
On Even Factorisations and the Chromatic Index ofthe Kautz and de Bruijn Digraphs. 1Jean-Claude Bermond and Pavol HellAbstractMotivated by the problem of designing large packet radio networkswe show that the Kautz and de Bruijn digraphs with in- and out- degreed have arc-chromatic index 2d. In order to do this, we introduce theconcept of even 1-factorisations. An even 1-factor of a digraph is aspanning subgraph consisting of vertex disjoint loops and even cycles;an even 1-factorisation is a partition of the arcs into even 1-factors.We prove that if a digraph admits an even 1-factorisation then so doesits line digraph. (In fact, we show that the line digraph admits an even1-factorisation even under a weaker assumption discussed below.) As aconsequence we derive the above property of the Kautz and de Bruijndigraphs relevant to packet radio networks.1 Introduction.One method of designing large packet radio networks [8], requires the con-struction of large digraphs with a given diameter and arc-chromatic index.1J-C. Bermond, CNRS, Université de Nice - Sophia Antipolis, Sophia Antipolis, 06560Valbonne, France.P. Hell, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada.This research was supported by grants from the French program C3, the CanadianNSERC and the British Columbia ASI. 1



Brie�y, the vertices correspond to the users of the network and the arcs toradio channels. The diameter constraint enforces small transmission delay.An arc-coloring with few colors makes it possible to have all transmissionstake place in few time slots (a user may be involved in at most one trans-mission in any one time slot, but all transmissions corresponding to a colorclass of arcs may take place simultaneously). For more details on this model,as well as some general results, see [8], [4].There is a very similar problem with well established literature, namelythe problem of constructing large digraphs, and graphs, with given diameterand maximum degree [1], [2], [3], [7]. The two best constructions knownfor general digraphs are the Kautz and de Bruijn digraphs mentioned inthe title. We prove in this article that the Kautz and de Bruijn digraphswith in- and out- degree d have the smallest possible arc-chromatic index,namely 2d. Consequently, they are of prime interest also as large digraphswith given diameter and arc-chromatic index; they substantially improve thebounds given in [8] for packet radio networks. Other constructions of packetradio networks arising from digraphs and graphs with given diameter andmaximum degree are given in [4].Let G be a digraph (possibly containing loops). The length (number ofarcs) of a shortest directed path from a vertex u to a vertex v of G is calledthe distance from u to v. (If there is no such path, the distance is consideredin�nite.) The diameter of a digraph G is the maximum distance over allpairs of vertices u and v of G. The outdegree of a vertex v in the digraph Gis the number of arcs vw in G, and is denoted by d+(v). The indegree d�(v)2



is de�ned analogously. An arc-coloring of G is a mapping assigning colors tothe arcs of G in such a way that two distinct arcs having a common vertexobtain di�erent colors. The arc-chromatic index ofG is the minimum numberof colors which make an arc-coloring of G possible. A k-factor of a digraph Gis a spanning subgraph F of G in which the indegree and outdegree of eachvertex is k. It is easy to see that a 1-factor of G consists of vertex disjointdirected cycles of G. An even 1-factor of G is a 1-factor of G in which allcycles other than loops (i.e., cycles with one arc) have an even number of arcs.Suppose F is a 2-factor of G and m is a function which assigns to each pair(e; v), where e is an arc of F and v is a vertex of e, a value m(e; v) 2 f0; 1gin such a way that m(e; v) 6= m(f; v) if both e and f begin at v or both eand f end at v. We shall call m the marking function and the value m(e; v)the mark of e at v. Note that we do not require that m(e; v) = m(e; u) fore = uv, i.e., the marks of one arc may be di�erent at the two ends. We shalltreat the marks as elements of the additive group Z2; this will permit us toadd the marks and remain in the group. The marking function m inducestwo partitions of the arc set of F into closed directed walks as follows: In the�rst partition, denoted by P (F;m; 0), a closed walk is obtained by startingat some unused arc, and after an arc e = uv continuing with the unique arcf = vw with m(e; v) = m(f; v), until the starting arc is encountered again.In the second partition, denoted by P (F;m; 1), a closed walk is obtained inthe same way except that after e = uv we take the unique arc f = vw withm(e; v) 6= m(f; v). We say that F is an even 2-factor of G if there exists afunction m as above, such that all closed walks of both partitions P (F;m; i)3



