GRAPH DECOMPOSITIONS AND G-DESIGNS

J.C.Bermond and D.Sotteau
C.M.S. 54 Bd Raspail - 75006 PARIS

ABSTRACT Let G be a graph (directed or not) with k vertices, then an (n,k,λ) G-design is an edge disjoint decomposition of the complete (directed or not) multigraph λ K_n^* or λ K_n into subgraphs isomorphic to G. G-designs are a generalization of the well known B.I.B.D., which correspond to the case $G = K_k$.

The problem is to determine for what values of the parameters n and λ there exists an (n,k,λ) G-design where G is a given graph. First we give a survey concerning this problem; then we indicate the general methods which are used to prove the existence of G-designs.

. DEFINITIONS AND INTRODUCTION

In what follows n,k,λ will be positive integers with $n \ge k$ and G will always denote a graph with k vertices (none of them isolated) and e edges. Definitions not given here can be found in Berge's book [B1]

I.1. If λ K_n denotes the complete multigraph with n vertices and any 2 distinct vertices joined by exactly λ edges, then an (n,k,λ) G-design is an edge disjoint decomposition (that is a partition of the edges) of λ K_n into subgraphs isomorphic to G. (In what follows we will omit 'edge disjoint'). The G-designs have been introduced by P.Hell and A.Rosa [H6]. In the particular case where G is the complete graph K_k , an (n,k,λ) G-design is nothing else than an (n,k,λ) B.I.B.D. (balanced incomplete block design) (see M.Hall [H1]).

If furthermore each vertex belongs to exactly r of these subgraphs then the G-design is said to be balanced.

- I.2. Remark : If G is regular (d(x) = c for every vertex x of G), it is easy to see that the G-design is balanced (that is for example the case if $G = K_k$).
- I.3. Another definition of a G-design (similar to the classical definition of a B.I.B.D.) can be given by using the notion of G-blocks. (See P.Hell and A.Rosa [H6]). In a block considered as a set of elements any two distinct elements are either linked or unlinked. The adjacency matrix $M(B) = (b_{ij})$ of a block B with k elements is a symmetric matrix of order k with zero diagonal, where $b_{ij} = 1$ if the elements i and j are linked in B and O otherwise. A block B is said to be a G-block if its adjacency matrix is equivalent to that of G. Thus an (n,k,λ) G-design is an arrangement of n elements into b G-blockn such that every G-block contains k elements (satisfied automatically)

and any two distinct elements are linked in exactly λ G-blocks.

I.4. A similar definition holds for directed graphs. If G is a directed graph with k vertices and λ K* denotes the complete directed multigraph with n vertices and any two distinct vertices x and y joined by exactly λ arcs (x,y) and λ arcs (y,x) then an (n,k, λ) G-design is a partition of the arcs of λ K* into subgraphs isomorphic to G.

If furthermore each vertex belongs to exactly r of the subgraphs then the G-design is said to be *balanced*. In particular if G is "strongly regular" (that is $d^+(x) = d^-(x) = c$ for every vertex x of G) then the G-design is balanced.

I.5. Examples.

- a. The projective plane of order 2 is a balanced (7,3,1) K₃-design. A decomposition of K₇ into triangles is given by the following triangles { (i,i+2,i+4), $0 \le i \le 6$ } where the numbers are to be taken modulo 7.
- b. Fig. 1. shows an example of a (4,3,1) P_3 -design (P_3 being the path with 3 vertices). A (4,3,1) P_3 -design can never be balanced: see the necessary condition.

V.

Fig. 1.

Fig. 2.

- c. Fig. 2. shows an example of a (4,3,1) \vec{c}_3 -design (automatically balanced).
- I.6. Remarks. The following propositions are simple consequences of the definitions.

G-design then there exists an ($n_sk_sp\lambda_1$ + $q\lambda_2$) G-design. I.6.1. If there exists an ($n_s k_s \lambda_1$) G-design and an ($n_s k_s \lambda_2$)

G -design is equivalent to the existence of an (n,k,λ) G*-design. each edge of G two opposite arcs. The existence of an (n,k,λ) 1.6.2. Let G* be the directed graph obtained from G by associating to

simple graph G by giving an orientation to the edges of G. If \vec{c}_i is implies the existence of an (n,k,λ) \tilde{G} -design. isomorphic to its opposite $\, \dot{\textbf{G}} \,$, the existence of an (n,k, λ) G-design 1.6.3. Let E be an antisymmetric directed graph obtained from a

 $\overset{+}{\mathbb{C}_3}$ -design (example I.5.c.) but there is no (4,3,1) $\mathrm{C_3}$ -design (see the necessary conditions). The contrary is false : we have seen the existence of a (4,3,1)

of an $(n_sk_s\lambda)$ T-design implies the existence of an $(n_sk_s2\lambda)$ G-design. undirected graph (obtained by deleting the orientation), the existence Let \ddot{c} be an antisymmetric directed graph, and G the underlying

