of G-decompositions.

For a given graph G, find an integer k such that for every integer n ≥ k, there exists a G-decomposition of the complete graph Kn.

The problem is to determine the minimal value of k for which this is true.

Abstract:

C. M. & D. H. Department of Combinatorial Designs

Grau Decompositions and G-Designs
the definition.

1.2. Lemma: If \(G \) is a graph with \(n \) vertices, then the number of vertices in \(G \) is equal to the number of edges in \(G \).

The necessary condition.

E. Certain conditions that are necessary for \(G \) to be a graph with \(n \) vertices and \(m \) edges include:

- \(n \geq 2 \)
- \(m \leq n(n-1) \)
- \(m \geq 0 \)

Then the graph \(G \) is balanced.

The sufficient condition.

E. Certain conditions that are sufficient for \(G \) to be a graph with \(n \) vertices and \(m \) edges include:

- \(n \geq 2 \)
- \(m = \frac{n(n-1)}{2} \)
- \(m \geq 0 \)

Then the graph \(G \) is complete.

The definition of \(G \) is:

E. A graph \(G \) is a pair \((V, E) \), where \(V \) is a set of vertices and \(E \) is a set of edges.

The definition of an edge \(e \) is:

E. An edge \(e \) is a pair of vertices in \(V \), and it connects two vertices in \(V \).

The definition of a subgraph \(H \) is:

E. A subgraph \(H \) is a graph with vertices and edges that are contained in the original graph \(G \).

The definition of a path \(P \) is:

E. A path \(P \) is a sequence of vertices in \(V \) such that each pair of consecutive vertices is connected by an edge in \(E \).

The definition of a cycle \(C \) is:

E. A cycle \(C \) is a path that starts and ends at the same vertex.

The definition of a cut-vertex \(v \) is:

E. A cut-vertex \(v \) is a vertex whose removal increases the number of connected components in \(G \).

The definition of a cut-edge \(e \) is:

E. A cut-edge \(e \) is an edge whose removal increases the number of connected components in \(G \).

The definition of a component \(K \) is:

E. A component \(K \) is an induced subgraph of \(G \) that is connected and contains no cut-vertex.
I.7. The number of edges of a tree is the number of edges of a tree.

X.
II.1. G is a complete graph with k vertices.

II.2. G is a complete graph with k vertices and k - 1 edges.

II.3. G is a graph with k vertices and k - 1 edges.

II.4. G is a directed graph with k vertices and (k - 1) arcs.

Example: If k = 1 or k = 2, then the conclusion is trivial.

Lemma: For every graph G, there exists a directed graph H such that H is isomorphic to G.

Theorem: For every graph G, there exists a complete graph K such that K is isomorphic to G.

Proof: Let G be a graph with n = k vertices and m = k - 1 edges. Then, by the Pigeonhole Principle, there must exist two vertices u and v in G such that there is an edge between u and v.

We define a new graph H by adding a new vertex w and two new edges (u, w) and (w, v) to G. Then, H is a complete graph with k + 1 vertices and k edges.

Corollary: For every graph G, there exists a complete graph K such that K is isomorphic to G.

Proof: Let G be a graph with n = k vertices and m = k - 1 edges. Then, by the Pigeonhole Principle, there must exist two vertices u and v in G such that there is an edge between u and v.

We define a new graph H by adding a new vertex w and two new edges (u, w) and (w, v) to G. Then, H is a complete graph with k + 1 vertices and k edges.

Corollary: For every graph G, there exists a complete graph K such that K is isomorphic to G.

Proof: Let G be a graph with n = k vertices and m = k - 1 edges. Then, by the Pigeonhole Principle, there must exist two vertices u and v in G such that there is an edge between u and v.

We define a new graph H by adding a new vertex w and two new edges (u, w) and (w, v) to G. Then, H is a complete graph with k + 1 vertices and k edges.
N. S. W. McDonald, [27] and in [28]. A short proof can be found in [39, 40].

If n is a power of a prime, say $n = p^k$, then χ^2 is a χ^2-distribution with k degrees of freedom.

A short proof is given in [27].

11.6. If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

11.7. If G is a transitive tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

11.8. If G is a tournament T with χ vertices and χ edges, then G is a tournament T with χ vertices and χ edges.

11.9. If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

The case $\chi = 3$ will be known as the Cauchy distribution.

For a short proof see [27].

(1) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(2) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(3) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

(4) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(5) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(6) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

(7) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(8) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(9) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

(10) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(11) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(12) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

(13) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(14) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(15) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.

(16) If G is a tournament T with χ vertices and χ edges, then G is a transitive tournament T with χ vertices and χ edges.

(17) If G is a directed circuit C with χ vertices and χ edges, then G is a directed circuit C with χ vertices and χ edges.

(18) If G is a bipartite graph $K_{\chi, \chi}$, then χ^2 is a χ^2-distribution with χ degrees of freedom.
\[\begin{align*}
\text{III.6. Example: Let } & \quad \alpha = \beta, \\
\text{then } & \quad \beta = \alpha. \\
\end{align*} \]

\[\begin{align*}
\text{III.7. In some cases, it happens that these groups are fixed by } \\
\text{the action of } & \quad \gamma. \\
\end{align*} \]

\[\begin{align*}
\text{III.8. Theorem: Let } & \quad \alpha, \\
\text{then } & \quad \beta = \alpha. \\
\end{align*} \]

\[\begin{align*}
\text{III.9. Lemma: Let } & \quad \alpha, \\
\text{then } & \quad \beta = \alpha. \\
\end{align*} \]
The methods expressed below are recursive methods that enable us to construct G-decompositions from smaller ones. The logic of the recursive construction is described in the text.

IV. METHOD OF COMPOSITION

The complete direct G-structure is constructed from the direct graph due to the following lemma, a little more tricky:

VI. METHOD OF COMPOSITION

The composition with parallel edges can be defined as follows:

The composition with parallel edges can be defined as follows:

The composition with parallel edges can be defined as follows:
Lemma 1.6.2. A composition of Lemma 1.6.1 and Lemma 1.6.2, we have:

\[\text{Lemma 1.6.1, } \text{Lemma 1.6.2} \]

Lemma 1.6.3. A composition of Lemma 1.6.1 and Lemma 1.6.2, we have:

\[\text{Lemma 1.6.1, } \text{Lemma 1.6.2} \]

Lemma 1.6.4. A composition of Lemma 1.6.1 and Lemma 1.6.2, we have:

\[\text{Lemma 1.6.1, } \text{Lemma 1.6.2} \]

Theorem 1.7.2. A composition of Lemma 1.7.1 and Lemma 1.7.2, we have:

\[\text{Lemma 1.7.1, } \text{Lemma 1.7.2} \]

Corollary 1.7.3. A composition of Lemma 1.7.1 and Lemma 1.7.2, we have:

\[\text{Lemma 1.7.1, } \text{Lemma 1.7.2} \]
REFERENCES