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Abstract. Broadcasting is an information dissemination process in which
a message is to be sent from a single originator to all members of a net-
work by placing calls over the communication lines of the network. This
is to be completed as quickly as possible subject to the constraints that
each call involves only two vertices, each call requires one unit of time,
a vertex can participate in only one call per unit of time, and a vertex
can only call a vertex to which it is adjacent. The determination of the
broadcast time has been done for several networks. Here we give new
protocols which improve the known results for the de Bruijn network.
The ideas can also be used for similar networks; we give as example the
case of the Kautz network.

1 Introduction and Notations

Broadcasting (also called One to All) refers to the process of message dissemi-
nation in a communication network, whereby a message, originated by one node
(called the originator) is transmitted to all the nodes of the network. This is to
be completed as quickly as possible according to the considered model (see the
surveys [4, 8]). Here we suppose that we are in the Store and Forward model, F,
with constant time, which is also called telephone model. That 1s broadcasting is
performed by placing a series of calls; a call involves only two vertices (the sender
and the receiver ); each call requires one unit of time; a vertex can be involved
in only one call per unit of time; and calls occur between adjacent nodes.

Given a connected graph GG and a message originator, vertex u, the broadcast
time of u, denoted b(u), is the minimum number of time units required to com-
plete broadcasting from w. The broadcast time of the graph G, b(G), is defined
as the maximum of b(u) taken over all the vertices u in G.

For any graph G with N vertices, 6(G) > [log,(N)], since the number of
informed vertices can at most double during each unit of time. The problem of
determining the value b(G) is known to be NP-HARD (see [5]), but the values
of b(G) are known for many usual interconnection networks (like grids and hy-
percubes). However for the de Bruijn and related networks, the order of 6(G) is
still to be found.
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PRS and by the European HCM project MAP.



Let us recall the definition and basic properties of the de Bruijn and Kautz
networks (see [3, 13] for more details).

The de Bruijn digraph B(d, D) of out-degree d and diameter D has as vertices
the words of length D on an alphabet of d letters. Vertex x; ...z p is joined by an
arc to the vertices x5 ...2xpa where « is any letter from the alphabet. Between
any pair of vertices x1...zp and y; ...yp there exists a unique path of length
D called canonical path:

1X2%3...Zp, £o2X3...ZpYi, T3...TpYiYs, ...... s DYl - - YD—-1, Y1 .--.YD

The Kautz digraph of out-degree d and diameter D, denoted K(d, D), has as
vertices the words of length DD on an alphabet of d+ 1 letters, with the property
that #; # ;41 for 1 < ¢ < D — 1. Vertex z1...2p is also joined to za2...zpa,
a#p.

These two digraphs can also be defined as iterated line digraphs. Let us recall
that the line digraph L(G) of a digraph G has as vertices the arcs e of G, with
an arc from e to f in L(G) if and only if in G the initial vertex of f is the final
vertex of e. In others words, e represents an arc of the form (z,y) and f an
arc of the form (y, z). Tt is well known that B(d, D + 1) (resp. K(d, D + 1)) is
isomorphic to L(B(d, D)) (resp. L(K(d, D)) (see [3, 13]).

For a given digraph G, we denote UG the underlying graph associated to GG
(obtained by removing the orientation). The underlying de Bruijn (resp. Kautz)
graph will therefore be denoted UB(d, D) (resp. UK (d, D)).

Let us recall the previous bounds known on the broadcast time for de Bruijn
and Kautz networks. Various lower bounds have been obtained on these net-
works, we give the ones concerning the de Bruijn network (they are analogous
for the Kautz network). We first have the trivial general bound: b(UB(d, D)) >
[log,(dP)] = [Dlog,(d)]. We can also use the results of [1] which give lower
bounds for networks with bounded degree A = 2d.

bUB(d, D)) > [caD log,(d)]

where ca 18 of the order 1 + IO%%, where e = exp(1). For example for d = 2,
¢4 = 1.137. In the case of the binary de Bruijn network (d = 2), the bound has
been improved in ([10]) leading to (U B(2, D)) > 1.3117D. These bounds have
been recently improved in [11] with 6(UB(2, D)) > 1.4404D. In [11] the lower
bounds for greater values of d and iterated line digraphs are also improved.

