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ABSTRACT Let & be a graph ( divected or not ) with k
vertices, then an ( n,k,) ) G-design in an edge disjoint decomposition
of the complete ( directed or not ) multigraph i NM or X K into
subgrapha isomorphic to G . G-designs are a gemeralization of the well
known B.I.B.D., which correspond to the case G = wx . )

The problem is to determine for what values of
the parameters n and A there ewists an ( m,k,A ) G-design where G
i8 a given graph. First we give a survey concerning thie problem ; then
we indicate the gemeral methods which are used to prove the existence

of G-designs.
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'I. DEFINITIONS AND INTRODUCTION

In what follows n,k,A will be positive integers with n > k and G
will always denote a graph with k vertices ( none of them isolated )

and e edges. Definitions not given here can be found in Berge's book [B1]

I.1. 1f A Nﬁ denotes the complete multigraph with n vertices and any 2
distinct vertices joined by exactly A edges, them am ( n,Kk,A ) G-design
is an edge disjoint decompoaition ( that is a partition of the edges )
of A x: into subgraphs fsomorphic to G. ( In what follows we will
omit ‘edge disjoint' ). The G~designs have been introduced by P.Hell
and A.Rosa [H6]. In the particular case where G is the complete graph
Wwwms ( n,k,\ ) G-design is nothing else than an ( n,k,A ) B.I.B.D.
( balanced incomplete block design ) ( see M.Hall fm1l ).

1f furthermore each vertex belongs to exactly r of these subgraphs

then the G-design is said to be balanced.

1.2. Remark : If G is regular ( d(x) = c for every vertex x of G ), it
is easy to see that the G-design is balanced ( that is for example the

case if G = R ).

1.3. Another definition of a G-design ( similar to the classical
definition of a B.I.B.D.) can be given by using the notion of G-blocks.
{ See P.Hell and A.Rosa [H6] ). In a block considered as a set of
elements any two distinct elements are either linked or unlinked. The
adjacency matrix M(B) = awwuv of a block B with k elements is a
symmetric matrix of order k with zero diagonal , where WWM = ] if the
elements i and j are linked in B and O otherwise. A block B is said to
be a G-block if its adjacency matrix is equivalent to that of G. Thus
an { n,k,x ) G-design ia an arvangement of n clements into b G=blocks
such that every G-block contains k elements ( satisfied automatically )

and any two distinct elements are linked in exactly ) G-blocks

I.4. A similar definition holds for directed graphs. If G is a
directed graph with k i * : i

- g w wmnnwomm and A W: denotes the complete directed
multigraph with n vertices and any two distinct vertices x and y joined
by exactly A arcs (x,y) and A arcs (y,x) then an ( nykyh ) Gedesign s
a partiti ] * into s 2 A ,

2 on of the arcs of A NM into subgraphs Zsomorphic to G.

If furthermore each vertex belongs to exactly r of the subgraphs

then the G-design is said to be halanced. In particular if G is
"strongly regular" ( that is a+ﬁxv =d (x) = ¢ for every vertex x of G)

then the G-design is balanced.

I.5. Examples.

a. The projective plane of order 2 is a balanced (7,3,1) Ru:mmmww:.
A o . . . . .
decomposition of WN into triangles is given by the following

triangles { (i,i+2,i+4), 0 £ 1 <6} where the numbers are to be
taken modulo 7.

b. Fig. 1. shows an example of a (4,3,1) wula@m»m: ( wu being the

path with 3 vertices ). A (4,3,1) wulmwmwmn can never be balanced : see

the necessary condition.

c. Fig. 2., shows an example of a (4,3,1) wuxmmmwma (
balanced ).

automatically

I.6. Remarks. The following propositions are simple consequences of

the definitions.



1.6.1. If there exists an ( n,k,\y ) G-design and an ( nk,hg )
G-deaign then there existe an ( n,K,pry + qhp } G~design.

1.6.2. Let G* be the directed graph obtained from G by associating to
each edge of G two opposite arcs. The existence of an ( nyk,\ )
G ~design is equivalent to the existence of an ( n,k, A ) G*~design.

