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architectures, it appears that the neighbor to neighbor communication time depends on alatency, or start up time �, and on a data transfer time per element, or propagation time,� (1=� is the bandwidth). Thus sending a message of length L to a neighbor takes time� + L� (linear model).For more details on the results obtained in these di�erent models, we refer to the twosurveys of Hedetniemi, Hedetniemi and Liestman [7], and Fraigniaud and Lazard [6].In this paper, we �rst give a short proof of a recent result in the constant model bygiving an in�nite family of minimum broadcast graphs. Then we consider the linear model,and show that it gives rise to new problems in graph theory; namely how to construct themaximum number of disjoint spanning trees of minimum depth rooted at a given vertex.In particular, we give a proof of the NP-completeness of this problem.2 A family of minimum broadcast graphsWe consider the processor-bound and constant time model. Let G be a connected graphwith n vertices, and u a message originator. We de�ne the broadcast time of vertex u, b(u),to be the minimum number of time units required to complete broadcasting from vertex u.Note that b(u) � dlog2 ne. We de�ne the broadcast time of G, b(G), to be the maximumbroadcast time of any vertex u in G.We call a graph G a minimum broadcast graph (mbg), if it has the minimum numberof edges among the graphs with n vertices and broadcast time dlog2 ne. Let B(n) be thenumber of edges of a mbg.It was conjectured in [2] thatB(2k�2) = (k�1)(2k�1�1). This has been recently provedby Khachatrian and Harutounian [9], and Dinneen, Fellows, and Faber [4]. We present herea short proof due to Monien that points out that, in fact, Knodel [10] has constructed thedesired graphs in its solution for a \gossiping" problem.Theorem 1 For any k, there exists a (k � 1)-regular graph G with 2k � 2 vertices andbroadcast time b(G) = k.Proof: Let G be a bipartite graph with two parts, each of order 2k�1 � 1. Vertex (i; 1) ofthe �rst part is connected to vertices (i + 2j � 1; 2); j = 0; 1; : : : ; k � 2 of the second partwhere all the integers are to be taken modulo 2k�1� 1. Clearly this graph has the requirednumber of vertices and degree.Let us call the edge from a vertex (i; 1) to the vertex (i+ 2j � 1; 2), an edge of type j.A broadcast protocol is given as follows. At time j; j = 1; 2; : : : ; k� 2, each informed vertexsends the message along its edge of type j� 1. At time k, each informed vertex, except thetwo �rst informed vertices, sends the message along its edge of type 0. One can show byinduction that at time j, 2j�1 consecutive vertices are informed in each part. So b(G) = k.2Corollary 1 B(2k � 2) = (k� 1)(2k�1� 1).2



Proof: B(2k � 2) � (k� 1)(2k�1� 1) from the theorem above. Furthermore, if a graph Gcontains a vertex u of degree k�2 or less, at most 2k�3 vertices can be informed in k unitsof time by a broadcast initiated at vertex u. Therefore, any mbg on 2k � 2 has minimumdegree at least k � 1. 23 Disjoint spanning treesWe consider the link-bound and linear time model. We study both half and full duplexmodels. A half-duplex communication network is usually modeled by a graph G, and afull-duplex communication network by a symmetric digraph G�. We �rst give the theoryfor the full-duplex model.We recall that under the linear model, sending a message of length L to a neighbor takestime � + L� . The broadcast time of vertex u, b(u), is then the minimum time required forcomplete broadcasting from vertex u.Let d(u; v) be the distance between the vertices u and v. We will denote by ecc(u) theeccentricity of the vertex u, that is maxv2V d(u; v). Let m+(S; V �S) be the number of arcsgoing from S to V � S and letcG(u) = minS 6=V ju2S m+(S; V � S):cG(u) can be regarded as the minimum number of arcs that must be deleted in order tomake at least one vertex not reachable from u. Another interpretation of cG(u) is that thereexist cG(u) arc disjoint paths from u to any vertex of G. Moreover, cG(u) is the maximumnumber of paths that are arc-disjoint (Menger's theorem).We can obtain two di�erent lower bounds by considering the total start-up time or thetotal data transfer time. First the broadcasting time b(u) is at least ecc(u)�. Consider nowa subset S of V containing u such that m+(S; V � S) = cG(u), and let v be a vertex ofV � S. The total bandwidth of the arcs between S and V � S is cG(u)� and therefore theminimum time to send the message from u to v is at least LcG(u)� . In summary,bG(u) � max(ecc(u)�; LcG(u)�) (1)There exist di�erent ways to perform broadcasting from an originator u. The e�ciencyof these protocols depends on the ratio �L� (see [1] for more details). In case of long messages,a classical technique is pipelining which allows to broadcast in (pL� +p(ecc(u)� 1)�)2.In case of very long message, we can improve this time in �nding p spanning trees rootedat u and pairwise arc disjoint. We cut the message into blocks, each of size Lp , and pipelineeach block on a di�erent spanning tree. Suppose the maximum depth of the spanning treesis h, then the broadcasting time is sL�p +q(h� 1)�!2 : (2)Thus, this theory gives rise to the following problem:3



