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Let us recall the de�nition and basic properties of the de Bruijn and Kautznetworks (see [3, 13] for more details).The de Bruijn digraph B(d;D) of out-degree d and diameterD has as verticesthe words of length D on an alphabet of d letters. Vertex x1 : : :xD is joined by anarc to the vertices x2 : : :xD� where � is any letter from the alphabet. Betweenany pair of vertices x1 : : : xD and y1 : : : yD there exists a unique path of lengthD called canonical path:x1x2x3 : : :xD; x2x3 : : :xDy1; x3 : : :xDy1y2; : : : : : : ; xDy1 : : : yD�1; y1 : : : yDThe Kautz digraph of out-degree d and diameter D, denoted K(d;D), has asvertices the words of length D on an alphabet of d+1 letters, with the propertythat xi 6= xi+1 for 1 � i � D � 1. Vertex x1 : : : xD is also joined to x2 : : :xD�,� 6= xD.These two digraphs can also be de�ned as iterated line digraphs. Let us recallthat the line digraph L(G) of a digraph G has as vertices the arcs e of G, withan arc from e to f in L(G) if and only if in G the initial vertex of f is the �nalvertex of e. In others words, e represents an arc of the form (x; y) and f anarc of the form (y; z). It is well known that B(d;D + 1) (resp. K(d;D + 1)) isisomorphic to L(B(d;D)) (resp. L(K(d;D)) (see [3, 13]).For a given digraph G, we denote UG the underlying graph associated to G(obtained by removing the orientation). The underlying de Bruijn (resp. Kautz)graph will therefore be denoted UB(d;D) (resp. UK(d;D)).Let us recall the previous bounds known on the broadcast time for de Bruijnand Kautz networks. Various lower bounds have been obtained on these net-works, we give the ones concerning the de Bruijn network (they are analogousfor the Kautz network). We �rst have the trivial general bound: b(UB(d;D)) �dlog2(dD)e = dD log2(d)e. We can also use the results of [1] which give lowerbounds for networks with bounded degree � = 2d.b(UB(d;D)) � dc�D log2(d)ewhere c� is of the order 1 + log2(e)2� , where e = exp(1). For example for d = 2,c4 = 1:137. In the case of the binary de Bruijn network (d = 2), the bound hasbeen improved in ([10]) leading to b(UB(2; D)) � 1:3117D. These bounds havebeen recently improved in [11] with b(UB(2; D)) � 1:4404D. In [11] the lowerbounds for greater values of d and iterated line digraphs are also improved.Concerning upper bounds, many partial results have been obtained for broad-casting on these networks (see [1, 2, 4, 6, 8]). For example, broadcasting protocolshave been designed which give mainly the following bounds (valid for digraphsand graphs): b(B(d;D)) � d+ 12 (D + 1) [2] (1)b(B(d;D)) � min(2Ddlog2(d)e; 3Ddlog3(d)e) [6] (2)b(B(d;D)) � (54dlog2 de + 3)D [6] (3)



Slight improvements of (3) can be found in [6]. For the Kautz digraph the boundsare less tight. b(K(d;D)) � d+ 32 (D + 1) [2] (4)b(K(d;D)) � min(2Ddlog2(d)e; 3Ddlog3(d)e) [6] (5)Recently in [12] compound techniques were used to improve the bound for undi-rected de Bruijn and Kautz graphs, leading tob(UB(d;D)) � Ddlog2(d)e +D � 1 (6)b(UK(d;D)) � Ddlog2(d)e +D � 1 (7)These results give an asymptotically optimal upper bound when d tends toin�nity. However for small degrees they are not optimal; for example, when d = 2,it leads to b(UB(2; d)) � 2D � 1 to be compared to 32(D + 1) (protocol (1)).The aim of this article is to provide a protocol with a broadcasting time whichis the minimum of the value obtained in (6) and that given by the following one:b(UB(d;D)) � b(D + 1)(log2(d) + F (d))c where F (d) � 12 (8)Remark. According to the respective values of d and D, the best bound will beinduced either by (6) or (8). Note that, at least when D > log2(d), (8) is betterthan (6).We also improve the bound for the Kautz digraph and the Kautz graph.The paper is organised as follows. First, in section 2 we recall the