M.Hall [H1]) but there exists no (6,3,1) \vec{c}_3 -design (see [B2]). The contrary is false : there exists a (6,3,2) K_3 -design (see

I.7.Necessary conditions of existence of an (n,k,λ) G-design :

Proposition : If there exists an (n,k,λ) G-design (where G is an undirected graph with k vertices and e edges) then

(i)
$$\lambda n(n-1) \equiv 0$$
 ($mod \ 2e$)
(ii) $\lambda (n-1) \equiv 0$ ($mod \ d$)

where d is the g.c.d. of the degrees of the vertices of G. Moreover if the G-design is balanced then

$$(iii) \lambda k(n-1) = 0 \qquad (mod 2e).$$

Proof: Let b be the number of subgraphs (blocks) of the G-design: $b = \lambda n(n-1)/2e$

 $\lambda\,K$. (We can say also that b must be an integer). The number of edges of G must divide the number of edges of

> of the decomposition (for $1 \le i \le k$) so that each vertex x of K (ii) Let d_i , $1 \le i \le k$, be the degrees of the vertices of G ; must appear with degree d. in α; subgraphs

$$\lambda (n-1) = \sum_{i,i=1}^{k} \alpha_i d_i$$

Thus the g.c.d. of the (d_i) $1 \le i \le k$ divides $\lambda(n-1)$.

an integer. (iii) We have immediately bk = nr and thus $r = \lambda k(n-1)/2e$ must be

I.8. Remarks:

a verification of remark I.2.). If G is regular then (iii) is equivalent to (ii). (That gives

b. (iii) + (i)
$$\neq$$
 (ii).
Example : n = 10, k = 6, e = 9, λ = 1, G = , d

conditions, which proofs (identical to the non directed case) are I.9. left to the reader: If G is a directed graph, we have the following necessary

directed graph with k vertices and e arcs) then Proposition : If there exists an (n,k,λ) G-design (where G is a

(i)
$$\lambda n (n-1) \equiv 0 \pmod{e}$$

(ii) $\lambda (n-1) \equiv 0 \pmod{d^+}$

$$\lambda (n-1) = 0 \pmod{d}$$

degrees) of the vertices of G. where d^{\dagger} (resp t d^{-}) is the g.c.d. of the out degrees (resp t 'n.

Moreover if the G-design is balanced

(iii)
$$\lambda k (n-1) = 0$$
 ($mod e$).

Existence theorem : (R.M.Wilson [W5])

1.7. are sufficient for all sufficiently large integers n. necessary conditions of existence of G-designs (i) and (ii) given in For a given graph G (undirected) and a given λ , the

I.11. Remark: If $G = K_k$ this was stated as conjecture in M.Hall [HI, p.248] and has been proved by R.M.Wilson ([W2] and [W3]). If $\lambda = 1$, this was stated as conjecture by P.Erdös and J.Schönheim in [EI] and proved by them for k = 2,3,4 [EI], and proved for every k and k = 1 (mod 2e) by R.M.Wilson [W3].

I.12. If G is a directed graph, the necessary conditions (i) and (ii) given in I.9. are not sufficient for all graphs G.

R.M.Wilson [W5] has given necessary conditions (more complicated) which are "asymptotically sufficient".

1.13. In what concerns the existence of balanced G-designs, there exist infinite values of n for which the necessary conditions given in 1.7. or 1.9. are not sufficient. Recently, Wilson [private communication at this conference] has also found necessary and "asymptotically sufficient" conditions for the existence of balanced G-designs.

I.14. In what follows we will first give a survey of the "exact" results known for the existence of G-designs (balanced or not) (part II) and then we will indicate the methods to prove the existence of such G-designs (parts III and IV).

II. SURVEY OF THE RESULTS CONCERNING THE EXISTENCE OF G-DESIGNS

We shall examine successively different classes of graphs ${\tt G}$.

II.1. G is the complete graph with k vertices K .

In this case, a K_k -design is nothing else than a B.I.B.D. which has been well studied in the litterature. We do not intend to give a survey of this case. The reader interested can find a survey and references on this problem in the recent articles of H.Hanani [H4] and R.M.Wilson [W3] .

For example, the necessary conditions

(i)
$$\lambda n(n-1) \equiv 0 \pmod{k(k-1)}$$

(ii)
$$\lambda(n-1) \equiv 0 \pmod{(k-1)}$$

have been shown to be sufficient

- for k = 3,4,5 (except for $n = 15, \lambda = 2$) and for other cases (see the survey of H.Hanani [H4])
- for n large enough (see R.M.Wilson [W3])

II.2. G is a star S (with k vertices and k-1 edges).