1.6.3. Let % be an antieymmetric divected graph obtained from a

simple graph G by giving an orientation to the edges of G. If & is

ieomorphic to its opposite & , the emistence of an ( n,k,x ) G-design

implies the existence of an { nyk,n ) G-design.

The contrary is false : we have seen the existence of a (4,3,1)

= } but there is no (4,3,1) nuxmmmwms ( see

3
the necessary conditions ).

~design ( example I.5.c.

1.6.4. ILet O be an antisymmetric directed graph, and G the underlying
wndivected graph ( obtained by deleting the orientation ), the existence
of an (n,k,2) B-design irplies the extstence of an (n,k,2)) G-design.

The contrary is false : there exists a (6,3,2) Nulmmmwm: ( see
M.Hall [H1] ) but there exists no (6,3,1) dwaammwma ( see [B2]).

1,7.Necessary conditions of existence of an (n,k,)) G-design @

Proposition : If there exists an (n,k, A} G~design ( where G is an
wndirvected graph with k vertices and e edges ) then
(1) Anln-1) ® 0 ( mod 2e )
(12) An=1) 5 0 ( mod d )
where d is the g.c.d. of the degrees of the vertices of G.
Moreover if the G-design is balanced then
(ii1) Ak{n-1) = 0 ( mod 2e ) .

Proof : Let b be the number of subgraphs ( blocks ) of the G-design :
b = An(n-1)/2e
(i) The number of edges of G must divide the number of edges of

AK . ( We can say also that b must be an integer ).
n

(ii) Let au., » 15 i £k , be the degrees of the vertices of C ;

each vertex x of xz mugt appear with degree mw in o, subgraphs

of the decomposition ( for 1 < i < k ) so that

'3
A (n~1) n.mwgw mw

Thus the g.c.d. of the (d.) divides A(n~1).

(iii) We have immediately bk = nr and thus r = Ak(n-1)/Ze must be

an integer.

I.8. Remarks :
a., If G is regular then (iii) is equivalent to (ii). ( That pives

a verification of remark TI.2. ).

b,  (iii) + (i) # (ii).
Example : n =10, k = 6, e = 9, X = 1, G = , d = 2,

~

1.9. If G is a directed graph , we have the following necessary

conditions, which proofs ( identical to the non directed case ) are

left to the reader :

Proposition : If there exists an (n,k,\) G-design (where ¢ 1is a
directed graph with k vertices and e arca ) then
(z) xn (n=1) = 0 ( mod e )
(%) A (n=1) = 0 ( mod d* )
A (n=1) = 0 ( mod d~ )

where d° «%&mnw d ) is the g.c.d. of the out degrees ( xaaw§ in
degrees ) of the vertices of G.
Moreover if the G-design is balanced
(222) Ak (n-1) =0 ( mod e ).

I.10. Existence theorem : ( R.M.Wilson [W5] )
For a given graph G (undirected) and a given X , the
necesgary conditions of existence of G-designs (£) and (i1) given in

1.7. are sufficient for all sufficiently large integers = .



I.11. Remark : If G = xw this was stated as conjecture in M.Hall

{H1, p.248) and has been proved by R.M.Wilson ([w2] and [W3]). If

A = 1, this was stated as conjecture by P.Frdds and J.Schonheim in {1}

and proved by them for k = 2,3,4 [E1], and proved for every k and

n= i (mod 2e) by R.M.Wilsom [W3].

1.12. 1f G is a directed graph, the necessary conditions (i) and

(ii) given in 1.9. are not mcmmwowmnnmonmwwmnmvvmm.

R.M.Wilson [W5] has given necessary conditions (more complicated)

which are "asymptotically sufficient”.