Problem 1 Find, in any digraph, as many as possible arc-disjoint spanning trees rooted ata given vertex, and of maximum depth as small as possible.If we do not consider the depth, this problem is well known. For instance, we can use thefollowing theorem of graph theory due to Edmonds [5] (see Lovasz [11] for a short proof).Edmonds' Theorem: The maximum number of pairwise arc disjoint spanning trees rootedat a vertex u is equal to cG(u).Applying this theorem on formula 2, and comparing with formula 1, shows that thereexists an asymptotically optimal broadcasting protocol. Moreover, this protocol can bede�ned in a polynomial time since �nding the cG(u) arc-disjoint spanning trees can be donein a polynomial time.Similar theory can be developped under the half-duplex model and leads us to thefollowing problem:Problem 2 Find, in any graph, as many as possible edge-disjoint spanning trees rooted ata given vertex, and of maximum depth as small as possible.These problems have been studied for particular interconnection networks like the hy-percube [8], the de Bruijn networks [1], or the toroidal grids [3, 13].However, up to our knowledge, the complexity of problems 1 and 2 was unknown. Thisquestion was asked during the Graph Theory Day 22, and was recently answered by Alon:Theorem 2 (Alon) The following problem in NP-complete:INSTANCE: A graph G with a root u.PROBLEM: Are there 2 edge-disjoint spanning trees in G of depth 2 rooted at u?Proof: The reduction is from hypergraph two colorability problem which is: given a hy-pergraph H = (V;E) decide if it is two colorable, i.e., if there is a two coloring of the setof vertices V by red and blue so that in each edge there is at least one red and at least oneblue vertex. This problem has been proved to be NP-complete by Lovasz [12].Given such a problem, let us construct a graph G with a special vertex u and withdepth 2 as follows. The set of vertices of G consists of three sets: one is only the root u;the second is the set V (corresponding to the vertices of the hypergraph H) as well as twoadditional vertices that we call r and b; and the third is the set E (corresponding to theedges of H). Now, u is connected to all the vertices in V and to r and b and to no othervertex. r and b are adjacent to all the vertices in V and also r and b are connected by twoparallel edges. Furthermore, every v in V is adjacent in G to all the vertices in E whichrepresent the edges of H containing v in H.Remark: if one wants to avoid parallel edges between r and b, replace r by two vertices r1and r2, and b by two vertices b1 and b2, and make all four of these adjacent to u and verticesof V , and add all the four edges (ri; bj); i; j 2 f1; 2g.It su�ces to show:Claim: H is 2-colorable if and only if G has two edge-disjoint spanning trees of depth 2rooted at u. 4



Suppose H is 2-colorable, take a proper 2 coloring and de�ne the two trees as follows.The �rst tree (call it the Red tree) consists of the edges from u to all the red vertices in V ,together with one edge from each edge e in E to some red vertex in V which is adjacent toit (there is such vertex as the coloring is a proper two coloring). Also, the edge (u; r) is inthe red tree (r was for Red) as well as the �rst edge (r; b) and edges from r to all the bluevertices of V . The second tree (the Blue one) is de�ned similarly: edges from u to the bluevertices of V and to b, the second edge (r; b), edges from b to the red vertices in V , and alsoone edge from each e in E to some blue vertex in V . This gives two edge-disjoint trees ofdepth 2 rooted at u, as needed.Suppose now that there are two edge disjoint trees of depth 2 rooted at u. Denote themby R and B. Let VR be the set of all vertices v in V so that (u; v) is an edge of R, and letVB be the set of all vertices v in V so that (u; v) is an edge of B. Since R and B are bothspanning trees and both have depth 2, and since the only paths of length 2 in G betweenu and vertices of E are through a vertex of V , one easily observes that both VR and VBdominate the set E in G, that is, every e in E has a neighbor in VR (to which it is connectedin R) and a neighbor in VB (to which it is connected in B). We can thus de�ne a 2-coloringof H ; the vertices in VR are colored red, and those in VB (as well as all other vertices ifthere are any) are colored blue. It is easy to see that this is a proper 2-coloring, completingthe proof of the claim and hence that of the NP-completeness. 2Other variants of the problem can be proved to be NP-complete in the same manner.for example:� Given a graph G with a root u, are there cG(u) edge-disjoint spanning trees in G ofdepth 2 rooted at u? It su�ce to add one additional vertex of degree 2, and connectit only to the vertices r and b, and the proof above will still hold as cG(u) = 2.� Given a graph G with a root u and an integer h, are there 2 edge-disjoint spanningtrees in G of depth h rooted at u? It su�ce to replace u by a path of length h � 2,u = u0; u1; : : : ; uh�2 where ui is connected to ui+1 by two edges for i = 0; : : : ; h� 3,and where uh�2 is connected to the vertices of V and r and b as was u in the proof ofTheorem 2.If one does not want double edges we have to distinguish two cases. If h > 3, thenreplace in the preceeding construction each ui; i = 1; : : : ; h� 3 by two vertices ui andvi, and connect ui and vi with ui+1 and vi+1. If h = 3 then we do a complete di�erentconstruction. We use again the graph G of the proof of Theorem 2 with its root uand the four vertices r1; r2; b1; b2 of the remark. Then we add, on the edges betweenu and each of these four vertices, four new vertices r01; r02; b01; b02 and connect these fourvertices by a complete graph.� Given a graph G with a root u, and an integer p, are there p edge-disjoint spanningtrees in G of depth 2 rooted at u? This problem can be reduced to the hypergraphcolorability problem with p colors, which is also NP-complete. Similarly, one can showthe NP-completeness of �nding cG(u) (or p) edge-disjoint spanning trees of depth hrooted at u.The NP-completeness of the oriented problem can be obtained in a similar manner byreplacing in the proof each edge by two symmetric arcs.5
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