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Abstract

Motivated by the problem of designing large packet radio networks
we show that the Kautz and de Bruijn digraphs with in- and out- degree
d have arc-chromatic index 2d. In order to do this, we introduce the
concept, of even 1-factorisations. An even 1-factor of a digraph is a
spanning subgraph consisting of vertex disjoint loops and even cycles;
an even l-factorisation is a partition of the arcs into even 1-factors.
We prove that if a digraph admits an even 1-factorisation then so does
its line digraph. (In fact, we show that the line digraph admits an even
1-factorisation even under a weaker assumption discussed below.) As a
consequence we derive the above property of the Kautz and de Bruijn

digraphs relevant to packet radio networks.

1 Introduction.

One method of designing large packet radio networks [8], requires the con-

struction of large digraphs with a given diameter and arc-chromatic index.
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Briefly, the vertices correspond to the users of the network and the arcs to
radio channels. The diameter constraint enforces small transmission delay.
An arc-coloring with few colors makes it possible to have all transmissions
take place in few time slots (a user may be involved in at most one trans-
mission in any one time slot, but all transmissions corresponding to a color
class of arcs may take place simultaneously). For more details on this model,
as well as some general results, see [8], [4].

There is a very similar problem with well established literature, namely
the problem of constructing large digraphs, and graphs, with given diameter
and maximum degree [1], [2], [3], [7]. The two best constructions known
for general digraphs are the Kautz and de Bruijn digraphs mentioned in
the title. We prove in this article that the Kautz and de Bruijn digraphs
with in- and out- degree d have the smallest possible arc-chromatic index,
namely 2d. Consequently, they are of prime interest also as large digraphs
with given diameter and arc-chromatic index; they substantially improve the
bounds given in [8] for packet radio networks. Other constructions of packet
radio networks arising from digraphs and graphs with given diameter and
maximum degree are given in [4].

Let G be a digraph (possibly containing loops). The length (number of
arcs) of a shortest directed path from a vertex u to a vertex v of G is called
the distance from u to v. (If there is no such path, the distance is considered
infinite.) The diameter of a digraph G is the maximum distance over all
pairs of vertices v and v of G. The outdegree of a vertex v in the digraph G

is the number of arcs vw in G, and is denoted by d*(v). The indegree d—(v)



is defined analogously. An arc-coloring of G is a mapping assigning colors to
the arcs of G in such a way that two distinct arcs having a common vertex
obtain different colors. The arc-chromatic index of G is the minimum number
of colors which make an arc-coloring of G possible. A k-factor of a digraph G
is a spanning subgraph F' of G in which the indegree and outdegree of each
vertex is k. It is easy to see that a 1-factor of G consists of vertex disjoint
directed cycles of G. An even 1-factor of G is a 1-factor of G in which all
cycles other than loops (i.e., cycles with one arc) have an even number of arcs.
Suppose F' is a 2-factor of G and m is a function which assigns to each pair
(e,v), where e is an arc of F' and v is a vertex of e, a value m(e,v) € {0,1}
in such a way that m(e,v) # m(f,v) if both e and f begin at v or both e
and f end at v. We shall call m the marking function and the value m(e, v)
the mark of e at v. Note that we do not require that m(e,v) = m(e,u) for
e = uwv, i.e., the marks of one arc may be different at the two ends. We shall
treat the marks as elements of the additive group Zs; this will permit us to
add the marks and remain in the group. The marking function m induces
two partitions of the arc set of F' into closed directed walks as follows: In the
first partition, denoted by P(F,m,0), a closed walk is obtained by starting
at some unused arc, and after an arc e = uv continuing with the unique arc
f = vw with m(e,v) = m(f,v), until the starting arc is encountered again.
In the second partition, denoted by P(F,m,1), a closed walk is obtained in
the same way except that after e = uv we take the unique arc f = vw with
m(e,v) # m(f,v). We say that F is an even 2-factor of G if there exists a

function m as above, such that all closed walks of both partitions P(F,m,1)



(¢ = 0,1), other than loops, have an even number of arcs. We say that G
has an even I-factorisation if the arcs of G can be partitioned into even 1-
factors, and an even 2-factorisation if the arcs of G can be partitioned into
even 2-factors. The relevance of even 1-factorisations to arc-coloring is made

explicit in the following observation:

Proposition 1 If G has an even 1-factorisation with d even 1-factors, then

G has an arc-coloring with 2d colors.