- a. S_k -designs have been studied by P.Cain [C1], C.Huang [H10] and A.Rosa [R2]. C.Huang [H10] has proved that an (n,k,1) S_k -design exists if and only if $n(n-1) \equiv 0 \pmod{2(k-1)}$ and $n \geq 2(k-1)$.
- b. Balanced S_k -design have been studied by C.Huang and A.Rosa [H8], and C.Huang [H9] who have proved that a balanced (n,k, λ) S_k -design exists if and only if λ (n-1) \equiv 0 (mod 2(k-1)).

II.3. G is a path P (with k vertices and k-1 edges).

Balanced P_k -designs have been studied under the name of "handcuffed designs". Partial results have been obtained by J.F.Lawless [L1,L2], S.H.Hung and N.S.Mendelsohn [H15], P.Hell and A.Rosa [H6] and in [B4]. Only recently C.Huang [H11] has solved completly the problem by proving that a balanced (n,k,λ) P_k -design exists if and only if $\lambda k(n-1) \equiv 0 \pmod{2(k-1)}$.

II.4. G is a directed path \vec{P}_k (with k vertices and (k-1) arcs).

Results concerning the existence of balanced \vec{p}_k -designs appear in [B4] . In particular it is proved that a balanced (n,k,λ) \vec{p}_k -design exists for k=3,4,5,6 if and only if $\lambda(n-1)\equiv 0\pmod{k-1}$ except for k=3=n, λ odd and k=5=n, $\lambda=1$.

It is also proved that a balanced (n,k,1) \vec{P}_k -design with k even exists if and only if n-1 = 0 (mod k-1).

59

Partial results have been obtained for the existence of balanced (n,k,l) \overrightarrow{P}_k -design with k odd but a complete solution depends on the proof of the following conjecture :

"For k odd, k \geq 5, there exists a (k,k,1) \vec{P}_k -design (which is automatically balanced)". (The case k even is obvious).

It has been pointed out by N.S.Mendelsohn [M1] that the existence is equivalent to the existence of complete latin square of order k. The conjecture has been proved by using sequenceable groups for k = 21, (N.S.Mendelsohn [M1]), k = 27 (A.D.Keedwell [K1]), k = 39, 55, 57 (L.L.Wang [W1]) and for k = 7, 9, 11, 13, 15, 17 (See [B4,B5]).

For more details concerning this problem and related problems, see the book of J.Denes and A.D.Keedwell ([DI] , chap. 2 and 9)

II.5. G is a cycle Ck (with k vertices and k edges).

A C_k is automatically balanced (see remark I.2.). It has been proved that an (n,k,l) $C_k\text{-design}$ exists if

Necessary and sufficient conditions have been obtained for small values of k . Exactly it has been proved that an (n,k,λ) C_k -design exists if and only if

(i)
$$\lambda$$
 n (n-1) = 0 (mod 2k)
(ii) λ (n-1) = 0 (mod 2)

- for k = 4, 5, 6 by C. Huang and A. Rosa [H 12]

- for k = 4, 5, 6, 7, 8 in [B5,B6] with different proofs. The case k = 3 is well known, an $(n,3,\lambda)$ C₃-design being nothing

else than a Steiner triple system

II.6. G is a directed circuit ck (with k vertices and k arcs).

It has been proved that an (n,3,1) \mathring{C}_3 -design exists if and only if $n \ (n-1) = 0$ (mod 3) and $n \neq 6$, independently by R.H.Bruck [B7], N.S.Mendelsohn [M2] and in [B2].A short proof can be found in [B3,B4].

It has also been proved that the necessary conditions of existence of an $(n_*k_*\lambda)\ \vec{C}_k$ -design

$$\lambda n (n-1) \equiv 0 \pmod{k}$$

is sufficient

- for k even, $4 \le k \le 16$ and $\lambda = 1$ in [B4 or B5], except the cases k = n = 4, k = n = 6; for k = 4 see also J.Schönheim [S1].

- for k = 5 and $\lambda = 1$ in [B5,M3]

- for $k=p^{\alpha}$, where p is a prime , and λ = 1 in [S1] , and in [M3] for k = 7.

- for $3 \le k \le 8$ and $\lambda \ge 2$ in [B4] and [B6].

It has also been shown that an (n,k,l) \vec{C}_k -design exists if n is a power of a prime and $n(n-1) \equiv 0$ (mod k) (B.Hartnell and M.Milgram [H5] and if $n \equiv 0$ or 1 (mod k) for k odd ([S2]).

II.7. G is a small graph with k vertices, 3 < k < 5.