Concerning upper bounds, many partial results have been obtained for broad-
casting on these networks (see [1, 2, 4, 6, 8]). For example, broadcasting protocols
have been designed which give mainly the following bounds (valid for digraphs
and graphs):

d+1

W5, D) < LD+ 1) 2 (1)
b(B(d, D)) < min(2Dlog, (d)]. 3D[logs(d)]) [6] (2)
b(B(d, D)) < (2Mlogy d] +3)D [0 (3)
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Slight improvements of (3) can be found in [6]. For the Kautz digraph the bounds
are less tight.

b, D)) < 2D+ 12 (1
K (d, D)) < min(2D[logs (d)], 3D[logs (d)]) [6] 6

Recently in [12] compound techniques were used to improve the bound for undi-
rected de Bruijn and Kautz graphs, leading to

bUB(d, D)) < Dflog,(d)] + D — 1 (6)
bUK(d. D)) < Dllog,(d)] + D — 1 (7)

These results give an asymptotically optimal upper bound when d tends to
infinity. However for small degrees they are not optimal; for example, when d = 2,
it leads to 6(UB(2,d)) < 2D — 1 to be compared to %(D + 1) (protocol (1)).

The aim of this article is to provide a protocol with a broadcasting time which
is the minimum of the value obtained in (6) and that given by the following one:

1
bUB(d, D)) < [(D +1)(logy(d) + F(d)) | where F(d) < 5 (8)
Remark. According to the respective values of d and D, the best bound will be
induced either by (6) or (8). Note that, at least when D > log,(d), (8) is better
than (6).

We also improve the bound for the Kautz digraph and the Kautz graph.

The paper is organised as follows. First, in section 2 we recall the classical pro-
tocol for de Bruijn digraphs and shows how to extend it for the Kautz digraphs.
In section 3 we give a simple protocol which can be applied to any underlying
graph of a line digraph. Finally we mix the ideas to obtain the bound (8).

2 A protocol for de Bruijn and Kautz digraphs

We first give protocols for de Bruijn and Kautz digraphs as they contain some
of the key ideas. The protocol for the de Bruijn digraph was already described
in [2].

First idea When a vertex zixs...2p receives the message, it will inform its
out-neighbors x5 ...zp 5 according to some policy. The choice of this policy is
the key of the efficiency of the protocol. If we choose a policy independent from
the vertex (like informing at first the neighbor with 8 = 0, then 5 = 1 and so
on) then at least one vertex will be informed after Dd units of time. A better
policy, as we will see after (used in [2, 1] and implicit in [9] ) consists in a rule
depending on the vertex q...zp. In the case of the de Bruijn network, let §
denote the d-arity of a vertex, that is § = Zzzf) z; (modd) . Then 2y ...zp will
inform successively xs...2pd, x2... xpd +1,... and so on. Here there exist

also destinations for which the delay on the canonical path i1s again Dd.



Second idea The message can reach a destination via different paths (we will
use d of them). We want clearly to choose the path on which the delay is the
smallest as possible, but the computation of such a parameter is too complicated.
However, we will show that, with the policy defined above, one can compute the
sum of the delays on the d paths and then the best delay will be bounded above
by the average one.

More precisely, on B(d, D) we will use the d following paths of length D+ 1
between a1 ...2p and y1 ...yp: Py for a € {0,1...d — 1} where

Pazl‘l...l‘[), Zo...LpQ, r3...TpaYy, ...... , Y1 ...Yp—-1, Y1 .-.YD.

In fact we send the message to all the out-neighbors of the originator, and
then consider the d canonical paths from the d out-neighbors to y1 ...yp. Note
that these paths have the property that their 7** internal vertices have all dif-
ferent d-arities. Indeed the #** internal vertex of P, is Tigl. XD, Y1 .. Yio1
and differs from the ¢*? internal vertex of Pg only in the coordinate D — i+ 1.

The time to reach y; ...yp on P, is: dy = Zi?“ dg
where d2, is the delay from z; .. .xp, o, 91 ... %2 t0 Ti41 ... D, 0, Y1 .. . Yi—1.
By the above property if o # 3, d', # d, then Z:adiY =14+24+...d= @.

Hence the sum of the delays on the d paths P, of length D + 1 is:

D+1

Yo=Y Y=oty o)

i=1

And so on one of the paths the delay is at most LCH'Tl(D + 1.

Strictly speaking, in the above scheme the message may arrive at some vertex
more than once. By deleting redundant calls, a scheme can be obtained that
completes the broadcast at the appropriate time.