Proof: Fach even 1-factor consists of even directed cycles and loops.
Using two colours, we can color each even cycle alternating the colours, and

each loop with one of the two colours. O

2 Line Digraphs and Even Factorisations.

The line digraph of G, denoted by L(G), has as its vertices the arcs of G;
there is an arc in L(G) from e to f just if e = wv and f = vw. Note that a

loop e = wu in G becomes a loop ee in L(G).

Theorem 2 If G has an even 1-factorisation with d even 1-factors, then its

line digraph L(G) also has an even 1-factorisation with d even 1-factors.

Proof: Let Fy, Fy,...,F; 1 be an even 1-factorisation of G. Thus every
arc e of G belongs to a unique even 1-factor F;. To denote this fact we
say that e is labeled by i, and write l(e) = i. We shall treat the labels
t=20,1,...,d—1 as elements of the additive group Z, of integers modulo d;

this will allow us to perform addition of the labels and remain in the group.



Note that for each ¢ = 0,1,...,d — 1, and every vertex v of G, there is a
unique arc uv, and a unique arc vw of G, labeled by i. To define an even
1-factorisation of L(G), we first extend the labeling [ : E(G) — Z; to a
labeling [ : E(L(G)) — Zg by l(ef) = l(e) + I(f), and then let H; be the
subgraph of L(G) formed by all arcs labeled i, for i = 0,1,...,d — 1. We
claim that Hg, Hy,...,H; 1 is an even 1-factorisation of L(G). Since each
arc of L(G) has a unique label, it remains to verify that every H; is an even
1-factor.

For each vertex e = uv of L(G) and each label i there is a unique vertex
f of L(G) such that I(ef) = ¢ because the equation [(e) +x = i has a unique
solution in the group Zy, and because there is at v a unique arc f = vw of
G with label I(f) = x. By a symmetric argument there is a unique vertex f
of L(G) such that [(fe) = i. Therefore each H; is a 1-factor.

It remains to show that each directed cycle (other than a loop) of every
H; is even. Let ey, eg,..., e, be the vertices of a directed cycle in some H;,
fori =0,1,...,d—1. Thus all labels I(e;ej41) are ¢, for j = 1,2,...,p (with
subscript addition modulo p). It follows that in G we have the equations
l(ej) +1(ejy1) — l(ejp1) + U(ejya), for j = 1,2,...,p. Hence the labels of
the edges e; in G alternate, i.e., l(e;) =l(e3) = ... =a and l(ez) = l(eq) =
... =b. If a # b, then necessarily p must be even. On the other hand, if
a = b then eq,es,..., e, are the edges of a cycle in F,, and hence p is even

by assumption. O

Theorem 3 If G has an even 2-factorisation with d even 2-factors, then its

line digraph L(G) has an even 1-factorisation with 2d even I1-factors.



Proof: Let Fy, Fy, ..., Fy_1 be an even 2-factorisation of G. As above, we
label the arcs of G by Z;, with I(e) = i whenever e belongs to F;. Let m; be
the marking function associated with the 2-factor F;. We let m(e, v) equal to
m;(e,v) with i = [(e); in this way marks are defined for all incident vertex-
arc pairs. We again extend the labeling [ of the arcs of G to a labeling
of the arcs of L(G). Suppose e = uv and f = vw. We define the label
l(ef) to be the ordered pair < A\, u >€ Z; X Z,, where A = l(e) + I(f) and
p = m(e,v) +m(f,v). Welet Hcy ,~ be the subgraph of L(G) formed by
all arcs labeled < A, pp >, for A € Z; and p € Z. We claim that the H ,~
form an even 1-factorisation of L(G). As above, it it enough to verify that
each H.) ,- is an even I-factor.