(i = 0; 1), other than loops, have an even number of arcs. We say that Ghas an even 1-factorisation if the arcs of G can be partitioned into even 1-factors, and an even 2-factorisation if the arcs of G can be partitioned intoeven 2-factors. The relevance of even 1-factorisations to arc-coloring is madeexplicit in the following observation:Proposition 1 If G has an even 1-factorisation with d even 1-factors, thenG has an arc-coloring with 2d colors.Proof: Each even 1-factor consists of even directed cycles and loops.Using two colours, we can color each even cycle alternating the colours, andeach loop with one of the two colours. 22 Line Digraphs and Even Factorisations.The line digraph of G, denoted by L(G), has as its vertices the arcs of G;there is an arc in L(G) from e to f just if e = uv and f = vw. Note that aloop e = uu in G becomes a loop ee in L(G).Theorem 2 If G has an even 1-factorisation with d even 1-factors, then itsline digraph L(G) also has an even 1-factorisation with d even 1-factors.Proof: Let F0; F1; : : : ; Fd�1 be an even 1-factorisation of G. Thus everyarc e of G belongs to a unique even 1-factor Fi. To denote this fact wesay that e is labeled by i, and write l(e) = i. We shall treat the labelsi = 0; 1; : : : ; d� 1 as elements of the additive group Zd of integers modulo d;this will allow us to perform addition of the labels and remain in the group.4



Note that for each i = 0; 1; : : : ; d � 1, and every vertex v of G, there is aunique arc uv, and a unique arc vw of G, labeled by i. To de�ne an even1-factorisation of L(G), we �rst extend the labeling l : E(G) 7! Zd to alabeling l : E(L(G)) 7! Zd by l(ef) = l(e) + l(f), and then let Hi be thesubgraph of L(G) formed by all arcs labeled i, for i = 0; 1; : : : ; d � 1. Weclaim that H0;H1; : : : ;Hd�1 is an even 1-factorisation of L(G). Since eacharc of L(G) has a unique label, it remains to verify that every Hi is an even1-factor.For each vertex e = uv of L(G) and each label i there is a unique vertexf of L(G) such that l(ef) = i because the equation l(e)+x = i has a uniquesolution in the group Zd, and because there is at v a unique arc f = vw ofG with label l(f) = x. By a symmetric argument there is a unique vertex fof L(G) such that l(fe) = i. Therefore each Hi is a 1-factor.It remains to show that each directed cycle (other than a loop) of everyHi is even. Let e1; e2; : : : ; ep be the vertices of a directed cycle in some Hi,for i = 0; 1; : : : ; d�1. Thus all labels l(ejej+1) are i, for j = 1; 2; : : : ; p (withsubscript addition modulo p). It follows that in G we have the equationsl(ej) + l(ej+1) = l(ej+1) + l(ej+2), for j = 1; 2; : : : ; p. Hence the labels ofthe edges ej in G alternate, i.e., l(e1) = l(e3) = : : : = a and l(e2) = l(e4) =: : : = b. If a 6= b, then necessarily p must be even. On the other hand, ifa = b then e1; e2; : : : ; ep are the edges of a cycle in Fa, and hence p is evenby assumption. 2Theorem 3 If G has an even 2-factorisation with d even 2-factors, then itsline digraph L(G) has an even 1-factorisation with 2d even 1-factors.5



Proof: Let F0; F1; : : : ; Fd�1 be an even 2-factorisation of G. As above, welabel the arcs of G by Zd, with l(e) = i whenever e belongs to Fi. Let mi bethe marking function associated with the 2-factor Fi. We let m(e; v) equal tomi(e; v) with i = l(e); in this way marks are de�ned for all incident vertex-arc pairs. We again extend the labeling l of the arcs of G to a labelingof the arcs of L(G). Suppose e = uv and f = vw. We de�ne the labell(ef) to be the ordered pair < �; � >2 Zd � Z2, where � = l(e) + l(f) and� = m(e; v) +m(f; v). We let H<�;�> be the subgraph of L(G) formed byall arcs labeled < �; � >, for � 2 Zd and � 2 Z2. We claim that the H<�;�>form an even 1-factorisation of L(G). As above, it it enough to verify thateach H<�;�> is an even 1-factor.For each vertex e = uv of L(G) and each label < �; � > there is a uniquevertex f of L(G) such that l(ef) =< �; � >, because the equation l(e)+x = �has a unique solution in Zd, and because exactly one of the two arcs of Fxbeginning at v, say f , satis�es m(e; v) + m(f; v) = �. By a symmetricargument there is a unique vertex f of L(G) such that l(fe) =< �; � >.Therefore each H<�;�> is a 1-factor.Let again e1; e2; : : : ; ep be the vertices of a directed cycle in some H<�;�>,for � 2 Zd; � 2 Z2. Thus all labels l(ejej+1) are < �; � >, for j = 1; 2; : : : ; p(with subscript addition modulo p). Since all l(ejej+1) = �, we deduce asbefore that the labels of the edges ej in G alternate, i.e., l(e1) = l(e3) =: : : = a and l(e2) = l(e4) = : : : = b. If a 6= b, then necessarily p must beeven. Thus assume that a = b, i.e., that all ej are in Fa. Writing ej = vj�1vj ,we also have m(ej ; vj) +m(ej+1; vj) = � (for all j = 1; 2; : : : ; p). Therefore6



