s with i < j (or an even number of j values).

If i = 1, for k = 4h, there are 4h− 2 j values as 3 ≤ j ≤ k, and for k = 4h + 2, there are

4h − 2 j’s as 3 ≤ j ≤ k − 3 and j = 4h + 2.

If i is odd and i ≥ 3, there are k − i − 1 j’s as i + 2 ≤ j ≤ k. It is clear that k − i − 1 is

even as k is even and i is odd.

If i = 2, j = 4q, 4q +1, where 1 ≤ q ≤ h−1 if k = 4h, and where 1 ≤ q ≤ h if k = 4h+2.

If i > 2 and even, there are k− i j values, namely those with i+1 ≤ j ≤ k and it is clear

that k − i is even here.

In each case, the number of j values for a given i is even, and we can do the pairings and

decompositions using Lemma 3.1(1).

Case 2. k is odd. Let k = 4h + 1 (h ≥ 2) or 4h + 3 (h ≥ 1). In both cases, we group the

sets as follows:

B4q ∪ B4q+2 ∪ D{2,4q+1}, where 2 ≤ q ≤ b(k − 2)/4c

B4q+1 ∪ B4q+3 ∪ D{2,4q+2}, where 2 ≤ q ≤ b(k − 2)/4c

C2p ∪ C2p+1 ∪ D2p,2p+1, where 4 ≤ p ≤ bk/2c

For k = 4h + 1, we also add:

B2 ∪ B4h ∪ B4h+1

B1 ∪ B3 ∪ D2,4h+1, B4 ∪ B6 ∪ D{4,5}, B5 ∪ B7 ∪ D{2,6}

C3 ∪ D{1,2}, C1 ∪ C4 ∪ D{1,4}, C2 ∪ C5 ∪ D{2,5}, C6 ∪ C7 ∪ D{6,7}
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For k = 4h + 3, we add:

B2 ∪ D{1,4},

B1 ∪ B3 ∪ D{2,4h+3}, B4 ∪ B6 ∪ D{4,5}, B5 ∪ B7 ∪ D{6,7},

C3 ∪ D{1,2}, C4 ∪ D{1,3}, C7 ∪ D{2,5}, C1 ∪ C5 ∪ D{1,5}, C2 ∪ C6 ∪ D{2,6}.

When k is even, we can check that for each fixed i, the number of remaining D{i,j}’s is

even. Then we use Lemma 3.1(1) to partition them into 4-cycles.

Now we deal with the cases when k = 3, 5.

When k = 3, we apply Lemma 3.1 to B1∪B3∪D{2,3} and C1∪C3∪D{1,3} and decompose

B2 ∪ C2 ∪ D{1,2} into 3-cycles as follows:

For 0 ≤ x, y ≤ n − 1, ((x, y), (x + 1, y + 2), (x + 2, y), (x + 2, y − 2), (x, y)).

It is easy to see that we can attach shortest path routings to these cycles.

When k = 5, we use B2 ∪ B4 ∪ B5, B1 ∪ B3 ∪ D{2,3}, C1 ∪ C4 ∪ D{1,4},

and C2 ∪ C5 ∪ D{2,5}, C3 ∪ D{1,2}, D{1,3} ∪ D{1,5}, D{2,4} ∪ D{3,4}, D{3,5} ∪ D{4,5}.

Therefore, when n is odd, we have a partition of the edges (requests) into small cycles

and the associated routings are formed by shortest paths, where the load on the edges of

T (n) is uniform. �

In the case of n even, it is clear that Kn2 can not be partitioned into cycles as the degree

of each vertex is odd. Instead, we will consider Kn2 + F where F is a 1-factor defined in the

last section. First we introduce two similar lemmas as in the case when n is odd.

Before we show the next lemma, we first remark that when n = 2k, Ai,k = A′
i,k and

therefore D{i,k} = Ai,k ∪ Ak,i and Ck = Ak,k.

Lemma 3.2. Lemma 3.1 is valid for n = 2k if none of the subscripts is k.

Proof. The proof is the same as Lemma 3.1.
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x,y and R2

x,y for Lemma 3.3, and Rx,y for Lemma 3.4.

Lemma 3.3. If n = 2k and 1 ≤ i ≤ k − 1, then Bk−i ∪ Ck−i ∪ D{i,k} can be partitioned

into 2n2 3-cycles. There exists a shortest path routing over T (n) and the resulting load is

uniform.

Proof. The proof is the same as before, so we will only list the basic cycles.

For 0 ≤ x, y ≤ n − 1 (and for fixed 1 ≤ i ≤ k − 1):

C1
x,y = ((x, y), (x + k − i, y), (x + k − i, y − k + i), (x, y))

C2
x,y = ((x, y), (x + k, y − i), (x + i, y − k), (x, y)).

The cycles C1
x,y and C2

x,y form a partition of Ak−i,k−i ∪Bk−i and D{i,k} ∪A′
k−i,k−i, respec-

tively, for 1 ≤ i ≤ k − 1.

See Figure 5 for the routings corresponding to the cycles Cx,y and C ′
x,y. �

Now we prove Theorem D which is the even version of Theorem C.

Proof of Theorem D. Let n = 2k. We first partition the edges of Kn2 except the ones in

Ck ∪ Bk.

Case 1: k ≡ 1, 2 (mod 4). Consider the groups Bk−i ∪ Ck−i ∪ D{i,k}, 1 ≤ i ≤ k − 1.

By Lemma 3.3, they can be partitioned into 3-cycles. We claim that the remaining D{i,j},

1 ≤ i < j ≤ k − 1, can be paired and therefore, by using Lemma 3.1(1), we can partition

them into 4-cycles.