For each vertex e = uv of L(G) and each label < A, u > there is a unique
vertex f of L(G) such that I(ef) =< A, u >, because the equation I(e)+x = A
has a unique solution in 7,4, and because exactly one of the two arcs of F
beginning at v, say f, satisfies m(e,v) + m(f,v) = p. By a symmetric
argument there is a unique vertex f of L(G) such that I(fe) =< A\, pu >.
Therefore each H.) ,~ is a 1-factor.

Let again ey, ea, ..., e, be the vertices of a directed cycle in some H_ ,~,
for A € Zy, 1 € Zy. Thus all labels I(ejej1) are < A\, >, for j =1,2,...,p
(with subscript addition modulo p). Since all I(ejej41) = A, we deduce as
before that the labels of the edges e; in G alternate, i.e., l(e;) = Il(e3) =

.=a and l(eg) = l(eq) = ... = b. If a # b, then necessarily p must be
even. Thus assume that @ = b, i.e., that all e; are in F,,. Writing e; = v;_jv;,

we also have m(e;,v;) + m(ejp1,v;) = p (for all j =1,2,...,p). Therefore



either all m(e;,vj) = m(ejy1,v;) (if p = 0) or all m(ej,v;) # m(ejq1,v;) (if
p = 1). This means that e, es,..., ¢, is one of the closed directed walks of

the partition P(F,, mg, ), and hence p =1 or p is even. O

3 The Kautz and de Bruijn digraphs.

Assume d > 2. For D > 0, we define the de Bruijn digraph B(d, D) as
the digraph whose vertices are all strings of length D over an alphabet of d
symbols, in this paper always Z;, and whose arcs are all strings of length
D + 1 over the same alphabet. The arc ajas...apap4q starts from the ver-
tex ajas...ap and ends in the vertex as...apapyi. Note that B(d,0) is the
digraph with one vertex (corresponding to the empty string), and d loops,
one for each letter of the alphabet; B(d, 1) is a complete symmetric digraph
with d vertices, and a loop at each vertex.

For D > 1, the Kautz digraph K(d,D) is the digraph whose vertices
are all those strings of length D over an alphabet of d + 1 symbols, here
74U oo, in which consecutive characters are distinct, and whose arcs are all
strings of length D 4 1 over the same alphabet with the same property. The
arc ajay...apapy starts from the vertex ajas...ap and ends in the vertex
as...apapy1. Note that K(d,0) is undefined, and K(d,1) is a complete
symmetric loopless digraph on d + 1 vertices. It is easy to see (cf. [3]) that
both B(d, D) and K(d, D) have diameter D and are regular of in- and out-
degree d. Furthermore, the digraph B(d, D) has d” vertices and the digraph
K(d, D) has dP + dP~1 vertices.

It follows from the definitions that the following is true:



Proposition 4 For all relevant d and D,

K(d,D) = L(K(d, D — 1)).

Corollary 5 FEach B(d, D) has an even 1-factorisation.

Proof: The proof proceeds by induction on D. It is obvious for D = 0,

and then it follows by using Theorem 2 and the above proposition. O

Corollary 6 Let D > 2 or D =1 and d be odd.

Then K(d, D) has an even I-factorisation.

Proof: The proof again proceeds by induction on D. However, we cannot
start at D = 0, and even for D = 1 the Kautz digraph K(d,1) does not
admit an even 1-factorisation when d is even. Indeed, it has an odd number
of vertices and no loops; thus each 1-factor must contain an odd cycle of more
than one arc. On the other hand, for D = 1 and d odd, we can construct
an even 1-factorisation of K (d,1) by starting with the complete undirected
graph on d + 1 vertices, which is known to have edge-chromatic index d (|6],
cf. below). Since K (d,1) is obtained from it by replacing each edge with the
two opposite arcs, we can associate with each color class of such an edge-
coloring by d colors a 1-factor of K(d,1) consisting of directed two-cycles.
Thus for d odd, and any D, we obtain an even 1-factorisation of K (d, D) via

Theorem 2.