T.13. In what concerns the existence of balanced G-designs, there exist

te values of n for which the necessary conditions given in 1.7.

infini
private communication at

or 1.9. are not sufficient. Recently, Wilson [
this conference] has also found necessary and "asymptotically

sufficient” conditions for the existence of balanced G-designs.

1.14, In what follows we will first give a survey of the "exact”
results known for the existence of G-designs ( balanced or not )
( part II ) and then we will jindicate the methods to prove the

existence of such G-designs ( parts III and IV ).

II. SURVEY OF THE RESULTS CONCERNING THE EXISTENCE
OF G-DESIGNS

We shall examine successively different classes of graphs G .

I1.1. G is the complete graph with k vertices ww -

In this case, a mw|mmmwm§ is nothing else than a B.I.B.D.
which has been well studied in the litterature. We do not intend to
give a survey of this case. The reader interested can find a survey

and references on this problem in the recent articles of H.Hanani [H4]

and R.M.Wilson [W3] .

For example, the necessary conditions
(1) An{n~1) = O (mod k(k~1))
(ii) A{n~1) = 0 (mod (k-1))
have been shown to be sufficient
- for k =3,4,5 (except for n = 15, A = 2) and for other cases
( see the survey of H.Hanani [H4] )
- for =n large enough ( see R.M.Wilson [W3] )

11.2. i i i
H G is a star mx (with k vertices and k-1 edges).

a. vwsmmmpmum have been studied by P.Cain [C1], C.Huang [HI0] and
A.Rosa [R2] . C.Huang [HIO] has proved that an (n,k,1) S ~design

. . . K o
exists if and only if n(n-1) = 0 (mod 2(k~1)) and n > 2(k~1).

b. Bal S, - i cud i

alanced nw design have been studied by C.Huang and A.Rosa [H8],
and C.Huang [H9] who haveproved that a balanced (n,k,A) mriammmmc
exists if and only if A(n-1) = 0 (mod 2(k~1)) . |

Ir.3. G _is a path P (with k vertices and k-I edges).

k

) UNSMMMMMMMQmMWMMMMwmzmmMMMmemmn studied under the :wam of

3 . ) results have been obtained by
J.F.Lawless [L1,12] , S.H.Hung and N.S.Mendelsohn [Hi5] , P.Hell and
A.Rosa [H6] and in [B4] . Only recently C.Huang [H11] has solved
completly the problem by proving that a balanced (n,k,x) P -design
exists if and only if Ak(n~1) = O (mod 2(k~1)). :

11.4. G i i ) i i
is a directed path mr (with k vertices and (k-1) arcs).

Results concerning the existence of balanced Wx;ammwmsm appear
in [B4] . In particular it is proved that a balanced (n,k,A ) kg ~design
- — 3 F ) -
exists for k = 3,4,5,6 if and only if Aln~1) =0 (mod k-1) except
for k=3 =n, Xxoddand k=5=mn, A =1,
It is al P ign wi
so proved that a balanced (n,k,1) 1rimmmwm5 with k even

existg if and only if n-1 = Q (mod k-1)



Partial results have been obtained for the existence of balanced

{n,k,1) wwsammwmz with k odd but a complete solution depends on the

o

proof of the following conjecture :
" For k odd, k 2 5, there exists a (k,k,1) WWimmmwwz ( which is
automatically balanced )". ( The case k even is obvious ).

It has been pointed out by N.S5.Mendelsohn [M1] that the existence
is equivalent to the existence of complete latin square’ of order k .
The conjecture has been proved by using sequenceable groups for k = 21,

( §.S.Mendelsohn {Mi1] ), k = 27 (A.D.Keedwell ix11), k = 39, 55, 57

( L.L.Wang [W1] ) and for k =7, 9, 1i, 13, 15, 17 ( See [B4,B5] ).

¥or more details concerning this problem and related problems,

see the book of J.Denes and A.D.Keedwell ( [Di] , chap. 2 and 9 )

1I1.5. G is a cycle nx ( with k vertices and k edges ).