either all m(ej ; vj) = m(ej+1; vj) (if � = 0) or all m(ej ; vj) 6= m(ej+1; vj) (if� = 1). This means that e1; e2; : : : ; ep is one of the closed directed walks ofthe partition P (Fa;ma; �), and hence p = 1 or p is even. 23 The Kautz and de Bruijn digraphs.Assume d � 2. For D � 0, we de�ne the de Bruijn digraph B(d;D) asthe digraph whose vertices are all strings of length D over an alphabet of dsymbols, in this paper always Zd, and whose arcs are all strings of lengthD + 1 over the same alphabet. The arc a1a2:::aDaD+1 starts from the ver-tex a1a2:::aD and ends in the vertex a2:::aDaD+1. Note that B(d; 0) is thedigraph with one vertex (corresponding to the empty string), and d loops,one for each letter of the alphabet; B(d; 1) is a complete symmetric digraphwith d vertices, and a loop at each vertex.For D � 1, the Kautz digraph K(d;D) is the digraph whose verticesare all those strings of length D over an alphabet of d + 1 symbols, hereZd [1, in which consecutive characters are distinct, and whose arcs are allstrings of length D+1 over the same alphabet with the same property. Thearc a1a2:::aDaD+1 starts from the vertex a1a2:::aD and ends in the vertexa2:::aDaD+1. Note that K(d; 0) is unde�ned, and K(d; 1) is a completesymmetric loopless digraph on d+ 1 vertices. It is easy to see (cf. [3]) thatboth B(d;D) and K(d;D) have diameter D and are regular of in- and out-degree d. Furthermore, the digraph B(d;D) has dD vertices and the digraphK(d;D) has dD + dD�1 vertices.It follows from the de�nitions that the following is true:7



Proposition 4 For all relevant d and D,B(d;D) = L(B(d;D � 1));K(d;D) = L(K(d;D � 1)): 2Corollary 5 Each B(d;D) has an even 1-factorisation.Proof: The proof proceeds by induction on D. It is obvious for D = 0,and then it follows by using Theorem 2 and the above proposition. 2Corollary 6 Let D � 2 or D = 1 and d be odd.Then K(d;D) has an even 1-factorisation.Proof: The proof again proceeds by induction on D. However, we cannotstart at D = 0, and even for D = 1 the Kautz digraph K(d; 1) does notadmit an even 1-factorisation when d is even. Indeed, it has an odd numberof vertices and no loops; thus each 1-factor must contain an odd cycle of morethan one arc. On the other hand, for D = 1 and d odd, we can constructan even 1-factorisation of K(d; 1) by starting with the complete undirectedgraph on d+1 vertices, which is known to have edge-chromatic index d ([6],cf. below). Since K(d; 1) is obtained from it by replacing each edge with thetwo opposite arcs, we can associate with each color class of such an edge-coloring by d colors a 1-factor of K(d; 1) consisting of directed two-cycles.Thus for d odd, and any D, we obtain an even 1-factorisation of K(d;D) viaTheorem 2. 8