classical pro-tocol for de Bruijn digraphs and shows how to extend it for the Kautz digraphs.In section 3 we give a simple protocol which can be applied to any underlyinggraph of a line digraph. Finally we mix the ideas to obtain the bound (8).2 A protocol for de Bruijn and Kautz digraphsWe �rst give protocols for de Bruijn and Kautz digraphs as they contain someof the key ideas. The protocol for the de Bruijn digraph was already describedin [2].First idea When a vertex x1x2 : : :xD receives the message, it will inform itsout-neighbors x2 : : :xD� according to some policy. The choice of this policy isthe key of the e�ciency of the protocol. If we choose a policy independent fromthe vertex (like informing at �rst the neighbor with � = 0, then � = 1 and soon) then at least one vertex will be informed after Dd units of time. A betterpolicy, as we will see after (used in [2, 1] and implicit in [9] ) consists in a ruledepending on the vertex x1 : : : xD. In the case of the de Bruijn network, let �denote the d-arity of a vertex, that is � =Pi=Di=1 xi (modd) . Then x1 : : :xD willinform successively x2 : : : xD�; x2 : : : xD� + 1; : : : and so on. Here there existalso destinations for which the delay on the canonical path is again Dd.



Second idea The message can reach a destination via di�erent paths (we willuse d of them). We want clearly to choose the path on which the delay is thesmallest as possible, but the computation of such a parameter is too complicated.However, we will show that, with the policy de�ned above, one can compute thesum of the delays on the d paths and then the best delay will be bounded aboveby the average one.More precisely, on B(d;D) we will use the d following paths of length D + 1between x1 : : :xD and y1 : : : yD: P� for � 2 f0; 1 : : :d� 1g whereP� = x1 : : :xD; x2 : : : xD�; x3 : : : xD�y1; : : : : : : ; �y1 : : : yD�1; y1 : : : yD:In fact we send the message to all the out-neighbors of the originator, andthen consider the d canonical paths from the d out-neighbors to y1 : : : yD. Notethat these paths have the property that their ith internal vertices have all dif-ferent d-arities. Indeed the ith internal vertex of P� is xi+1 : : :xD; �; y1 : : : yi�1and di�ers from the ith internal vertex of P� only in the coordinate D � i+ 1.The time to reach y1 : : : yD on P� is: d� =Pi=D+1i=1 di�where di� is the delay from xi : : :xD; �; y1 : : : yi�2 to xi+1 : : : xD; �; y1 : : : yi�1.By the above property if � 6= �, di� 6= di�, then P� di� = 1 + 2 + : : :d = d(d+1)2 .Hence the sum of the delays on the d paths P� of length D + 1 is:X� d� = D+1Xi=1X� di� = (D + 1)d(d+ 1)2 (9)And so on one of the paths the delay is at most bd+12 (D + 1)c.Strictly speaking, in the above scheme the message may arrive at some vertexmore than once. By deleting redundant calls, a scheme can be obtained thatcompletes the broadcast at the appropriate time.That was the result proved in [2]; we state it as a proposition :Proposition1. b(B(d;D)) � bd+ 12 (D + 1)cIn the case of the Kautz digraph, we cannot use the d-arity like above becausethe letters are modulo (d+1) and furthermore the canonical path is of lengthD orD � 1. We will de�ne a \d-arity" as a number modulo d, but we will work withthe set of integers modulo d, with representatives f1; 2 : : :dg denoted A1d. Wede�ne � as the addition in A1d as follows: i� j = 1+ ((i� 1)+ (j� 1) (modd) ).For example if d = 4 we have 2 � 2 = 1 + (1 + 1 (mod 4) ) = 3 ; 3 � 4 =1 + (2 + 3 (mod 4) ) = 1 + 1 = 2.Now for vertices of the Kautz graph, we de�ne the d-arity �(x) as follows:For a word of length 2 a1b1, the value b1 � a1 is, modulo d+ 1, di�erent fromzero. Let � be the representative in A1d of b1 � a1. We set �(a1b1) = �. Ford = 4 we have for example, �(03) = 3 , �(20) = 3 as 2 + 3 = 0 (mod 5) ,�(41) = 2 as 4 + 2 = 1 (mod 5) .