A nw is automatically balanced ( see remark I.2. ). It has been
proved that an (n,k,1) owlammwmn exists if
- k=0 { mod 4 ) and n = 2pk + 1
- ko= 2 {mod &4 ) and n = 2pk + 1
- k odd and n =2pk + 1 or m = 2pk +k

( A.Kotzig [K2])
{ A.Rosa [R&4] )
( A.Rosa [R3] ).

Necessary and sufficient conditions have been obtained for small

values of k . Exactly it has been proved that an (n,k,2) owimmmwmp

exists if and only if
( mod 2k )

( mod 2 )

(i) A n (n-1) = 0
(ii A (n-1) = 0
-~ for k=4, 5, 6 by C.Huang and A.Rosa [H12]
- for k=4,5, 6, 7, 8 in [B5,B6] with different proofs,
The case k = 3 is well known, an (n,3,}) ouuammwm= being nothing

else than a Steiner triple system.

11.6. G is a directed circuit Mx ( with k vertices and k arcs ).

-+ .
It has been proved that an (n,3,1) ou;amm»m: exists if and only if

n {n-1) = O (mod 3) and u # 6 , independently by R.H.Bruck [B7],

N.S.Mendelsohn [M2] and in [B2].A short proof can be found in [B3,B4].

- 60 -

Hﬁ T«uw LHWO _uﬂ@: uzofwmm ﬁrnwﬁ the neces m.:V\ condi 18 ( Xlstence
(8] 1o [ exX1ste

of an (n,k,A) nxlmmm»wz

. An (n-1) =0 ( mod k )
1s sufficient
~ for k 1
: rkeven, 4 <k <16 and A =1 in [B4 or B5], except the cases
=n =4 ,k=n=6;for k = 4 see also J.Schonheim [S1] .
= for k=5 and A =1 in [B5,M3]
- for k = va wher i i
R ‘e pis aprime , and A = | in [S1] , and in

[M3] for k = 7.
- for 3 <k £8 and A > 2 in [B4] and [B6] ,

It has also been shown that an (n,k,1) mx;mmmmms exists if n s
a power of a prime and n(n-1) = 0

M.Milgram [H5) and if n = 0 or 1

( mod k ) ( B.Hartnell and
(mod k ) for k odd ([$2]).

II.7. G is a small graph with k vertices, 3 <k < 5,

An extensive study on the existence of G-designs ( balanced or
not ) for small graphs G ( with 3, 4, 5 vertices ) has been done

by J. " .
¥y Schonheim, A.Rosa, C.Huang and the two authors. The results will

appear in forthcoming papers.

I11.8. . Lo
1.8 G _is a transitive tournament TT3 (with 3 vertices and 3

arcs ).

It has been proved in S.H.Hung and N.S,.Mendelsohn [H14] that an
(n,3,1) TT3-design exists if and only if n{(o-1) = 0 ( mod 3 )

( For a short proof see [B3 or B4] ).

I1.9. G_is a bipartite h i
: p grap xx~.xw PRI WN ( with k = x_ + rm
vertices and w_wM edges.).
- If k, = i
1 1 then _.Wm 18 a star mx ( see 11.2. ).
- If k, = = i
i xm 2 then NN,N is a n» ( see II.5. ).

~ Elsewhere it has been proved that :



~ a balanced {n,5,)) xw,wsammwms exists if and only if
Al{n~1) = 0 (mod 12) except for m =5 and X =3 (mod 6)
( C.Huang and A.Rosa [H8] ),

~design exists if and only if

-~ a balanced (n,6,2) mm 4
and A(n-1) = 0  (mod 8) ( C.Huang [HI] ),

an{n~t) = 0 {mod 16)
- a balanced (n,6,}) Ww uanmmww= exists if and omly if
®
xn(n-1} = O (mod 18) and A(n-1) = O (mod 3) except for

n=10and A =1, n==6and A =3 or 15 {mod 18) (C.Huang [HI9] ).