When d is even, we can proceed the same way, as soon as we have con-
structed an even 1-factorisation of K (d,2). For this purpose we use Theorem
3. Indeed, the complete undirected graph on d + 1 vertices admits a par-
tition of its edge set into hamiltonian cycles [6]. This partition yields a
2-factorisation of K(d, 1) as follows: We replace each undirected edge with
the two opposite arcs; thereby every hamiltonian cycle C' = vg, vq,...,v4 pro-
duces a 2-factor F of K(d,1). We claim that the 2-factor F is even. Indeed,
we may define a marking function m in such a way that the two opposite
arcs obtain the same marks at the vertex vy and obtain different marks at
all other vertices, i.e., m(vvg,vg) = m(vov,vg) for v = v; and v = vy, and
m(vv;,v;) # m(vjv,v;) for i #0 and v = v; 1 and v = v;;1. Recall that the
partition P(F,m,0) consists of closed walks obtained by following arcs that
leave a vertex on the same mark as they entered it. Thus starting with the
arc vgvy we pass through all the arcs vyvy, vovs, ... until the arc vqvg; at this
point we must follow with the arc vgvg and then retrace our steps through
the arcs vqvg_1,-..,v1v9. (The closed walk ends here as the next arc would
be the starting arc vgvy). Thus P(F,m,0) consists of a single closed walk,
of length 2(d + 1). In the same spirit, the partition P(F,m,1) consists of
one closed walk of length four with arcs vgvy, v1vg, vovg, vgvg and d — 1 cy-
cles of length two v;v;11,v;41v; for i =1,2,...,d — 1. Thus both partitions
P(F,m.i) (i = 0,1) consist of even closed walks, and we obtain an even
2-factorisation of K(d,1), and hence by Theorem 3 an even 1-factorisation

Y

of K(d,?2). O

Corollary 7 Each B(d, D) with D > 1 has arc-chromatic index 2d. O



Corollary 8 Each K(d,D) with D > 2 (or D = 1 and d odd) has arc

chromatic index 2d. O

In some applications it may be useful to know directly which 1-factor
contains the arc ajas...apyq. (This will also allow us, via Proposition 1, to
directly find the color of each arc in the corresponding arc-coloring.) It fol-
lows by unwinding the above induction (as was also observed by L. Goddyn,

personal communication) that

Proposition 9 There is an even 1-factorisation Fy, Fy,...,F; 1 of B(d, D)
in which the arc ayas...apyq belongs to F; where
D
‘ D
Z_Z<> O ENE
=\

Proof: For D = 0 the digraph B(d,0) consists of the loops 0,1,...,d—1
and we label each loop i by I(i) = i, i.e., we let each F; = {i}. Now we
proceed by induction: Suppose that [ is a labeling of B(d, D) where

D
l((Ll(],Q...(I,D_H) = Z ( > C 4
i=o \/

Then we define as in the proof of Theorem 3 a labeling of B(d, D + 1) by

l(a,az,...,apy1,apy2) = I(a1,...,apy1) +1(az,...,apiz). Therefore,
D D D41
D D D+1
l(ar,as,...,apqt2) = Z ( ) SOEN +Z < ) Q42 = Z < ) ) “Qj41,
=0 \J i=0 \J =0\ J

using Pascal’s equality (D;T]) = (1])) + (jZ). Letting F; consist of all arcs
labeled i we obtain the desired even 1-factorisation of B(d, D). O
The situation is somewhat less elegant for Kautz digraphs, but a calcu-

lation is possible. In particular, we need to use "nice" decompositions of

10



the complete graph on d + 1 vertices. We have already remarked that for d
odd the complete undirected graph with vertices Zy; U oo admits a d-edge-
coloring; one such coloring (cf. [6]) assigns to the edge ij the color i + j
when neither ¢ nor j is co and assigns to the edge oot the color 2:. We define
a(a,a") = a+ d' if neither a nor a’ is co and a(a, 00) = a(oo,a) = 2a. (Both

a+ a’ and 2a = a + a are computed in the group Z;.)