For a word x of even length D = 2p with x = a1b1a2b2 : : : apbp we set:�(x) = i=pMi=1 �(aibi)So, �(032041) = 2, as 3� 3� 2 = [(2 + 2 + 1) (mod 4) ] + 1 = 1 + 1 = 2.For a word x of odd length D, where x = ya with y of even length D � 1, weset �(x) = �(y).Note the key property of this d arity. If two words di�er on one letter (other thanthe rightmost one in the case D odd) then their d-arities di�er too. In particularxi+1 : : :xd�y1 : : : yi�1 and xi+1 : : : xd�y1 : : : yi�1 have di�erent d-arities.During the protocol a vertex x1 : : :xD will inform successively the vertices:x1 : : :xD(xD + �1); x1 : : :xD(xD + �2); : : : ; x1 : : :xD(xD + �d) where �i 2 A1dis equal to �(x)� i in A1d.Example 1. still with d = 4 x = 032041 we have, �(x) = 2. So �1 = 2 � 1 =2 ; �2 = 2 � 2 = 3 ; �3 = 4 ; �4 = 1. As xD = 1 the informed vertices willbe successively 320413(as 1 + 2 = 3 (mod 5) ), 320414(as 1 + 3 = 4 (mod 5) ),320410(as 1 + 4 = 0 (mod 5) ), 320412 (as 1 + 1 = 2 (mod 5) ).Analysis of the protocol We have two di�erent ways of performing the analysis.Either we consider that we have d� 1 paths of length D + 1, namely:P� = x1 : : :xD; x2 : : :xD�; x3 : : : xD�; : : : ; � : : : yD�1; y1 : : : yD with� 62 fxD; y1g. On P� the total delay is: d� =PD+1i=1 di� where di� is the delay togo from xi : : :xD�y1 : : : yi�2 to xi+1 : : : xD�y1 : : : yiWe need to check that the delays di� are well balanced, so that the sum ofthe delays di� for a given i can be estimated. When i = 1 all the di� clearly di�er.When i is strictly greater than 2, as we already noted, the di� are again di�erent.So for i 6= 2 we have : X� di� � (d� 1)(d+ 2)2(Indeed we have to take d�1 distinct values among d values spanning f1; 2 : : :dg, the worst case being if the value 1 is always missing)When i is equal to 2, the delay d2� satis�es y1 = � + (�(x2 : : :xD�) � d2�)).One can check that d2� can be equal to d2� only when D and d are even with� = � + d2 . In this case di� will not span f1 : : :dg. However, in the worst case,the sum of the delays can be at most:X� d2� � 2 + 4 + 4 + 6 + 6 : : :+ d+ d = d(d+ 2)2 � 2(Indeed the delays will span a set of the kind c + 2j ). Using again the averageargument of 9 page 4, we get for d odd P� d�d�1 � bd+22 (D + 1)c, and for d evenP� d�d�1 � b(D + 1)d+22 + d�22(d�1)c = bd+22 (D + 1)c.So altogether this leads to:



Proposition2. b(K(d;D)) � bd+ 22 (D + 1)c (10)Another way is to send the message in at most d + 1 units of time to the dvertices x� wherex� = x3 : : :xD�xD for � 6= xD. Then for any vertex xDy1 : : : yD�1 we con-sider the d paths of length D � 1 from x� to xDy1 : : : yD�1. The same proof asabove shows that one of this path has a delay of at most d+12 (D � 1). So anyvertex of the kind xDy1 : : : yD�1 can be reached in d+12 (D + 1) units of time.Finally we can complete the broadcasting protocol in d + 1 more time units.Therefore we have:Proposition3. b(K(d;D)) � bd+ 12 (D + 3)c (11)According to the values of D and d, (10) or (11) can be better, as (10)�(11)= D+12 � (d+ 1) can be either negative or positive.3 A new protocol for undirected graphsThird idea Till now our protocols use only the arcs of the digraph B(d;D) (resp.K(d;D)). For the corresponding undirected graphs one can hope some improve-ments. We will use the arcs in the opposite direction, but only to accelerate thebroadcasting to the out-neighbors.Let us recall that if G is a d�regular digraph of order N , then the arcs ofits line digraph L(G) can be partitioned into N bipartite subgraphs isomorphicto Kd;d. More precisely each Kd;d of L(G) correspond to a vertex of G in thefollowing way. The Kd;d associated to x has as �rst set of the bipartition, thevertices (called initial vertices of this Kd;d) of L(G) which represent arcs in Gentering x and as second set, those (called terminal vertices of this