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Abstract

In this note, we answer two questions arising in broadcasting problems in networks.
We first describe a new family of minimum broadcast graphs. Then we give a proof due
to Alon of the NP-completeness of finding disjoint spanning trees of minimum depth,
rooted at a given vertex.

1 Introduction

In the design and use of parallel computers, different elements are important. Among them
are the topology of the interconnection network and the communication scheme. In this
paper, we focus on one important communication problem:

Broadcasting = Sending a message from a given vertex to all other vertices.

The initiator is also called the root, and the broadcasting problem is also called OTA (One-
To-All).

We consider the usual store-and-forward model for routing, in which a message that
passes through intermediate nodes is stored in each intermediate processor before reaching
its final destination. Two kinds of communication schemes are usually considered: half
duplex and full duplex. In the half duplex mode, a link can be used at a given time in
at most one direction; in the full duplex mode a link can be simultaneously used in both
directions. Furthermore, we also distinguish the processor-bound model (or 1-port model,
or whispering) and the link-bound model (or shouting). In the first model, only one port
can be used by a processor at a given time. In the second model, all the ports can be
simultaneously used by a processor at any given time. There are many papers in the graph
theory literature concerning this problem in the processor-bound model, and assuming that
the communication cost is a constant (constant model). In parallel distributed memory
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architectures, it appears that the neighbor to neighbor communication time depends on a
latency, or start up time 3, and on a data transfer time per element, or propagation time,
7 (1/7 is the bandwidth). Thus sending a message of length L to a neighbor takes time
G+ L7 (linear model).

For more details on the results obtained in these different models, we refer to the two
surveys of Hedetniemi, Hedetniemi and Liestman [7], and Fraigniaud and Lazard [6].

In this paper, we first give a short proof of a recent result in the constant model by
giving an infinite family of minimum broadcast graphs. Then we consider the linear model,
and show that it gives rise to new problems in graph theory; namely how to construct the
maximum number of disjoint spanning trees of minimum depth rooted at a given vertex.
In particular, we give a proof of the NP-completeness of this problem.

2 A family of minimum broadcast graphs

We consider the processor-bound and constant time model. Let G be a connected graph
with n vertices, and u a message originator. We define the broadcast time of vertex u, b(u),
to be the minimum number of time units required to complete broadcasting from vertex wu.
Note that b(u) > [log,n]. We define the broadcast time of G, b(G'), to be the maximum
broadcast time of any vertex u in G.

We call a graph G' a minimum broadcast graph (mbg), if it has the minimum number
of edges among the graphs with n vertices and broadcast time [log, n]. Let B(n) be the
number of edges of a mbg.

It was conjectured in [2] that B(2F —2) = (k—1)(2¥='—1). This has been recently proved
by Khachatrian and Harutounian [9], and Dinneen, Fellows, and Faber [4]. We present here
a short proof due to Monien that points out that, in fact, Knodel [10] has constructed the
desired graphs in its solution for a “gossiping” problem.

Theorem 1 For any k, there exists a (k — 1)-regular graph G with 2* — 2 vertices and
broadcast time b(G) = k.

Proof: Let (G be a bipartite graph with two parts, each of order 2= — 1. Vertex (i,1) of
the first part is connected to vertices (¢ + 2/ — 1,2),5 = 0,1,...,k — 2 of the second part
where all the integers are to be taken modulo 2¢=1 — 1. Clearly this graph has the required
number of vertices and degree.

Let us call the edge from a vertex (i,1) to the vertex (i + 2/ — 1,2), an edge of type j.
A broadcast protocol is given as follows. At time 5,7 = 1,2,...,k— 2, each informed vertex
sends the message along its edge of type 7 — 1. At time k, each informed vertex, except the
two first informed vertices, sends the message along its edge of type 0. One can show by
induction that at time j, 2/=! consecutive vertices are informed in each part. So b(G) = k.
O

Corollary 1 B(2F —2) = (k— 1)(2¥* - 1).