An extensive study on the existence of G-designs (balanced or not) for small graphs G (with 3, 4, 5 vertices) has been done by J.Schönheim, A.Rosa, C.Huang and the two authors. The results will appear in forthcoming papers.

II.8. G is a transitive tournament TT3 (with 3 vertices and 3 arcs).

It has been proved in S.H.Hung and N.S.Mendelsohn [H14] that an (n,3,1) TT3-design exists if and only if $n(n-1) \equiv 0 \pmod 3$. (For a short proof see [B3 or B4]).

- II.9. G is a bipartite graph K_1, k_2 . $k_1 \le k_2$ (with $k = k_1 + k_2$ vertices and k_1k_2 edges.).
- If $k_1 = 1$ then K_{k_1,k_2} is a star S_k (see II.2.).
- If $k_1 = k_2 = 2$ then $k_{2,2}$ is a C_4 (see II.5.).
- Elsewhere it has been proved that:

a balanced $(n,5,\lambda)$ $K_{2,3}$ -design exists if and only if $\lambda(n-1)\equiv 0\pmod{12}$ except for n=5 and $\lambda\equiv 3\pmod{6}$ (C.Huang and A.Rosa [H8]),
a balanced $(n,6,\lambda)$ $K_{2,4}$ -design exists if and only if $\lambda n(n-1)\equiv 0\pmod{16}$ and $\lambda(n-1)\equiv 0\pmod{8}$ (C.Huang [H9]), a balanced $(n,6,\lambda)$ $K_{3,3}$ -design exists if and only if $\lambda n(n-1)\equiv 0\pmod{18}$ and $\lambda(n-1)\equiv 0\pmod{3}$ except for

n = 10 and $\lambda = 1$, n = 6 and $\lambda = 3$ or 15 (mod 18) (C.Huang [H9]).

Remark: It can be noticed also that the concept of resolvable B.I.B.D. (see D.K.Ray Chaudhuri and R.M.Wilson [R1] or H.Hanani, D.K.Ray Chaudhuri and R.M.Wilson [H2]) has been extended to resolvable G-design and studied by P.Hell and A.Rosa [H6] for G a path, and by C.Huang [H13] for G a bipartite graph.

III. METHOD OF DIFFERENCES

This method of direct construction is essentially a generalization of Bose's method of symmetrically repeated differences (see M.Hall [HI]) We suppose that the reader is a little familiar with Bose's method and we shall indicate only the useful lemmas (without proofs) and examples. The reader interested can find more details and proofs in [B4], (see also most of the articles given in references: indeed the method is one of the most used).

Let Γ be an additive group. Usually Γ will be Z_n the group of residues modulo n. If G is a graph which vertices are labelled with elements of Γ , we shall denote by G+g the graph having as vertices the elements x+g where x is vertex of G and as edges the pairs $\{x+g,y+g\}$ where $\{x,y\}$ is an edge of G. If $\{x,y\}$ is an edge of G we put : d(x,y)=|y-x|. Note that d(x+g,y+g)=d(x,y). (d(x,y)) is sometimes called the edge length between x and y.

The simplest case of the method is given by the following lemma:

III.1. Lemma: Let $\{G_i = (X_i, E_i)\}$, $i \in I\}$ a family of graphs which vertices are elements of Γ , isomorphic to G. Then the graphs $\{G_i + g\}$, $g \in \Gamma$, $i \in I\}$ are the subgraphs of an (n,k,λ) G-design if and only if the family $\{f(x,y)\}$, $\{f($

The G_i are called "base graphs" or "base block".

III.2. Examples : (a path or cycle is denoted by the sequence of it
 vertices)

a. Let $\Gamma=Z_5$, $G=P_3$ (path with 3 vertices), $G_0=(0,1,3)$. Then $\{\pm d(e)$, e edge of $G_0\}=\{\pm 1,\ \pm 2\}=\{1,\ 4,\ 2,\ 3\}=\Gamma-\{0\}$. So by lemma III.1. there exists a (5,3,1) P_3 -design ,the paths of the decomposition being :

 $G_0 = (0,1,3), G_0+1 = (1,2,4), G_0+2 = (2,3,0), G_0+3=(3,4,1), G_0+4=(4,5,2).$

b. Let $\Gamma = Z_4$, $G = C_3$, $G_0 = (0,1,2,0)$. Then $\{\pm d(e)$, e edge of $G_0\} = \{\pm 1, \pm 1, \pm 2\} = \{1, 3, 1, 3, 2, 2\}$ $= \Gamma - \{0\}$

So there exists a (4,3,2) C_3 -design; the cycles of the decomposition are: (0,1,2,0), (1,2,3,1), (2,3,0,2), (3,0,1,3).

c. Let $\Gamma = Z_7$, $G = P_4$ (path with 4 vertices), $G_0 = (0,1,2,4)$, $G_1 = (0,3,6,1)$.