Remark : It can be noticed also that the concept of resolvable
B.I.B.D. ( see D.K.Ray Chaudhri and R.M.Wilson [{R1] or H.Hanani,
D.K.Ray Chaudwri and R.M.Wilson [H2] ) has been extended to resolvable
G~design and studied by P.Hell and A.Rosa [H6] for G a path, and by

C.Huang [H13] for G a bipartite graph.

III. METHOD OF DIFFERENCES

This method of direct construction is essentially a generalization
of Bose's method of symmetrically repeated differences ( see M.Hall [HI])

We suppose that the reader is a little familiar with Bose's method and

we shall indicate only the useful lemmas ( without proofs ) and

examples. The reader interested can find more details and proofs in

[B4] ,( see also most of the articles given in references : indeed the
method is one of the most used ).
Let T be an additive group. Usually T will be Na the group

of residues module n . If G is a graph which vertices are labelled

we shall denote by G + g the graph having as
is vertex of G and as edges

with elements of I

vertices the elements x + g where X

the pairs { x + g , y + g} where {x,y} is an edge of G . If {x,y} is

an edge of G we put : d(x,y) = y=x| . Note that d{x + g,y + 8) =

d(x,y) . ( d(x,y) is sometimes called the edge length between x and y )

- B2 -

The simplest case of the method is given by the following lemma :

III.]1. Le L = ; A ’ “ *

. Lemma Let ﬂmw «k&gmwy s T €IV a family of graphs which
vertices are elements of T , Zsomorphic to G . Then the graphs
{ Qw tg,g €T, 1€} are the subgraphs of an (n,k,)\) G-design
. . .. + )
if and only if the family [ dlx,y) , {x,y} € B 2 € 1} containg

every element of T - {0} exactly A times.

The Om are called " base graphs " or ' base block .

IIT1.2. Examples : (a path or cycle is denoted by the sequence of its
vertices )
a., Let I'=2., G=2P ( path with 3 vertices ) , G, = (0,1,3) .

w w
) 0
Then {d(e) , e edge of G,} = {1, £2} = {1, 4, 2, 3} - {0} .
mnmzﬁa.u._v ﬁAwmmmwm: ,ﬁzac:n:naﬂ

L}

0
So by lemma III.1. there exi
the decomposition being :

Gy = (0,1,3), G+l = (1,2,4), Go*2 = (2,3,0), Gy#3=(3,4,1),6+4=(4,5,2).

b. Let T =2,, G=0C,, Gy =(0,1,2,0) .

Then {}d(e) , e edge of Gyl = (%1, 1, %2} = {1, 3, 1, 3, 2, 2}
=T - {0}

So there exists a (4,3,2) nu;ammmm: ; the cycles of the decomposition

are : (0,1,2,0) , (1,2,3,1) , (2,3,0,2) , (3,0,1,3) .

c. Let T = Nw , G = wb ( path with 4 vertices ),

QO = Aou_vNebv . ﬂu = Aoawaa._v.
Th + -
en {*d(e) , e edge of Qov = (%1, *1, %2} =({1, 6, 1, 6, 2, 5)
[td(e) , e edge of o_w = {3, #3, %2} = {3, 4, 3, 4, 2, 5}

so {xd(e) , e edge of G, or G .} =2 (I - [0} ).

i

i

0 1

So there exists a (7,4,2) walgmmwm: ; the paths of the decomposition
are GO = (0,1,2,4) Q_ = (0,3,6,1)

Gy * 1= (1,2,3,5) 6, + 1= (1,4,0,2)

Gy + 2 = (2,3,4,6) G, v 2= (2,5,1,%)

no + 3 = (3,4,5,0) o_ + 3 = ( 3,6,2,4)

mo + 4 = (4,5,6,1) q; + 4 = (4,0,3,5)

Oo + 5= (5,6,0,2) mw + 5 = (5,1,4,6)

Gy * 6 = (6,0,1,2) G, + 6= (6,2,5,0)

- 63 -



1I1.3. A similar lemma holds in the dirvected case by considering ,
instead of * d(e) , d{u) = { y - x ) for the arc u = (x,y) of G, .
( a directed circuit with k vertices
no = (0,4,1,2,0).