Proposition 10 Let D > 1, and d be odd. There is an even I-factorisation
Fo,Fi,....,Fg 1 of K(d, D) in which the arc ajas...apyq belongs to F; where
D—1
i = Z (D B 1) co@j41,a542).
j=o \ J
Proof: We again proceed by induction using the labeling in the proof of
Theorem 3. For D = 1, the graph K (d, 1) is the complete symmetric digraph
on ZgUoc. We let l(aa’) = a(a,a’). Then all arcs labeled ¢ form an even
1-factor consisting of % cycles of length two, because of the property of
the above coloring of the complete undirected graph. The remainder of the
proof is the same as in the preceeding Proposition. O
When d is even, we need a nice partition of the edges of the com-
plete undirected graph with vertices Z; U oo into d/2 hamiltonian cycles
C1,Cy,...,Cqyy. The following folklore partition cf. [6], will be used (here
the subscripts are modulo d/2): The edge ooi belongs to Cy; the edge ij
(with neither i nor j equal to oo) belongs to CL%J' To obtain from this
partition an even 2-factorisation of K(d, 1) we must replace each undirected

edge by two opposite arcs (both of the same color as the undirected edge)

and we must also specify the marking functions my, ma,...,mg/,. We use

11



the marking functions explained in the proof of Corollary 6, where in each
hamiltonian cycle Cs we let the vertex oo be the vertex vy distinguished in
the definition of mg. Specifically, each m(0coi, 00) = mg(ico, o), and each
other my(ij,j) # ms(ji,j). Now we transform the even 2-factor of K(d,1)
into an even 1-factor of K (d,2) as explained in the proof of Theorem 3 ex-
cept we use the label 2A 4 u instead of < A, u >. This means that our labels
are in the group Z, instead of Z;y X Zy. Put V = Z; U oco. We define
the auxiliary functions v : V. x V = Zy5 and §: V XV XV — Z; by
=5

y(a,a') = | if neither a nor a' is co and ~y(a,0) = y(cc,a) = a, and

Ba,a',a") = 2(y(a,a") + v(a',a")) + 6, where § is 0 if @’ # oo and a # a”

!

or ¢’ = oo and a = a” and is 1 otherwise. Now we obtain (by induction, as

above) the following formula:

Proposition 11 Let D > 2, and d be even. There is an even I1-factorisation
Fo,Fi,....,Fg 1 of K(d, D) in which the arc ajas...apyq belongs to F; where

D2
. D —2
i= ( : > Blaji1, aj12, aj43).

=\

4 Conclusions.

Theorem 2 can be used with other digraphs as well. In particular, J. Bond
[5] has recently given an even 1-factorisation of the graph with 50 vertices
from [7], regular of in- and out- degree 2, and diameter 5; using Theorem 2 it
follows that for each D > 5 there exists a graph of diameter D, with 25-20—4

vertices, regular of in- and out- degree 2, admitting an even 1-factorisation

12



(and hence of arc-chromatic index 4). This is the largest known family of
digraphs with arc-chromatic index 4 and diameter D (better than the Kautz
or de Bruijn digraphs).

Recall that a digraph with many vertices but small arc-chromatic index
and small diameter may be useful for packet radio networks. In [§8|, [4] one
studies the largest number na(f, D) of vertices of a digraph with diameter
D and arc-chromatic index f. We can thus interpret our results (Corollary 6
and the above remark) as lower bounds on the function ne(f, D) (for D > 2

and D > 5 respectively):
ne(2q.D) > q” + ¢

nc(4,D) > 252074,

These are the best known bounds on ngo(f, D) for even f.

Finally we remark that the underlying graphs of the Kautz and de Bruijn
digraphs, known as the Kautz and de Bruijn graphs, obtain, in the coloring
implied by Corollaries 8 and 7, an edge coloring with A (the maximum

degree) colors. Such graphs are called of class 1.

Corollary 12 The Kautz graphs (other than the even complete graph) and

the de Bruijn graphs are of class 1.

We thank J-L. Fouquet, L. Goddyn, G. Hahn, D. Kirkpatrick, J-J.
Quisquater, D. Sotteau, J.L..A. Yebra, and M.L. Yu for their stimulating
suggestions. We particularly wish to acknowledge the assistance of J.L.A.

Yebra, who noticed an error in an earlier proof of Corollary 6 and of J-L.
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Fouquet and M.L. Yu, who independently proposed a tentative solution, i.e.,
constructed an even 1-factorisation of K (d,2). Our method, Theorem 3, has

the advantage of explaining how a non-solution for D = 1 leads to a solution

for D = 2.
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