Then $\{\pm d(e) \ e \ edge \ of \ G_0\} = \{\pm 1, \pm 1, \pm 2\} = \{\{1, 6, 1, 6, 2, 5\}\}$

 $\{\pm d(e) , e \text{ edge of } G_1\} = \{\pm 3, \pm 3, \pm 2\} = \{3, 4, 3, 4, 2, 5\}$ so $\{\pm d(e) , e \text{ edge of } G_0 \text{ or } G_1\} = 2 (\Gamma - \{0\}).$

So there exists a (7,4,2) P_4 -design; the paths of the decomposition

are $G_0 = (0,1,2,4)$ $G_1 = (0,3,6,1)$ $G_0 + 1 = (1,2,3,5)$ $G_1 + 1 = (1,4,0,2)$ $G_0 + 2 = (2,3,4,6)$ $G_1 + 2 = (2,5,1,3)$ $G_0 + 3 = (3,4,5,0)$ $G_1 + 3 = (3,6,2,4)$ $G_0 + 4 = (4,5,6,1)$ $G_1 + 4 = (4,0,3,5)$ $G_0 + 5 = (5,6,0,2)$ $G_1 + 5 = (5,1,4,6)$ $G_0 + 6 = (6,0,1,2)$ $G_1 + 6 = (6,2,5,0)$

III.3. A similar lemma holds in the directed case by considering, instead of $\pm d(e)$, d(u) = (y - x) for the arc u = (x,y) of G_1 .

Example: Let $\Gamma = Z_5$, $G = \tilde{C}_4$ (a directed circuit with k vertices is also denoted by the sequence of its vertices), $G_0 = (0,4,1,2,0)$. Then $\{d(u)$, u arc of $G_0\} = \{4, 2, 1, 3\} = \Gamma - \{0\}$. So there exists a (5,4,1) \tilde{C}_4 -design; the circuits of the decomposition are: $\{G_0 + g = (g,4+g,1+g,2+g,g), g \in \Gamma \}$.

III.4. Refinements of the method can be obtained by adjoining to Γ one or several elements ∞ invariant under the action of the group Γ , that is $\infty + g = \infty$ for every g in Γ .

For example, in the directed case we have the following lemma :

III.5. Lemma : Let { $G_i = (X_i, U_i)$, $i \in I$ } a family of directed graphs isomorphic to a directed graph G which vertices are elements of Γ U { ∞ } . The graphs { $G_i + g$, $g \in \Gamma$, $i \in I$ } are the subgraphs of an $(n_i k_i)$ C-design if and only if

- (i) the family $\{d(u), u \in U_i \cap \Gamma \times \Gamma, i \in I\}$ contains every element of $\Gamma \{0\}$ exactly λ times,
- (ii) the graphs $\{G_i$, $i\in I\}$ contains λ arcs having ∞ as initial vertex and λ arcs having ∞ as terminal vertex .

III.6. Example : Let $\Gamma = Z_5$, $G = \tilde{C}_4$, $\{d(u), 1,3,2,0) \ , \quad G_1 = (\infty,0,1,3,\infty) \ , \quad G_2 = (\infty,0,4,2,\infty) \ .$ $\{d(u), u \text{ art of } G_0\} = \{1,2,4,3\} \ ,$ $\{d(u), u \in U_1 \cap Z_5 \times Z_5\} = \{1,2\} \ ,$ $\{d(u), u \cup U_2 \cap Z_5 \times Z_5\} = \{4,3\}$ $G_1 \text{ and } G_2 \text{ contain } 2 \text{ arcs } (\infty,x) \text{ and } 2 \text{ arcs } (x,\infty) \ .$ So, by lemma III.5., there exists a (6,4,2) \tilde{C}_4 -design; the circuits sof the decomposition are $\{G_0+g=(g,1+g,3+g,2+g,\infty)$ of the decomposition $G_1+g=(\infty,g,1+g,3+g,\infty)$, $g \in \Gamma$ $\}$. $G_2+g=(\infty,g,4+g,2+g,\infty) \ , g \in \Gamma$ $\}$

III.7. In some cases, it happens that base graphs are fixed by elements g of the group Γ , that is $G_1 + g = G_1$.

If so , let us denote by $\Gamma(G)$ the set of elements g of Γ fixing G.($\Gamma(G)$ is a subgroup of Γ). We have the following lemma :

III.8. Lemma : Let Γ be a group, $\{G_i = (X_i, E_i)\}$, $i \in I\}$ a family of graphs which vertices are elements of Γ , isomorphic to a given graph G. Let G_i the set of distinct graphs of the family $\{G_i + g$, $g \in \Gamma\}$. Then the graphs $\{G_i, G \in I\}$ are the subgraphs of an (n,k,λ) G-design if and only if, for every element g of $\Gamma - \{0\}$,

$$\sum_{i \in \mathbf{I}} \Delta_{G_i}(g) / |\Gamma(G_i)| = \lambda$$

where $\Delta_{G_i}(g)$ is the number of edges e of G_i such that d(e) = g.