Kd;d ) whichrepresent arcs of G leaving x. By de�nition of L(G) any initial vertex is joined toany terminal vertex. This property is known to be characteristic of line digraphsand has been noted by di�erent authors (for example see [7]).Example 2. The arcs of B(d;D) can be partitioned into dD�1 Kd;d. Namely toeach D�1 tuple x2 : : :xd is associated aKd;d with initial vertices f�x2 : : :xDj� 2f0 : : :d� 1gg and terminal ones fx2 : : :xD�j� 2 f0 : : :d� 1gg .Now recall that we can broadcast from any vertex in Kd;d to all the verticesin dlog2(d)e+1 time units with a protocol that we will call the bipartite protocolfor this Kd;d . Indeed let the vertices of Kd;d be respectively A = fa0 : : : ad�1gand B = fb0 : : : bd�1g. The broadcasting protocol is as follows: at time 1, ifthe originator is ai, it informs bi; then at time t � 2, any vertex aj(resp. bj)who knows the message sends it to bj+2t�2 resp. (aj+2t�2). By induction onecan easily shows that after time t, if ai is the originator, the message is knownby 2t�1 vertices of B, namely bi : : : bi+2t�1�1 and 2t�1 vertices of A, namelyai : : :ai+2t�1�1.



Example 3. For d = 8, let a0 be the originator; at time 1 a0 informs b0; at time 2a0 informs b1 and b0 informs a1; at time 3 a0 and a1 inform b2 and b3, and b0; b1inform a2; a3; at time 4 a0; a1; a2; a3 inform b4; b5; b6; b7. Note that formally, attime 4 b0 b1 b2 b3 can send the information to a4 a5 a6 a7, but that is useless forour purpose. Furthermore, in what follows we will take advantage of the factthat b0 b1 b2 b3 have �nished their work at time 3.Now we are able to de�ne a protocol divided into phases. During a phase, eachvertex, which has received the message as a terminal vertex of some Kd;d inthe preceding phase, sends it to all the terminal vertices of the Kd:d in whichit is an initial vertex. Each phase takes dlog2(d)e + 1 time units. As de�nedthe protocol cannot generate con
icts. Indeed at phase i, vertices which start abipartite protocol are of the form xi : : :xD� and none of them can be in the sameKd;d. Furthermore, if a vertex belongs to two Kd;d, in the �rst one as an initialvertex, in the second as a terminal vertex we cannot have con
icts, except if thevertex is a loop a : : :a (in the de Bruijn graph) in which case we can considerit as being not a terminal vertex and work in Kd;d�1 instead of Kd;d. So wecan e�ectively use this protocol. After i phases of this protocol, every vertex atdistance at most i from the originator is informed. So we have:Proposition4. b(UB(d;D)) � D(dlog2(d)e + 1) (12)b(UK(d;D)) � D(dlog2(d)e + 1) (13)Remark. Note that this protocol can be also de�ned on any underlying graph ofa line digraph. The proof is similar as the one above. We state it as a propositionProposition5. If G is a d-regular digraph:b(UL(G)) � D(L(G))(dlog2(d)e + 1)Combination of the ideas In fact we can still improve the bound if we mix allthe ideas, that is we consider the broadcasting time on di�erent paths in G, butusing the bipartite protocol in order to inform the out-neighbors of a vertex inG. In the directed protocol for the de Bruijn digraph the average time neededto inform the out-neighbors of a vertex is exactly 1d Pi=di=1 i = d+12 . We will seeafter that the average time is of order log2(d) + 12 when we use the connectionsof UL(G).Let us focus on the following problem: One initial vertex of a Kd;d has tosend the message to all the terminal vertices of its Kd;d. Let si be the time atwhich bi is not only informed but has �nished to participate in the local bipartiteprotocol. That means that at time si + 1, bi will be able to start a protocol inthe bipartite Kd;d for which it is an initial vertex. What will be important is to�nd a protocol which minimise the average of si (respectively to the terminalhalf of the Kd;d), denoted bout(Kd;d).