Proof: B(2%F —2) < (k—1)(2"=' — 1) from the theorem above. Furthermore, if a graph G
contains a vertex u of degree k — 2 or less, at most 2% — 3 vertices can be informed in & units
of time by a broadcast initiated at vertex u. Therefore, any mbg on 2*¥ — 2 has minimum
degree at least k — 1. O

3 Disjoint spanning trees

We consider the link-bound and linear time model. We study both half and full duplex
models. A half-duplex communication network is usually modeled by a graph G, and a
full-duplex communication network by a symmetric digraph G*. We first give the theory
for the full-duplex model.

We recall that under the linear model, sending a message of length L to a neighbor takes
time 8 + L7. The broadcast time of vertex u, b(u), is then the minimum time required for
complete broadcasting from vertex u.

Let d(u,v) be the distance between the vertices u and v. We will denote by ece(u) the
eccentricity of the vertex u, that is max,cy d(u,v). Let m*(5,V —5) be the number of arcs
going from S to V — 5 and let

— ; + —
cq(u) = S;g/%les mT(S,V -29).
cg(u) can be regarded as the minimum number of arcs that must be deleted in order to
make at least one vertex not reachable from u. Another interpretation of c¢(u) is that there

exist ¢g(u) arc disjoint paths from u to any vertex of G. Moreover, c¢g(u) is the maximum
number of paths that are arc-disjoint (Menger’s theorem).

We can obtain two different lower bounds by considering the total start-up time or the
total data transfer time. First the broadcasting time b(u) is at least ecc(u)3. Consider now
a subset S of V' containing u such that m*(S5,V — 5) = ¢g(u), and let v be a vertex of
V — 5. The total bandwidth of the arcs between S and V — 5 is %ﬂ and therefore the

minimum time to send the message from u to v is at least cGL(u)T' In summary,

be(u) > max(ecc(u)s,

7) (1)

ca(u)

There exist different ways to perform broadcasting from an originator u. The efficiency
of these protocols depends on the ratio Lﬁ—T (see [1] for more details). In case of long messages,
a classical technique is pipelining which allows to broadcast in (VLT 4 /(ecc(u) — 1))
In case of very long message, we can improve this time in finding p spanning trees rooted
at u and pairwise arc disjoint. We cut the message into blocks, each of size %, and pipeline
each block on a different spanning tree. Suppose the maximum depth of the spanning trees
is h, then the broadcasting time is

(ﬁJr V(h = 1)ﬂ) : (2)

Thus, this theory gives rise to the following problem:



Problem 1 Find, in any digraph, as many as possible arc-disjoint spanning trees rooted at
a given vertex, and of maximum depth as small as possible.

If we do not consider the depth, this problem is well known. For instance, we can use the
following theorem of graph theory due to Edmonds [5] (see Lovasz [11] for a short proof).

Edmonds’ Theorem: The mazimum number of pairwise arc disjoint spanning trees rooted
at a vertex u is equal to cq(u).

Applying this theorem on formula 2, and comparing with formula 1, shows that there
exists an asymptotically optimal broadcasting protocol. Moreover, this protocol can be
defined in a polynomial time since finding the c¢g(u) arc-disjoint spanning trees can be done
in a polynomial time.

Similar theory can be developped under the half-duplex model and leads us to the
following problem:

Problem 2 Find, in any graph, as many as possible edge-disjoint spanning trees rooted at
a given vertex, and of maximum depth as small as possible.

These problems have been studied for particular interconnection networks like the hy-
percube [8], the de Bruijn networks [1], or the toroidal grids [3, 13].

However, up to our knowledge, the complexity of problems 1 and 2 was unknown. This
question was asked during the Graph Theory Day 22, and was recently answered by Alon:

Theorem 2 (Alon) The following problem in NP-complete:
INSTANCE: A graph G with a root u.
PROBLEM: Are there 2 edge-disjoint spanning trees in G of depth 2 rooted at u?

Proof: The reduction is from hypergraph two colorability problem which is: given a hy-
pergraph H = (V, F) decide if it is two colorable, i.e., if there is a two coloring of the set
of vertices V' by red and blue so that in each edge there is at least one red and at least one
blue vertex. This problem has been proved to be NP-complete by Lovasz [12].