When d is even, we can proceed the same way, as soon as we have con-structed an even 1-factorisation of K(d; 2). For this purpose we use Theorem3. Indeed, the complete undirected graph on d + 1 vertices admits a par-tition of its edge set into hamiltonian cycles [6]. This partition yields a2-factorisation of K(d; 1) as follows: We replace each undirected edge withthe two opposite arcs; thereby every hamiltonian cycle C = v0; v1; : : : ; vd pro-duces a 2-factor F of K(d; 1). We claim that the 2-factor F is even. Indeed,we may de�ne a marking function m in such a way that the two oppositearcs obtain the same marks at the vertex v0 and obtain di�erent marks atall other vertices, i.e., m(vv0; v0) = m(v0v; v0) for v = v1 and v = vd, andm(vvi; vi) 6= m(viv; vi) for i 6= 0 and v = vi�1 and v = vi+1. Recall that thepartition P (F;m; 0) consists of closed walks obtained by following arcs thatleave a vertex on the same mark as they entered it. Thus starting with thearc v0v1 we pass through all the arcs v1v2; v2v3; : : : until the arc vdv0; at thispoint we must follow with the arc v0vd and then retrace our steps throughthe arcs vdvd�1; : : : ; v1v0. (The closed walk ends here as the next arc wouldbe the starting arc v0v1). Thus P (F;m; 0) consists of a single closed walk,of length 2(d + 1). In the same spirit, the partition P (F;m; 1) consists ofone closed walk of length four with arcs v0v1; v1v0; v0vd; vdv0 and d � 1 cy-cles of length two vivi+1; vi+1vi for i = 1; 2; : : : ; d� 1. Thus both partitionsP (F;m; i) (i = 0; 1) consist of even closed walks, and we obtain an even2-factorisation of K(d; 1), and hence by Theorem 3 an even 1-factorisationof K(d; 2). 2Corollary 7 Each B(d;D) with D � 1 has arc-chromatic index 2d. 29



Corollary 8 Each K(d;D) with D � 2 (or D = 1 and d odd) has arcchromatic index 2d. 2In some applications it may be useful to know directly which 1-factorcontains the arc a1a2:::aD+1. (This will also allow us, via Proposition 1, todirectly �nd the color of each arc in the corresponding arc-coloring.) It fol-lows by unwinding the above induction (as was also observed by L. Goddyn,personal communication) thatProposition 9 There is an even 1-factorisation F0; F1; :::; Fd�1 of B(d;D)in which the arc a1a2:::aD+1 belongs to Fi wherei = DXj=0 Dj ! � aj+1:Proof: For D = 0 the digraph B(d; 0) consists of the loops 0; 1; : : : ; d� 1and we label each loop i by l(i) = i, i.e., we let each Fi = fig. Now weproceed by induction: Suppose that l is a labeling of B(d;D) wherel(a1a2:::aD+1) = DXj=0 Dj ! � aj+1:Then we de�ne as in the proof of Theorem 3 a labeling of B(d;D + 1) byl(a1; a2; : : : ; aD+1; aD+2) = l(a1; : : : ; aD+1) + l(a2; : : : ; aD+2). Therefore,l(a1; a2; : : : ; aD+2) = DXj=0 Dj ! �aj+1+ DXj=0 Dj ! �aj+2 = D+1Xj=0  D + 1j ! �aj+1;using Pascal's equality �D+1j � = �Dj � + � Dj�1�. Letting Fi consist of all arcslabeled i we obtain the desired even 1-factorisation of B(d;D). 2The situation is somewhat less elegant for Kautz digraphs, but a calcu-lation is possible. In particular, we need to use "nice" decompositions of10



the complete graph on d+ 1 vertices. We have already remarked that for dodd the complete undirected graph with vertices Zd [ 1 admits a d-edge-coloring; one such coloring (cf. [6]) assigns to the edge ij the color i + jwhen neither i nor j is1 and assigns to the edge1i the color 2i. We de�ne�(a; a0) = a+a0 if neither a nor a0 is1 and �(a;1) = �(1; a) = 2a. (Botha+ a0 and 2a = a+ a are computed in the group Zd.)Proposition 10 Let D � 1, and d be odd. There is an even 1-factorisationF0; F1; :::; Fd�1 of K(d;D) in which the arc a1a2:::aD+1 belongs to Fi wherei = D�1Xj=0  D � 1j ! � �(aj+1; aj+2):Proof: We again proceed by induction using the labeling in the proof ofTheorem 3. For D = 1, the graph K(d; 1) is the complete symmetric digraphon Zd [ 1. We let l(aa0) = �(a; a0). Then all arcs labeled i form an even1-factor consisting of d+12 cycles of length two, because of the property ofthe above coloring of the complete undirected graph. The remainder of theproof is the same as in the preceeding Proposition. 2When d is even, we need a nice partition of the edges of the com-plete undirected graph with vertices Zd [ 1 into d=2 hamiltonian cyclesC1; C2; : : : ; Cd=2. The following folklore partition cf. [6], will be used (herethe subscripts are modulo d=2): The edge 1i belongs to Ci; the edge ij(with neither i nor j equal to 1) belongs to Cb i+j2 c. To obtain from thispartition an even 2-factorisation of K(d; 1) we must replace each undirectededge by two opposite arcs (both of the same color as the undirected edge)and we must also specify the marking functions m1;m2; : : : ;md=2. We use11