Proposition6. Let d = 2k�1(2 + �) with 0 � � � 2, then we have:0 � � � 1 bout = k + 2�+1�+2 (14)1 � � � 2 bout = k + 1 + 2( ��1�+2 ) (15)Proof. In the case � � 1, let the protocol be the one of the bipartite graph duringthe k �rst steps. At this point 2k�1 terminal and initial vertices are informed.Then informed terminal vertices stop to participate to the algorithm. The 2k�1informed initial vertices inform 2k�1 new terminal vertices at time k + 1, andthe �2k�1 remaining terminal vertices at time k + 2. Sos0 = s1 = : : : = s2k�1�1 = k, s2k�1 = : : : = s2k�1 = k + 1 and s2k = : : : =sd�1 = k + 1. That leads to bout = k2k�1+(k+1)2k�1+(k+2)�2k�1(�+2)2k�1 = k + 2�+1�+2 .In the case � � 1, after k steps of the algorithm, (2 � �)2k�1 terminal ver-tices will stop and (� � 1)2k�1 terminal vertices will continue to participateto the algorithm one step more. Then at time k + 1, (� � 1)2k�1 new ini-tial vertices, and 2k�1 new terminal vertices will be informed. At this stage,the (� � 1)2k�1 terminal vertices acting during the preceding step and the2k�1 newly informed terminal vertices will stop. So altogether �2k�1 verticeshave �nished to participate to the protocol at this time. To complete the pro-tocol the �2k�1 initial vertices having the message inform the �2k�1 remain-ing terminal vertices which �nish at time k + 2. The average time is then:bout = k(2��)2k�1+(k+1)�2k�1+(k+2)�2k�1(�+2)2k�1 = k + 1 + 2 ��1�+2 .Remark. One can prove that this is protocol provides an optimum value of bout,but we omit the proof.Example 4. For d = 4, s0 = s1 = 2 s2 = s3 = 3; for d = 5 s0 = s1 = 2 s2 =s3 = 3 s4 = 4; for d = 6 s0 = s1 = 2 s2 = s3 = 3 s4 = s5 = 4; for d = 7s0 = 2 s1 = s2 = s3 = 3 s4 = s5 = s6 = 4.Remark. For d = 2; (3) we have s0 = 1s1 = 2 (s2 = 3) which are the same valuesas that used in proposition 1. For d = 4, bout = 2:5 which is also the averageobtained in the directed protocol : 1+2+3+44 .To continue we need to compare bout(d) with the maximal value which is dlog2(d)e+1. In fact the reader can check that bout(d) = log2(d) + F (�) with F (�) =2 � log2(� + 2) + ��1�+2 for � � 1, and F (�) = 2 � log2(� + 2) + 2 ��1�+2 for � � 1.Easy computation shows that log2(43 ) � F (�) � 12 .Proposition7. For any degree d = 2k�1(2 + �) with 0 � � � 2:bout(d) = log2(d) + F (�) with log2(43) � F (�) � 12Now we are ready to prove our main theorem.