That was the result proved in [2]; we state it as a proposition :

Propositionl.

B(B(d, D)) < |24 (D + 1)

In the case of the Kautz digraph, we cannot use the d-arity like above because
the letters are modulo (d+1) and furthermore the canonical path is of length D or
D — 1. We will define a “d-arity” as a number modulo d, but we will work with
the set of integers modulo d, with representatives {1,2...d} denoted AL. We
define @ as the addition in A} as follows: i@ j = 1+ ((i — 1)+ (j — 1) (mod d) ).
For example if d = 4 we have 292 = 1+ (1 +1 (mod4) ) = 3,304 =
14+ (243 (modd))=1+1=2.

Now for vertices of the Kautz graph, we define the d-arity d(z) as follows:

For a word of length 2 ayb;, the value b1 — a7 is, modulo d + 1, different from
zero. Let & be the representative in A}l of by — ay. We set §(aiby) = 4. For
d = 4 we have for example, §(03) = 3, §(20) = 3 as 24+ 3 = 0 (mod5) ,
d(41)=2as4+2=1 (modb) .



For a word x of even length D = 2p with & = a1bia2bs ... apb, we set:

So, 6(032041) =2,as 33 2=[2+241) (mod4d) |+ 1=1+1=2.
For a word z of odd length D, where z = ya with y of even length D — 1, we
set o(x) = d(y).

Note the key property of this d arity. If two words differ on one letter (other than
the rightmost one in the case D odd) then their d-arities differ too. In particular
Zigl...2q0y1 ... Yi—1 and Tiqp1 ... 240y1 ... yi—1 have different d-arities.

During the protocol a vertex z; ...zp will inform successively the vertices:
i...xp(zp +61), z1...2p(xp +B2), ..., x1...xp(xp + B4) where 3; € A}
is equal to () i in AL

Ezample 1. still with d = 4 ¢ = 032041 we have, d(z) = 2. So S = 2P 1 =
2,00 =262 =3 ,03=4,0s = 1. As xp = 1 the informed vertices will
be successively 320413(as 1 + 2 = 3 (mod5) ), 320414(as 1 + 3 = 4 (mod5) ),
320410(as 1 +4 =0 (mod5) ), 320412 (as 1 + 1 = 2 (mod5) ).

Analysis of the protocol We have two different ways of performing the analysis.
Either we consider that we have d — 1 paths of length D + 1, namely:

P, =z ...2p, ®3...xpa, ®3... Tpa, ..., @...Yp_1, Yi...Yyp with
a & {xp,y1}. On P, the total delay is: dy = Zf):tl d, where d', is the delay to
go from ;... TpAYL ... Yi—2 to L .q:Dozyl Yy

We need to check that the delays d?, are well balanced, so that the sum of
the delays d, for a given i can be estimated. When i = 1 all the d’, clearly differ.
When i is strictly greater than 2, as we already noted, the d!, are again different.
So for ¢ # 2 we have :

; (d=1)(d+2)
2 by T

(Indeed we have to take d —1 distinct values among d values spanning {1,2...d}
, the worst case being if the value 1 is always missing)

When i is equal to 2, the delay d? satisfies y; = a + (J(22...zpa) & d2)).
One can check that d? can be equal to d% only when D and d are even with
a=p+ %. In this case d, will not span {1...d}. However, in the worst case,
the sum of the delays can be at most:

d(d+ 2)

-2
2

Al <2+44+4446+6...+d+d=

(Indeed the delays will span a set of the kind ¢+ 2j ). Using again the average

argument of 9 page 4, we get for d odd Xglifa < LCH'Tz(D + 1)], and for d even

de _
Dpate < (D )2 4 22| = [H2(D+ 1)),

So altogether this leads to:




Proposition 2.
d+2
i, D)) < (220 + 1)) (10)

Another way is to send the message in at most d + 1 units of time to the d
vertices z, where

2o = 23...2paxp for @ # zp. Then for any vertex zpy: ...yp—1 we con-
sider the d paths of length D — 1 from z, to zpy; ...yp—_1. The same proof as
above shows that one of this path has a delay of at most d;—l(D —1). So any
vertex of the kind zpy;...yp_1 can be reached in CH'Tl(D + 1) units of time.
Finally we can complete the broadcasting protocol in d + 1 more time units.
Therefore we have:

Proposition 3. gl
bK(d, D)) < [2—(D+3)] (1)

According to the values of D and d, (10) or (11) can be better, as (10)—
(11)= % — (d+ 1) can be either negative or positive.