Assume k ≡ 1 (mod 4). If i is even, then there are even number of j ′s such that

i + 1 ≤ j ≤ k − 1. If i is odd, then first we pair the D{i,k−1} (there are an even number of
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odd i as 1 ≤ i ≤ k − 2), and then for fixed odd i, there are an even number of j’s such that

i + 1 ≤ j ≤ k − 2.

A similar argument can be applied to the case when k ≡ 2 (mod 4) by interchanging

the odd and even i case.

Case 2: k ≡ 0, 3 (mod 4). We can not do exactly the same as in case 1 as we have an odd

number of D{i,j} to be paired. We will need the following lemma.

Lemma 3.4. If n = 2k, 1 ≤ i, j, p ≤ k − 1 and i + j = k, then Bk−p ∪ D{p,k} ∪ D{i,j} can be

partitioned into n2 4-cycles with a shortest path routing of uniform load over T (n).

Proof. We will only list the basic cycles as before. For 0 ≤ x, y ≤ n − 1, define cycles

Cx,y = ((x, y), (x + k, y + p), (x + k − i, y + p − j), (x, y + p − k), (x, y))

and C ′
x,y = α(Cx,y). See Figure 5 for the routing of Cx,y. �

To finish the proof for k ≥ 7, consider the groups:

Bk−i ∪ Ck−i ∪ D{i,k} for 2 ≤ i ≤ k − 2

B1 ∪ D{k−1,k} ∪ D{2,k−2} and Bk−1 ∪ D{1,k} ∪ D{3,k−3}

C1 ∪ Ck−1 ∪ D{1,k−1}

They are decomposable by Lemmas 3.2, 3.3 and 3.4.

Now we only need to deal with
⋃

1≤i<j≤k−1 D{i,j} except D{1,k−1}, D{2,k−2} and D{3,k−3}.

This gives all together (k−2)(k−1)/2−3 sets, an even number of D{i,j} which can be easily

paired by Lemma 3.2.

It remains to deal with k = 3, 4.

When k = 3, consider B1 ∪ B2 ∪ D{1,3} ∪ D{2,3} and C1 ∪ C2 ∪ D{1,2}.

When k = 4, consider C2 ∪D{1,3}, C3 ∪D{1,2}, B1 ∪D{2,4} ∪D{3,4}, D1,4 ∪C1 ∪A2,3 ∪A′
3,2

and B2 ∪ B3 ∪ A3,2 ∪ A′
2,3.

The only edge set we have not dealt with is Bk ∪ Ck ∪ F . By using Lemma 2.3, these

edges can be partitioned into n2/2 4-cycles and the associated routing gives a uniform load
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(or the difference between the maximum and the minimum loads is 1) if k is odd, and a

quasi uniform load when k is even. Hence we have a {C3, C4}-partition of Kn2 + F with an

associated optimal routing if k is odd, or a quasi optimal routing if k is even over T (n).

4 Conclusion

We have considered the problem of designing a survivable WDM network for all-to-all com-

munication in a network based on covering the initial network with subnetworks that are

protected independently from each other. We give optimal, quasi optimal or asymptotically

optimal solutions for the case when the network is a square torus and subnetworks are cy-

cles. We would like to improve the asymptotic optimal solution, at least to obtain a solution

which differs from the optimal one by some constant. It will also be interesting if we can

extend similar results to other network structures.
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d’onde, PhD thesis, Université de Nice Sophia-Antipolis, January 2000.

23



[3] J-C. Bermond, L. Chacon, D. Coudert, and F. Tillerot, A note on cycle covering, ACM

Symposium on Parallel Algorithms and Architectures – SPAA, Crete, July 2001, pp.

310-311.

[4] J.-C. Bermond, D. Coudert, and M.-L. Yu, On DRC-covering of Kn by cycles, Journal

of Combinatorial Designs 11 (2003), 100-112.

[5] J.-C. Bermond, L. Gargano, S. Perennes, A. Rescigno, and U. Vaccaro, Efficient col-

lective communications in optical networks, Proc. 23nd ICALP96, Lecture Notes in

Computer Science 1099, Springer Verlag, Paderborn, Germany, 1996, pp. 574-585.

[6] T. Eilam, S. Moran, and S. Zaks, Approximation algorithms for survivable optical

networks, The 14th International Symposium on Distributed Computing (DISC), 2000,

pp. 104-118.

[7] G. Ellinas, A. Hailemariam, and T. Stern, Protection cycles in mesh WDM networks,

IEEE Journal on Selected Areas in Communications 18 (2000), 1924-1937.

[8] O. Gerstel, P. Lin, and G. Sasaki, Wavelength assignment in a WDM ring to minimize

system cost instead of number of wavelengths, PROC IEEE INFOCOM, 1998, pp.

94-101.

[9] E. Limal, B. Mikkelsen, and K.E. Stubkjaer, Building WDM wide area resilient network

from 4-node semi-mesh and mesh sub-networks, IEEE International Conference on

Communication (ICC) , Montreal, Canada, June 1997, pp. 1311-1319.

[10] H. Schroder, O. Sykora, and I. Vrt’o, Optical all-to-all communication for some product

graphs, Proc. (SOFSEM)’97: Theory and Practice of Informatics, Lecture Notes in

Computer Science 1338, Springer, Berlin, 1997, pp. 552-562.

[11] F. Tillerot, E. Didelet, A. Daviaud, and G. Claveau, Efficient network upgrade based

on a WDM optical layer with automatic protection switching, OSA Optical Fiber Com-

munications Conference (OFC), San Jose, CA, USA, 1998, pp. 296-297.

24