METHOD OF COMPOSITION

the method is very simple : it is contained in the following lemmas. also in papers of P.Hell and A.Rosa [H6] and P.Hell [H7] . The idea of or in the case of a B.I.B.D. in R.M.Wilson [W3] . Similar ideas are the method, the reader interested can find more details in [B3,B4] construct G-designs from smallest one . We give only the principles The methods exposed below are recursive methods that enable us of to

and X_j are joined by λ edges . with vertex set $X = (\bigcup X_i)_{1 \le i \le n}$, where the X_i are disjoint sets with $|X_{i}| = n_{i}$ and where two elements which belong to different sets X_{i} We denote by $\lambda \stackrel{K}{n_1, n_2, \dots, n_h}$ the complete multipartite graph

and if $\lambda K_{n_1, \dots, n_h}$ IV.I. Lemma : If there exists , for each i , an (n_t, k, λ) G-design then there exists a $(\sum_{i:1}^{k} n_{i}, k, \lambda)$ G-design. can be decomposed into subgraphs isomorphic to G

and if $\lambda K_{n_1, \dots, n_h}$ IV.2. Lemma : If there exists , for each i , an (n_i+1,k,λ) G-design then there exists a $(in + 1, k, \lambda)$ G-design. Very useful also is the following lemma, a little more tricky : can be decomposed into subgraphs isomorphic to G

the complete directed multigraph. Similar lemmas hold in the directed case with λ k^* n_1, n_2, \dots, n_h

1. In many case we will write λ $K_{n\times h}$ instead of λ $K_{n,\dots,n}$]. In many cases we will suppose that $n_{\hat{1}}$ = n for] \leq i \leq h , and

Case $G = K_k$ and transversal designs.

H.Hanani [H3] or a $T_0(k,n)$ in the notations of M.Hall's book [H1] nothing else than a transversal design $T(n,\lambda,k)$ in the notations of A decomposition of $\lambda \ K_{\mathbf{n} \times \mathbf{h}}$ into subgraphs isomorphic to $K_{\mathbf{k}}$ ıs.

> p.224 (that is also equivalent to the existence of an orthogonal details the reader can see M.Hall's book [HI] or H.Hanani's survey array or of k-2 orthogonal latin squares of order n). For more [H3] or R.M.Wilson [W4].

the method can apply with bipartite and tripartite graphs. multipartite complete graphs than complete graphs . We shall see how The interest of this method is that it is easier to decompose

IV.4. Composition with bipartite graphs.

The following simple lemma is useful:

IV.4.1. Lemma : If n_{1} , n_{2} and n_{1} , n_{2} can be decomposed into subgraphs isomorphic to G then also K p n_{1} , qn_{2} + sn_{2} with p, q, s integers integers

IV.4.2. Example of application :

{ x_0, x_1, x_2 } and { y_0, y_1, y_2 }, a decomposition of $K_{3,3}$ is given by the following 3 paths : decomposed into P_4 's : for example, if the vertices of $K_{3,3}$ are Let $G = P_4$ (path with 4 vertices). $K_{3,2}$ and $K_{3,3}$ can be

(n2+4,4,1) P4-design. if there exists a $(n_2+1,4,1)$ P_4 -design then there exists a

done; for example we obtain a (6,4,1) P_4 -design by applying lemma II.5. $n \equiv 0$ or 1 (mod 3) it suffices to prove the existence of a (in the undirected case) with $\Gamma=Z_5$ and $G_0=(\circ,0,1,3)$. (4,4,1) P_4 -design and of a (6,4,1) P_4 -design. This can easily be Thus in order to prove the existence of an (n,4,1) P₄-design for

Thus we have the following theorem:

IV.4.3. Theorem : An $(n_3 4_3 1)$ P_q -design exists if and only if (mod 3)

IV.4.4. With the same method, one can solve the existence of P_k -design. That is the method that has been applied in [B5] ,to prove the existence of C_{2k} -designs. For more details see [B4] .

The method of composition with bipartite graphs is very efficient but can apply iff G is a subgraph of bipartite graph.

IV.5. Composition with tripartite graphs.

A similar lemma as IV.4.1. holds. (The proof is a little more complicated, see [B6]). Itemma : If K and K and K are can be decomposed in the second second

IV.5.1. Lemma : If K_{n_1,n_2,n_3} and K_{n_1,n_2,n_3} can be decomposed into subgraphs isomorphic to G then also $K_{qn_1,qn_2,pn_3}+(q-p)n_3'$ with p and q integers, $0 \le p \le q$.