3 A new protocol for undirected graphs

Third idea Till now our protocols use only the arcs of the digraph B(d, D) (resp.
K(d, D)). For the corresponding undirected graphs one can hope some improve-
ments. We will use the arcs in the opposite direction, but only to accelerate the
broadcasting to the out-neighbors.

Let us recall that if G is a d—regular digraph of order N, then the arcs of
its line digraph L(G) can be partitioned into N bipartite subgraphs isomorphic
to Kgq4. More precisely each Ky 4 of L(G) correspond to a vertex of GG in the
following way. The Kg 4 associated to x has as first set of the bipartition, the
vertices (called initial vertices of this Kg4) of L(() which represent arcs in G
entering = and as second set, those (called terminal vertices of this K4 4 ) which
represent arcs of GG leaving x. By definition of L((G) any initial vertex is joined to
any terminal vertex. This property is known to be characteristic of line digraphs
and has been noted by different authors (for example see [7]).

Example 2. The arcs of B(d, D) can be partitioned into d”~* Kg,q. Namely to
each D—1 tuple 2, ... x4 1s associated a Kq 4 with initial vertices {a@s ... 2p|a €

{0...d —1}} and terminal ones {#2...2pB|f € {0...d—1}}.

Now recall that we can broadcast from any vertex in K44 to all the vertices
in [logy(d)]+1 time units with a protocol that we will call the bipartite protocol
for this K44 . Indeed let the vertices of Kq4 be respectively A = {ag...aq_1}
and B = {by...by_1}. The broadcasting protocol is as follows: at time 1, if
the originator is a;, it informs b;; then at time ¢ > 2, any vertex a;(resp. b;)
who knows the message sends it to b;ysi-2 resp. (@;19:-2). By induction one
can easily shows that after time ¢, if a; is the originator, the message i1s known
by 2!=1 vertices of B, namely b;...b; 5-1_; and 2'~1 vertices of A, namely
A5 ... Qipot—1_1.



Ezrample 3. For d = 8, let ag be the originator; at time 1 ag informs bg; at time 2
ag informs b1 and by informs ay; at time 3 ag and a; inform b, and b3, and bg, by
inform as, as; at time 4 ag, ay, as, as inform by, bs, bg, b7. Note that formally, at
time 4 bg b1 bs bz can send the information to a4 as ag a7, but that is useless for
our purpose. Furthermore, in what follows we will take advantage of the fact
that bg by bs b3 have finished their work at time 3.

Now we are able to define a protocol divided into phases. During a phase, each
vertex, which has received the message as a terminal vertex of some Kg g4 in
the preceding phase, sends it to all the terminal vertices of the Ky 4 in which
it is an initial vertex. Each phase takes [log,(d)] + 1 time units. As defined
the protocol cannot generate conflicts. Indeed at phase ¢, vertices which start a
bipartite protocol are of the form x; ...z p* and none of them can be in the same
Kg,q. Furthermore, if a vertex belongs to two Ky 4, in the first one as an initial
vertex, in the second as a terminal vertex we cannot have conflicts, except if the
vertex is a loop a...a (in the de Bruijn graph) in which case we can consider
it as being not a terminal vertex and work in Ky 4_1 instead of K;4. So we
can effectively use this protocol. After ¢ phases of this protocol, every vertex at
distance at most 7 from the originator is informed. So we have:

Proposition4.

Remark. Note that this protocol can be also defined on any underlying graph of
a line digraph. The proof is similar as the one above. We state it as a proposition

Proposition5. If G is a d-reqular digraph:
bUL(G)) < D(L(G))([logy(d)] + 1)

Combination of the ideas In fact we can still improve the bound if we mix all
the ideas, that is we consider the broadcasting time on different paths in G, but
using the bipartite protocol in order to inform the out-neighbors of a vertex in
G.

In the directed protocol for the de Bruijn digraph the average time needed
to inform the out-neighbors of a vertex is exactly % Zzzfz = d‘g—l. We will see
after that the average time is of order log,(d) + % when we use the connections
of UL(G).