Given such a problem, let us construct a graph G with a special vertex u and with
depth 2 as follows. The set of vertices of GG consists of three sets: one is only the root u;
the second is the set V' (corresponding to the vertices of the hypergraph H) as well as two
additional vertices that we call r and b; and the third is the set F (corresponding to the
edges of H). Now, u is connected to all the vertices in V' and to r and b and to no other
vertex. r and b are adjacent to all the vertices in V' and also r and b are connected by two
parallel edges. Furthermore, every v in V is adjacent in ' to all the vertices in £ which
represent the edges of H containing » in H.

Remark: if one wants to avoid parallel edges between r and b, replace r by two vertices ry
and r,, and b by two vertices b; and b,, and make all four of these adjacent to v and vertices

of V, and add all the four edges (r;,b;),17,j € {1,2}.

It suffices to show:
Claim: H is 2-colorable if and only if G has two edge-disjoint spanning trees of depth 2
rooted at u.



Suppose H is 2-colorable, take a proper 2 coloring and define the two trees as follows.
The first tree (call it the Red tree) consists of the edges from u to all the red vertices in V,
together with one edge from each edge e in F to some red vertex in V which is adjacent to
it (there is such vertex as the coloring is a proper two coloring). Also, the edge (u,r) is in
the red tree (r was for Red) as well as the first edge (r,b) and edges from r to all the blue
vertices of V. The second tree (the Blue one) is defined similarly: edges from u to the blue
vertices of V' and to b, the second edge (7, b), edges from b to the red vertices in V', and also
one edge from each e in F to some blue vertex in V. This gives two edge-disjoint trees of
depth 2 rooted at u, as needed.

Suppose now that there are two edge disjoint trees of depth 2 rooted at «. Denote them
by R and B. Let Vi be the set of all vertices v in V so that (u,v)is an edge of R, and let
Vg be the set of all vertices v in V' so that (u,v) is an edge of B. Since R and B are both
spanning trees and both have depth 2, and since the only paths of length 2 in G between
u and vertices of F are through a vertex of V, one easily observes that both Vg and Vj
dominate the set F in G, that is, every e in F has a neighbor in Vz (to which it is connected
in R) and a neighbor in Vg (to which it is connected in B). We can thus define a 2-coloring
of H; the vertices in Vg are colored red, and those in Vp (as well as all other vertices if
there are any) are colored blue. It is easy to see that this is a proper 2-coloring, completing
the proof of the claim and hence that of the NP-completeness. O

Other variants of the problem can be proved to be NP-complete in the same manner.
for example:

e Given a graph G with a root u, are there ¢ (u) edge-disjoint spanning trees in G of
depth 2 rooted at u? It suffice to add one additional vertex of degree 2, and connect
it only to the vertices r and b, and the proof above will still hold as cg(u) = 2.

o Given a graph GG with a root w and an integer h, are there 2 edge-disjoint spanning
trees in G of depth h rooted at u? It suffice to replace v by a path of length h — 2,

U = U, Ui,...,Up_2 Where u; is connected to wu;y by two edges for 1 = 0,...,h — 3,
and where uj_» is connected to the vertices of V and r and b as was u in the proof of
Theorem 2.

If one does not want double edges we have to distinguish two cases. If h > 3, then
replace in the preceeding construction each w;,2 = 1,...,h — 3 by two vertices u; and
v;, and connect u; and v; with w;,; and v;,,. If h = 3 then we do a complete different
construction. We use again the graph G of the proof of Theorem 2 with its root u
and the four vertices ry, rs, by, by of the remark. Then we add, on the edges between
u and each of these four vertices, four new vertices r,, ry, by, by and connect these four
vertices by a complete graph.

e Given a graph G with a root w, and an integer p, are there p edge-disjoint spanning
trees in G of depth 2 rooted at u? This problem can be reduced to the hypergraph
colorability problem with p colors, which is also NP-complete. Similarly, one can show
the NP-completeness of finding cq(u) (or p) edge-disjoint spanning trees of depth h
rooted at wu.

The NP-completeness of the oriented problem can be obtained in a similar manner by
replacing in the proof each edge by two symmetric arcs.
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