IV.5.2. Example : We give a sketch of proof of the existence of an (n,5,1) \dot{C}_5 -design. See [B6] . Different proofs appear in [B3], [S1] and [M3] .

Theorem : An (n, 5, 1) \dot{c}_5 -design exists if and only if $n \equiv 0$ or 1 (mod 5)

Sketch of proof by induction: $K_{5,5,5}^*$ and $K_{5,10}^*$ can be decomposed into \dot{c}_5 (see [S1] for such a decomposition). K_5^* , K_6^* , K_{10}^* , K_{11}^* , K_{25}^* and K_{26}^* can also be decomposed into \dot{c}_5 (see [B3]) For the general case, we use the lemmas IV.1. or IV.2. (in the directed case). We indicate below, in ecah case, the lemma and values used. (The verification that the hypothesis of the lemmas are satisfied result from lemma IV.5.1. and induction hypothesis).

IV.6. It is also interesting to use k-partite graphs $~K_{n\times k}$ (where k is the number of vertices of G).

IV.6.1. Indeed, if G is a graph with k vertices i , 1 \leq i \leq k, let G \otimes S denote the graph with vertex set X the disjoint union of k independant sets X_i with $|X_i| = n$ and where two points are joined in G \otimes S if they belong to two sets X_i and X_j with $\{i,j\}$ an edge of G. (G \otimes S is the lexicographic product of G by an independant set of n elements). Then we have the following lemma:

IV.6.2. Lemma : If there exists a (n,k,λ) G-design and if $G\otimes S_n$ can be decomposed into subgraphs isomorphic to G then there exists a decomposition of λ $K_{n\times k}$ into subgraphs isomorphic to G. (See [B3] for more details)

IV.6.3. Decomposition of $G \otimes S$ are many times easier to find; for example it is proved in [B3] that $G \otimes S$ can be always decomposed into subgraphs isomorphic to G if $G = C_k$, $\overset{\bullet}{C}_k$, $\overset{\bullet}{P}_k$, $\overset{\bullet}{P}_k$.

IV.6.4. As consequence of lemma IV.1. and lemma IV.6.2. ,we have: Lemma a: If there exists an $(m_sk_s\lambda)$ G-design and a $(n_sk_s\lambda)$ G-design and if $G\otimes S_n$ can be decomposed into subgraphs isomorphic to G then we have an $(mn_sk_s\lambda)$ G-design.

Lemma b: If there exists an (m,k,λ) G-design and an $(n+1,k,\lambda)$ G-design and if $G \otimes S_n$ can be decomposed into subgraphs isomorphic to G then we have an $(mm+1,k,\lambda)$ G-design.

KELEKENCES

- B1 C.BERGE, "Graphs and Hypergraphs", North-Holland, Amsterdam, 1973,
- B2 J.C.BERMOND, An application of the solution of Kirkman's schoolgirl problem: the decomposition of the symmetric oriented complete graph into 3-circuits, *Discrete Math.* 8 (1974), 301-304
- B3 J.C.BERMOND, Decomposition of K* into k-circuits and balanced G-designs, in "Recent advances in graph theory"(ed. M.Fiedler), Proc.Symp. Prague (1975), 57-68.
- B4 J.C.BERMOND, Thesis, University of Paris XI (Orsay)(1975).
- B5 J.C.BERMOND and V.FABER, Decomposition of the complete directed graph into k-circuits, to appear in J. Combinatorial Theory (B).
- B6 J.C.BERMOND and D.SOTTEAU, Balanced cycles and circuits designs,
- B7 R.H.BRUCK, Existence of the A-maps of A.K.Dewney and N.Robertson, unpublished manuscript.
- C1 P.CAIN, Decomposition of complete graphs into stars, Bull. Austral. Math. Soc. 10 (1974), 23-30.
- DI J.DENES and A.D.KEEDWELL, "Latin squares and their applications", Akademiai Kiado, Budapest and English University Press, London
- El P.ERDÖS and J.SCHÖNEIM, Edge decomposition of the complete graph into copies of a connected graph, to appear in Proceedings of Toronto, "Algebraic aspects of Combinatorics" (1975).
- HI M. HALL Jr, "Combinatorial Theory", Blaisdell Waltham, Mass. (1967).
- H2 H.HANANI, D.K.RAY CHAUDHURIand R.M.WILSON, On resolvable designs, Discrete Math. 3 (1972), 343-357.
- H3 H.HANANI, On transversal designs, "Combinatorics" Part 1 (eds. M.Hall and J.H.Van Lint), Math. Centre Tracts, 55, Amsterdam
- H4 H.HANANI, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
- H5 B.HARTNELL and M.MILGRAM, Decomposition of K, for p a prime into k-circuits, to appear "Proc. Journees franco-belges sur les graphes et hypergraphes", Paris, Mai 1974.