the marking functions explained in the proof of Corollary 6, where in eachhamiltonian cycle Cs we let the vertex 1 be the vertex v0 distinguished inthe de�nition of ms. Speci�cally, each ms(1i;1) = ms(i1;1), and eachother ms(ij; j) 6= ms(ji; j). Now we transform the even 2-factor of K(d; 1)into an even 1-factor of K(d; 2) as explained in the proof of Theorem 3 ex-cept we use the label 2�+� instead of < �; � >. This means that our labelsare in the group Zd instead of Zd=2 � Z2. Put V = Zd [ 1. We de�nethe auxiliary functions  : V � V 7! Zd=2 and � : V � V � V 7! Zd by(a; a0) = ba+a02 c if neither a nor a0 is 1 and (a;1) = (1; a) = a, and�(a; a0; a00) = 2((a; a0) + (a0; a00)) + �, where � is 0 if a0 6= 1 and a 6= a00or a0 =1 and a = a00 and is 1 otherwise. Now we obtain (by induction, asabove) the following formula:Proposition 11 Let D � 2, and d be even. There is an even 1-factorisationF0; F1; :::; Fd�1 of K(d;D) in which the arc a1a2:::aD+1 belongs to Fi wherei = D�2Xj=0  D � 2j ! � �(aj+1; aj+2; aj+3): 24 Conclusions.Theorem 2 can be used with other digraphs as well. In particular, J. Bond[5] has recently given an even 1-factorisation of the graph with 50 verticesfrom [7], regular of in- and out- degree 2, and diameter 5; using Theorem 2 itfollows that for each D � 5 there exists a graph of diameter D, with 25�2D�4vertices, regular of in- and out- degree 2, admitting an even 1-factorisation12



(and hence of arc-chromatic index 4). This is the largest known family ofdigraphs with arc-chromatic index 4 and diameter D (better than the Kautzor de Bruijn digraphs).Recall that a digraph with many vertices but small arc-chromatic indexand small diameter may be useful for packet radio networks. In [8], [4] onestudies the largest number nC(f;D) of vertices of a digraph with diameterD and arc-chromatic index f . We can thus interpret our results (Corollary 6and the above remark) as lower bounds on the function nC(f;D) (for D � 2and D � 5 respectively): nC(2q;D) � qD + qD�1nC(4;D) � 25 � 2D�4:These are the best known bounds on nC(f;D) for even f .Finally we remark that the underlying graphs of the Kautz and de Bruijndigraphs, known as the Kautz and de Bruijn graphs, obtain, in the coloringimplied by Corollaries 8 and 7, an edge coloring with � (the maximumdegree) colors. Such graphs are called of class 1.Corollary 12 The Kautz graphs (other than the even complete graph) andthe de Bruijn graphs are of class 1.We thank J-L. Fouquet, L. Goddyn, G. Hahn, D. Kirkpatrick, J-J.Quisquater, D. Sotteau, J.L.A. Yebra, and M.L. Yu for their stimulatingsuggestions. We particularly wish to acknowledge the assistance of J.L.A.Yebra, who noticed an error in an earlier proof of Corollary 6 and of J-L.13



Fouquet and M.L. Yu, who independently proposed a tentative solution, i.e.,constructed an even 1-factorisation of K(d; 2). Our method, Theorem 3, hasthe advantage of explaining how a non-solution for D = 1 leads to a solutionfor D = 2.References[1] D. Ameter and Max Degree, Graphs and Interconnection Net-works, in preparation.[2] J-C. Bermond, C. Delorme, J.-J. Quisquater, Strategies for intercon-nection networks: Some methods from graph theory, J. Parallel andDistributing Computing, vol. 3, pp. 433�449, 1986.[3] J-C. Bermond and C. Peyrat, The de Bruijn and Kautz networks: acompetition for the hypercube?, Hypercube and Distributed Computers,Proc. First European Colloquium on hypercubes, Rennes, Oct. 1989,Elsevier Science Pub., North Holland, pp. 279�293, 1989.[4] J-C. Bermond, P. Hell and J-J. Quisquater, Construction of large packetradio networks, Parallel Processing Letters 2 (1992) 3-12.[5] J.Bond, private communication, February 1990.[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,North Holland, 1976.
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