Let us focus on the following problem: One initial vertex of a Kg4 has to
send the message to all the terminal vertices of its K4 4. Let s; be the time at
which b; is not only informed but has finished to participate in the local bipartite
protocol. That means that at time s; + 1, b; will be able to start a protocol in
the bipartite K44 for which it is an initial vertex. What will be important is to
find a protocol which minimise the average of s; (respectively to the terminal

half of the Ky 4), denoted Eom(Kdyd).



Proposition6. Let d = 2¥=1(2 +J) with 0 < 6 < 2, then we have:

OS(SSl Eout:k'i'sz-l—zl (14)
1 <0< 2bpur = k + 1+ 2(553) (15)

Proof. In the case § < 1, let the protocol be the one of the bipartite graph during
the k first steps. At this point 2¥~! terminal and initial vertices are informed.
Then informed terminal vertices stop to participate to the algorithm. The 2¢~1
informed initial vertices inform 2*~' new terminal vertices at time & + 1, and
the d2%~! remaining terminal vertices at time k + 2. So

S0 =81 = ...= Sor-1_1 =k, Sor-1 = ... =Sk = k+1land spr = ... =
7 kok—1 k k=1 k sok—1
sq_1 = k + 1. That leads to by, = 22— +( Tifz)zkﬂ +2)825 70 g 2541,

In the case § > 1, after k steps of the algorithm, (2 — §)2¢~! terminal ver-
tices will stop and (§ — 1)2¥~! terminal vertices will continue to participate
to the algorithm one step more. Then at time k + 1, (6§ — 1)2*~! new ini-
tial vertices, and 2*~! new terminal vertices will be informed. At this stage,
the (§ — 1)2%~! terminal vertices acting during the preceding step and the
281 newly informed terminal vertices will stop. So altogether §2%~1 vertices
have finished to participate to the protocol at this time. To complete the pro-
tocol the 62¢~1 initial vertices having the message inform the §2¥~1 remain-

ing terminal vertices which finish at time k& + 2. The average time is then:

T k(2=8)2F (k4 1)62° TV (k42)52% 7 5—1
bout - (5+2)2k—1 — k+ 1‘1‘25_'_—2

Remark. One can prove that this is protocol provides an optimum value of by,
but we omit the proof.

Erample . For d = 4, sg = s1 = 2 s9g = s3 =3, ford =5 s9 = 81 = 2 89 =
s3 =3 s4 =4;ford =659 =58 =2 89 =83 =3 54 =585 =4, ford=7
802281282283238428528624.

Remark. Ford = 2,(3) we have sg = 151 =2 (s2 = 3) which are the same values
as that used in proposition 1. For d = 4, b,y = 2.5 which is also the average
obtained in the directed protocol : 1"'2;';&.

To continue we need to compare Eom(d) with the maximal value which is [log,(d)]+

1. In fact the reader can check that byy:(d) = log,(d) + F () with F(d) =

2 —log,(6 +2) + g;—% for § <1, and F(J) = 2 — log,(6 + 2) + 24=L for § > 1.
F

5+2
(0) < i

Easy computation shows that log,(3) < 5

Proposition7. For any degree d = 2¥71(2 4 6) with 0 < § < 2:

B () = g (d) + F(5) with logs (3) < F(9) <

N | —

Now we are ready to prove our main theorem.



Theorem 8.

< (D + Dboue(d)]
< 3+ 2[logy(d)] + [(D = 1)bous(d)]

bUK(d, D)) < (D4 1)(bou: + ﬁ)

bUB(d, D))
bUK(d, D))

Sketch of Proof. Consider the following protocol. First the originator sends to
its out-neighbors according to the bipartite protocol described in proposition 11.
During the protocol suppose a vertex receives the message as a terminal vertex
of some Ky 4, then at first, it participates as a terminal vertex in the bipartite
protocol of this K4 4, and when it has finished its work in this Ky 4 it starts the
bipartite protocol in the /iy 4 for in which it is an initial vertex. The protocol is
similar of the one of proposition 5 except that we do not use synchronous phases
as a vertex starts sending messages as an initial vertex as soon as possible. The
only difference is that there might be conflicts. But we will show after that it is
not a problem.

Furthermore we use the bipartite protocol like in the proposition 1 in such a
way that the “delays” differ if the initial vertices differ in one coordinate. To do
that, it suffices to label the initial vertex axs...xp as a; where 7 is the d-arity
of awa...xp in the case of the de Bruijn graph ( and the d-arity minus 1 in
the case of the Kautz graph). We label a terminal vertex z...2p3 by b; with
J = 3 for the Bruijn graph ( j = 3 — #p — 1 for the Kautz graph).