Example : Let I = Nm , G = m»

is also denoted by the sequence of its vertices ) ,
Then {d(u) , u arc of G } = {4, 2, 1, 3} =T - {0} .
So there exists a (5,4,1) »ammmwma ; the circuits of the decomposgition
are : [ Gy + g = (g,4+g,1+8,2+g,8) , 8 €T }.

Refinements of the method can be obtained by adjoining to T

invariant under the action of the group T,

111.4.
one or several elements =
for every g in T .

that is © 4 g om oo

For example, in the directed case we have the following lemma :

111.5. Lemma : Let | G, = «kﬁnemu ,tL€IY a famly of directed
graphs igsomorphic to a directed graph G which vertices are elements
of T U {=} . The graphs { Qw +g,g€T ,1€TI} arethe subgraphs

of an (n,k, )} G-design if and only if
(1) the family {d(u) , w €U NT xT, i € I} contains every

element of T = {0} exactly ) times,

(i1) the graphs mmw , 1 € I} containg X arcs having « asg

initial vertex and A arcs having = a8 terminal vertex .

Y
G =2C,

111.6. Example ¢ Let T = Nm ,

= AOau.WuNaOv s ﬁu = AB»Owu.uwSV s
{d(u) , u are of mou = {1, 2, 4, 3} ,
{d€u) , u € Cu n Nm % Nmu, = {1, 2} ,
{d(u) , u GN N Nm X wa = [&4, 3}

nu and nw noﬁnwwn 2 arcs (e,x) and 2 arcs (x,»).

So, by lemma III.5., there exists a (6,4,2) Nb)mwmwmu : the circuits

QO QN = (0,0,4,2,2) .

of the decomposition are { Gy*g = (g,1+8,3+8,2+8,8)
G,*g = (w,8,1+8,3+8,=)

G ,8€T ]}

)8 = (0,8,5+8,2+8,%)

- B4 -

I11.7. 1 i
I1.7 In some cases , it happens that base graphs are fixed by

i
the set of elements g of T

elements g of the group I' , that is ¢, + g = G.
it

If so , let us denote by I'(G) :
fixi .
ixing G.( I'(G) is a subgroup of T ). We have the following lemma :

II1.8. Lemma : Let T = z
be a group, 1 Qm = «Nw“mwy s, T €I} a

wm3aww of graphs which vertices are elemente of T , Zsomorphic to a
gtven graph G . Let mvm the set of distinct graphe of the family
{ Qw *g ., g €T } . Then the graphs | MN .
of an (n,k,2) G-design if and only if , %d%smcw%@ element g of
r - {0}, ,

7 € I } are the subgraphs

P 4

L >m&\m\ /TG T = x

e .
where Dﬁ&«%» 18 the number of edges e of G, such that d(e) = g,
Example : let T = 2
10 °?

n~ = (0,1,9,5,6,4,0) , then
T ™

(Gg) = {0}, T(6)) = {0, 5}, T =1, IT@E)I =2,
{d(e) , e€ Gy} =1(1,9,2,8,3,7,4,6,5,5,3, 7},

d =

{d(e) , e€ G} =1{1,9,2,8,4,6,1,9,2, 8,4, 6},

A, (g) = 1 £ =
OO g or g t, 2, 4, 6, 8, 9, >OOAWV = 2
A, (g) =2 =
nu g for g=1,2, 4, 6, 8, 9, bnuAmv EN¢]
So by lemma IIJ7.8. there exists a (10,6,2) nmlammmm: ; the cycles of

€ =Cq, Gy = (0,9,1,8,2,7,0) ,

the decomposition are :
{6y + g = (g,9+g,1+g,8+g,2+g,7+g,8) , g €T } U
G, + g =
16, + g = (g,1+g,9+8,5+g,6+g,4+g,8) , g =0, 1, 2, 3, 41 .