Theorem8. b(UB(d;D)) � b(D + 1)bout(d)cb(UK(d;D)) � 3 + 2dlog2(d)e+ b(D � 1)bout(d)cb(UK(d;D)) � (D + 1)(bout + 32(d� 1))Sketch of Proof. Consider the following protocol. First the originator sends toits out-neighbors according to the bipartite protocol described in proposition 11.During the protocol suppose a vertex receives the message as a terminal vertexof some Kd;d, then at �rst, it participates as a terminal vertex in the bipartiteprotocol of this Kd;d, and when it has �nished its work in this Kd;d it starts thebipartite protocol in the Kd;d for in which it is an initial vertex. The protocol issimilar of the one of proposition 5 except that we do not use synchronous phasesas a vertex starts sending messages as an initial vertex as soon as possible. Theonly di�erence is that there might be con
icts. But we will show after that it isnot a problem.Furthermore we use the bipartite protocol like in the proposition 1 in such away that the \delays" di�er if the initial vertices di�er in one coordinate. To dothat, it su�ces to label the initial vertex �x2 : : :xD as ai where i is the d-arityof �x2 : : :xD in the case of the de Bruijn graph ( and the d-arity minus 1 inthe case of the Kautz graph). We label a terminal vertex x2 : : : xD� by bj withj = � for the Bruijn graph ( j = � � xD � 1 for the Kautz graph).In the case of the de Bruijn graph a vertex can received the information ond paths of length D + 1 and similarly as in the protocol for digraphs the delaybetween the time where xi+1 : : : xD�y1 : : : yi�1 starts the bipartite protocol asinitial vertex and the times where its neighbor xi+2 : : :xD�y1 : : : yi�1yi is readyto start a new bipartite protocol are all di�erent. And, when � varies, the averagevalue of the delays taken on the d paths, is bout. So b(UB(d;D)) � b(D+1)boutc.For the Kautz graph we can consider d� 1 paths with � 62 fxD; y1g. In thatcase the average will be taken on the d�1 greatest values that is we will replace,for d = 2k�1(�+2), bout by dbout�kd�1 . This is k+ dd�1 2�+1�+2 for � � 1 and k+ dd�1 3��+2if � � 1. So we always have at most (D + 1)(bout + 32(d�1)).An other way is to �rst send the message from x1 : : : xD to x� = x3 : : :xd�xDin at most dlog2(d)e + 2 units of time. Then using the d paths from x� toxDy1 : : : yD�1 and the properties of d-arities, xDy1 : : : yD�1 is informed in atmost (D � 1)bout more units of time, and �nally in dlog2(d)e + 1 more units oftime we inform all the vertices.Now let us examine the possibility of con
icts (that is when a vertex isinvolved into di�erent calls at the same time).First suppose that in the same Kd;d two initial vertices say ai (resp. aj) areready to start the protocol at time t (resp. t + h). When aj is ready to startthe protocol, suppose it has already received the information from ai, then theaction of aj is covered by that of ai and we simply delete aj from the Kd;d forwhich it is a terminal vertex. If aj is ready to start the protocol, but it has not



still received the message from ai, we can combine the action of ai and aj toaccelerate the process. It su�ces to modify the protocol in such a way that anyaj (resp bj) informed informs the �rst vertex not already informed having anindex greater than or equal to the one it was supposed to inform. For examplesuppose ai and aj are both ready to start at the same time then ai inform biand aj inform bj Then on the next step ai and aj inform bi+1 and bj+1 or forexample if bi+1 = bj ai inform bi+2 and aj bj+2 and so on.. In the case d = 2kthe terminal vertices will have been informed at time k � 1 and k instead of kand k + 1.Now it can happen also that some vertex bi is implied in the protocol of someKd;d, say B1 as a terminal vertex and also as the initial vertex of another Kd;d,say B2. Then