- H6 P. HELL and A.ROSA, Graph decompositions, handcuffed prisoners and balanced P-designs, Discrete Math. 2 (1972), 229-252.
- H7 P.HELL, Decompositions of graphs and hypergraphs using products An application to Ramsey numbers, unpublished manuscript.
- H8 C.HUANG and A.ROSA, On the existence of balanced bipartite designs, Utilitas Math. 4 (1973), 55-75.
- H9 C.HUANG, On the existence of balanced bipartite designs II, Discrete Math. 9 (1974), 147-159.
- 110 C.HUANG, Decomposition of complete graphs into stars, to appear.
- 11 C.HUANG, On handcuffed designs, to appear (Preprint University Waterloo).
- H12 C.HUANG and A.ROSA, Another class of balanced graph designs, Balanced circuit designs, to appear in Discrete Math.
- H13 C.HUANG, Resolvable balanced bipartite designs, to appear.
- H14 S.H.Y.HUNG and N.S.MENDELSOHN, Directed triple systems,
- J. Combinatorial Theory (A) 14 (1973), 310-318.

 H15 S.H.Y.HUNG and N.S.MENDELSOHN, Handcuffed designs. Acqua
- H15 S.H.Y.HUNG and N.S.MENDELSOHN, Handcuffed designs, Aequationes

 Math 11 (1974), 256-266.

 K1 A.D.KEEDWELL, Some problems concerning complete latin squares. i
- K1 A.D.KEEDWELL, Some problems concerning complete latin squares, in "Combinatorics", Proceedings of the British Combinatorial Conference (1973), L.M.S.Notes 13, Cambridge University (1974) 89-96.
- K2 A.KOTZIG, On the decomposition of complete graphs into 4k-gons,
 Mat. Fyz. Casop. 15 (1965), 229-233.
 L1 J.F.LAWLESS, On the construction of handcuffed designs,
- J. Combinatorial Theory (A) 16 (1974), 76-86.

 L2 J.F.LAWLESS, Further results concerning the existence of
- L2 J.F.LAWLESS, Further results concerning the existence of handcuffed designs, Aequationes Math. 11 (1974), 97-106.
- MI N.S.MENDELSOHN, Hamiltonian decomposition of the complete directed n-graph, in "Theory of graphs" (eds. P.Erdos, G.Katona) Akademiai Kiado, Budapest (1968), 237-241.
- M2 N.S.MENDELSOHN, A natural generalization of Steiner triple systems, in "Computers in number theory" (eds. A.O.L.Atkin and B.J.Birch) Academic Press, New York (1971), 323-338.

- M3 D.MERRIEL, Partitioning the directed graph into 5-cycles, unpublished manuscript.
- R1 D.K.RAY CHAUDHURIand R.M.WILSON, The existence of resolvable designs, in "A survey of Combinatorial Theory" (ed. J.N. Srivastava a.o.) North Holland / American Elsevier, Amsterdam / New York (1973), 361-376.
- R2 A.ROSA, On certain valuations of the vertices of a graph, in "Theory of graphs" (ed. P.Rosensthiel), Proc. Symp. Rome, Dunod, Paris (1967), 349-355.
- R3 A.ROSA, On the cyclic decomposition of the complete graph into polygons with odd number of edges, Casopis Pest. Math. 91 (1966), 53-63.
- R4 A.ROSA, On cyclic decomposition of the complete graph into (4m+2)-gons, Math. Fyz. Casopis Sav. 16 (1966), 349-353.
- 51 J.SCHÖNHEIM, Partition of the edges of the directed complete graph into 4-cycles, Discrete Math. 11 (1975), 67-70.
- S2 D.SOTTEAU, Decomposition of K_n^* into circuits of odd length, submitted to Discrete Math.
- WI L.L.WANG, A test for sequencing of a class of finite groups with two generators, Notices of the A.M.S. 20 (1973), A 632.
- W2 R.M.WILSON, Construction and uses of pairwise balanced designs, in "Combinatorics, Part I" (eds. M.Hall and J.M.Van Lint), Math. Centre Tracts, 55, Amsterdam (1974), 18-41.
- W3 R.M.WILSON, An existence theory of Pairwise Balanced Designs III,
 Proof of teh existence conjecture, J. Combinatorial Theory (A)
 18 (1975), 71-79.
- W4 R.M.WILSON, Concerning the number of mutually orthogonal latin squares, Discrete Math. 9 (1974), 181-198.
- R.M.WILSON, Decompositions of complete graphs into subgraphs isomorphic to a given graph, 'These proceedings'.

E