for g =3, 5, 7

for g = 3, 5, 7



1V, METHOD OF COMPOSITION

The methods exposed below are recursive methods that enable us to
construct G~designs from smallest one . We give only the principles of
the method, the reader interested can find more details in [B3,B4]
or in the case of a B.I.B.D. in R.M.Wilson [w3] . Similar ideas are
also in papers of P.Hell and A.Rosa [H6] and P.Hell [H7] . The idea of
. it is contained in the following lemmas.

the method is very simple :

We denote by X K the complete multipartite graph

Ty oDy, ey
with vertex set X =(U xwv_MwMS , where the xw are disjoint sets with
1X.] = n. and where two elements which belong to different sets xw

1 1

msm xw mﬁmwowzmad%ymmmmm.

.1. Lemma : If there exists , for each 1 , an ?fc.\.wui G~design

and f A K, L, can be decomposed into subgraphs isomorphic to G
JTRRELCA

A
then there exists a ( L :muwhy» G-design.
L:1

Very useful also is the following lemma, a little more tricky ¢

IV.2. Lemma : If there exists , for each i, an «3m+uuw»yy G-design

and 2f X K, . can be decomposed into subgraphs isomorphic to G
Rpseesty

then there exists a ( I n, + 1,k,\) G-design.

s b

Similar lemmas hold in the directed case with X K*
LI PERRR N

the complete directed multigraph.

1V.3. Remarks :
1. 1In many cases we will suppose that n. =m for 1< i<h, and

in this case we will write A K instead of X K
nxh Ngooayh
P
W tiwmes

2., Case G = xw, and transversal designs.

into subgraphs isomorphic to N# is

A decomposition of X Nnxw
in the notations of

nothing else than a transversal design T(n,%,k)

H.Hanani [H3] or a Hko,nv in the notations of M.Hall's book (a1

p-224 ( that is also equivalent to the existence of an orthogonal
array or of k-2 orthogonal latin squares of order n }. For more
details the reader can see M.Hall's book [HI] or H.Hanani's survey
[H3] or R.M.Wilson [W4] .

. The interest of this method is that it is easier to decompose
multipartite complete graphs than complete graphs . We shall see how
the method can apply with bipartite and tripartite graphs

IV.4. Composition with bipartite graphs.

The following simple lemma is useful

IV.4.1. Lemma : I (

f wxuu:w and »NN~3m can be decomposed into
subgraphs isomorphic to G then also K \ with :
integers. PRy @ngten, B

IV.4.2. Example of application :

Let G = i i
. , mb ( path with 4 vertices ). Nw.m and %u 3 can be
com ed 1 ! : i .
; posed into mb s ¢ for example, if the vertices of NQ 4 Aare
Xn, X o
. 00 X0 %y } and { Yor Yys Yy } , a decomposition of K. . is
given by the following 3 paths .
X
A vaOWUﬁ.uv%Nv ¥ Axﬂv%Nanvwov y AKN-VNNQUnOvVN—V M
Thus by lemma IV.4.1. K and K
3,3p ° 3,3p+2 can be decomposed

w:no mb.m. So, by lemma IV.2. with n, = 3 and n, = 3p or 3p+2
if there exists a A5N+_v»_~v w»cammwmn then there mm»mnm a
A:N+»“>._v w»:mmmwws.

Thus in order to prove the existence of an (n,4,1) P,~design for
n=0 or | (mod 3) it suffices to prove the mxwmnm:nw of a ,
M».»._u mblmmmmmn and of a (6,4,1) w»nmmmwwn. This can easily be

one ; for example we obtain a (6,4,1 - i i 5

( in the undirected case ) €wnrn ﬂow MwmmemeMs M%AHvMHWFMW e
Thus we have the following nrmonm% : ’ o .