In the case of the de Bruijn graph a vertex can received the information on
d paths of length D 4 1 and similarly as in the protocol for digraphs the delay
between the time where #;11...2pay; ...y;—1 starts the bipartite protocol as
initial vertex and the times where its neighbor #;42...2pay1 ... yi—1y; 1s ready
to start a new bipartite protocol are all different. And, when « varies, the average
value of the delays taken on the d paths, is byyu¢. So bUB(d, D)) < |[(D+ 1)30mJ.

For the Kautz graph we can consider d — 1 paths with o € {zp,y1}. In that
case the average will be taken on the d —1 greatest values that is we will replace,

for d = 251 (§+2), Dour by L=k This is k+ 7% 251 for § < 1and k+ 5% 25

if § > 1. So we always have at most (D + 1)(501” + %)

An other way is to first send the message from z; ... zp to 2o, = z3...24a2p
in at most [log,(d)] + 2 units of time. Then using the d paths from xz, to
py1...yp—_1 and the properties of d-arities, xpy;...yp_1 1s informed in at
most (D — 1)byy: more units of time, and finally in [log,(d)] + 1 more units of
time we inform all the vertices.

Now let us examine the possibility of conflicts (that is when a vertex is
involved into different calls at the same time).

First suppose that in the same K4 4 two initial vertices say a; (resp. a;) are
ready to start the protocol at time ¢ (resp. ¢t + h). When «; is ready to start
the protocol, suppose it has already received the information from a;, then the
action of a; is covered by that of a; and we simply delete a; from the Kg 4 for

which it is a terminal vertex. If a; is ready to start the protocol, but it has not



still received the message from a;, we can combine the action of a; and a; to
accelerate the process. It suffices to modify the protocol in such a way that any
a; (resp b;) informed informs the first vertex not already informed having an
index greater than or equal to the one it was supposed to inform. For example
suppose @; and a; are both ready to start at the same time then «; inform b;
and a; inform b; Then on the next step a; and a; inform b;41 and b;4, or for
example if b;41 = b; a; inform b;42 and a; ;42 and so on.. In the case d = ok
the terminal vertices will have been informed at time k& — 1 and % instead of &
and k + 1.

Now 1t can happen also that some vertex b; is implied in the protocol of some
Kg,q, say By as a terminal vertex and also as the initial vertex of another Kg g4,
say Bs. Then as we want only to inform the out-neighbors, it i1s useless that b;
works in By because his future action in By has already been done. So we delete
1t as a terminal vertex of Bj.

In summeary either some vertices are useless as terminal vertices and we work
with a Kq4 with d' < d and the bipartite protocol is faster, or some vertices
can conjugate their actions as initial vertices to accelerate the process.

The following table displays the time of our protocol, and compares it with
previous one. For this purpose we have listed the coefficient A(d) appearing as
the coefficient of (D +1) in the best previous bound (see [6]) , Dot the coefficient
of D+1 in theorem 8 and the coefficient F(d) which gives the gap with the trivial

lower bound log,(d)D.

d 21 3 (4] 5 6 7T |8 9 10 |11 | 12

A(d) [1.5] 2 |2.5] 3 3.5 4 4.5 4 5.5 | 6 | 5.5

Zout(d) 1.5 2 [2.5] 2.8 3 |3.283.5(3.66...| 3.8 [3.9] 4
F(d) [0.5[0.415]0.5|0.478|0.415]0.478(0.5| 0.497 [0.478(0.45|0.415

4 Conclusion

We have designed a new protocol for broadcasting in the de Bruijn and Kautz
graphs. The bounds obtained are better than all of those known before. The
ideas and tools can be used for any networks obtained as the undirected graph
of a line digraph (butterflies networks and so on). The gap with the trivial lower
bound is always bounded by % so for large diameters our protocol is nearly
optimal. For very small degrees d = 1,2,3,4 our protocol is the same as for
digraphs, and there are still improvements to be found perhaps using paths of
greater length. Finally let us note that recently A. Marchetti and X. Munoz
(lecture at TWIN 95, Marseille July 1995) have used similar ideas and improved
the bounds for general line digraphs, leading also to improvements for many de
Bruijn graphs.
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