as we want only to inform the out-neighbors, it is useless that biworks in B1 because his future action in B2 has already been done. So we deleteit as a terminal vertex of B1.In summary either some vertices are useless as terminal vertices and we workwith a Kd;d0 with d0 � d and the bipartite protocol is faster, or some verticescan conjugate their actions as initial vertices to accelerate the process.The following table displays the time of our protocol, and compares it withprevious one. For this purpose we have listed the coe�cient A(d) appearing asthe coe�cient of (D+1) in the best previous bound (see [6]) , bout the coe�cientofD+1 in theorem 8 and the coe�cient F (d) which gives the gap with the triviallower bound log2(d)D.d 2 3 4 5 6 7 8 9 10 11 12A(d) 1:5 2 2:5 3 3:5 4 4:5 4 5:5 6 5:5bout(d) 1:5 2 2:5 2:8 3 3:28 3:5 3:66 : : : 3:8 3:9 4F (d) 0:5 0:415 0:5 0:478 0:415 0:478 0:5 0:497 0:478 0:45 0:4154 ConclusionWe have designed a new protocol for broadcasting in the de Bruijn and Kautzgraphs. The bounds obtained are better than all of those known before. Theideas and tools can be used for any networks obtained as the undirected graphof a line digraph (butter
ies networks and so on). The gap with the trivial lowerbound is always bounded by D2 so for large diameters our protocol is nearlyoptimal. For very small degrees d = 1; 2; 3; 4 our protocol is the same as fordigraphs, and there are still improvements to be found perhaps using paths ofgreater length. Finally let us note that recently A. Marchetti and X. Munoz(lecture at IWIN 95, Marseille July 1995) have used similar ideas and improvedthe bounds for general line digraphs, leading also to improvements for many deBruijn graphs.



References1. J-C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters. Broadcasting in boundeddegree graphs. SIAM journal of Discrete Mathematics, 5:10{24, 1992.2. J-C. Bermond and C. Peyrat. Broadcasting in de Bruijn networks. In Congres-sus Numerantium 66, editor, Proceedings of the 19th S-E conference on Combina-torics, Graph theory, and Computing, Florida, pages 283{292, 1988.3. J-C. Bermond and C. Peyrat. De Bruijn and Kautz networks: a competitor forthe hypercube? In Hypercube and Distributed Computers, pages 279{294, North-Holland 19894. P. Fraigniaud and E. Lazard. Methods and problems of communication in usualnetworks. Discrete Applied Mathematics, 53:79{133, 1994.5. S.L Johnsson M. Garey. Computer and Intractability: A Guide to the Theory ofNP-Completeness. Freeman, San Francisco CA, 1979.6. M-C. Heydemann, J. Opatrny, and D. Sotteau. Broadcasting and spanning treesin de Bruijn and Kautz networks. Discrete Applied Math., 27-28:297{317, 1992.7. M-C. Heydemann and D. Sotteau. A note on recursive properties of de Bruijn,Kautz and FFT digraphs. IPL, 53:255{259, 1995.8. J. Hromkovic, R. Klasing, B. Monien, and R. Peine. Dissemination of informa-tion in interconnection networks (broadcasting and gossiping). Technical report,University of Paderborn, February 1993. To appear as chapter in the book:" Com-binatorial Network Theory".9. M-R. Jerrum and S. Skyum. Families of �xed degree graphs for processor inter-connection. IEEE Trans Comput, C-33(2):190{194, 1984.10. R. Klasing, B. Monien, R. Peine, and E. Stohr. Broadcasting and gossiping in thebutter
y and de bruijn networks. Discrete Applied Mathematics, 53:183{197, 1994.11. S. Perennes. Bound on the broadcasting time of the de Bruijn and Butter
y net-works. In preparation.12. S. Perennes. Broadcasting and Gossiping on de Bruijn Shu�e exchange and similarnetworks. Technical Report 93-53, I3S, Sophia-Antipolis, October 1993.13. J. Rumeur. Communications dans les R�eseaux de Processeurs. Masson, 1994.
This article was processed using the LaTEX macro package with SIROCCO style