IV.4.3. Theorem : An (n,4,1) ﬁ&l&&mwaz exrists ©f and only if

n=0 or 1 ( mod 3 )



1V.4.4. With the same method, ome can solve the existence of wwlgmmwms.
That is the method that has been applied in [85] ,to prove the
existence of nw ~designs. For more awnmwwm see [B4] .

The method of composition with bipartite graphs is very efficient

but can apply iff G is a subgraph of bipartite graph.

1V.5. Composition with tripartite graphs.

A similar lemma as IV.4.1. holds. ( The proof is a little more

complicated, see [B61 ).

1v.5.1. Lemma : If K and K , can be decomposed
nyshgstts Mystgsy
into subgraphs isomorphic to G then also xQ:N»Q:MEQ: +(q-p)n! »

with p and q 1integers, 0 <p £4q .

1V.5.2. Example : We give a sketch of proof of the existence of
an (n,5,1) wammmwmm. See [B6] . Different proofs appear in [83], [s1]
and [M3]

Theorem : An (n,5,1) mmr&mmwmx extets if and only if n =0 or I (mod &)

Sketch of proof by induction 3 K¥ and K% can be decomposed

A 5,5,5 5,5,10

into mm ( see [51] for such a decomposition ).

k¥, K*, wuo. Muw Nmm and K* e can also be decomposed into Mm (see [B3])

For the general case, we use the lemmas IV.1. or IV.2. ( wn the
directed case ). We indicate below, in ecah case, the Hmaam and values
used. ( The verification that the hypothesis of the lemmas are satisfied

result from lemma IV.5.1. and induction hypothesis ).

n=15 g q> 1, lemma .1, with n = 5q, n, = 5q, n, = Sq
n=15q+ 1, 42 1, lemma IV.2. with n, = 5q, n, = 5q, n, = Sq

n= 15 q+ 5, a2 1, lemma IV.1. with n, o= 5q, n, = ma.SuumAnl_v+_o
n=1i5q+ 6, q2> 1, lemma IV.2. with n, o= 5q, n, = unwﬂuaman|uv+_o
n=15¢q+ 10, ¢ > 2 , lemma Iv.1. with n, = 5q, n, = wn.duumﬁpxwv+ucxw
n=15q+ 11, g2 2, lemma IV.2. with n, = 5q, n, = wa.:uumAn:Nv+~0xN

Iv.6. It is also interesting to use k-partite graphs

! K ( where &
ig the number of vertices of G ). e

1v.6.1. 1Indeed, if G is a graph with
let G® S
n

k vertices 1 , 1 < i <k,

HA

denote the graph with vertex set X the disjoint

k independant sets X. with [X.] =
i

G® S '

n

union of
n and where two points are joined in

if they bel i 1,3
y ong to two sets Nw and X, with {i,j} an edge of G.

3 . - uu
(GCo® m: is the lexicographic product of G by an independant set of n

elements ). Then we have the following lemma :

IV.6.2. Lemma : If there exists a (n,k,\) G-design and if G ® s,

can be decomposed into m:@%%ﬁﬁbm igomorphic to G then there m%Amwm

a deco 1 , .
mpostition of A kxxk itnto subgraphs teomorphic to G.

( See [B3] for more details )

IV.6.3. Dec iti i i i
omposition of G ® w: are many times easier to find }

5

for example it is proved in [B3] that G ® S_ can be always decomposed

Mﬂno NCTWHQVM~W MmOBOHUTMﬁ. to G if G = ( :A, P xm
k’ fw k? VT *
Hc.@.b.

As consequence of lemma IV.1. and lemma IV.6.2 have:

Lemma a: If there exists an (m,k,\) G~design and a (n,k,\) G-design

and 1f G ® S~ can be decomposed into subgraphs isomorphic to G

then we have an (mm,k,)) G-design.

Lemma b :  If there exists an (m,k,\) G~design and an (n+l,k,\) G-

design and if ;
gn 1f G ® mx can be decomposed into subgraphe isomorphic to G

then we have an (m+1,k,\) G-design.
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