
Bus Interconnection NetworksJean-Claude Bermond � Fahir �O. Ergincan yI3S, CNRS, Universit�e de Nice-Sophia AntipolisBât 4 - 250, Av. A. Einstein, 06560 Valbonne, FranceAbstractIn bus interconnection networks every bus provides a communication medium between aset of processors. These networks are modeled by hypergraphs where vertices represent theprocessors and edges represent the buses. We survey the results obtained on the constructionmethods that connect a large number of processors in a bus network with given maximumprocessor degree �, maximum bus size r, and network diameter D. (In hypergraph termi-nology this problem is known as the (�; D; r)-hypergraph problem.)The problem for point-to-point networks (the case r = 2) has been extensively studied inthe literature. As a result, several families of networks have been proposed. Some of thesepoint-to-point networks can be used in the construction of bus networks. One approach isto consider the dual of the network. We survey some families of bus networks obtained inthis manner. Another approach is to view the point-to-point networks as a special case ofthe bus networks and to generalize the known constructions to bus networks. We provide asummary of the tools developed in the theory of hypergraphs and directed hypergraphs tohandle this approach.1 IntroductionA bus interconnection network is a collection of processing elements (processors) and commu-nication elements (buses). The processors produce and/or consume messages and the busesprovide communication channels to exchange messages among the processors. Every bus pro-vides a communication link between two or more processors.For practical reasons, a processor may only be connected to a limited number of buses(this number is known as the processor degree) and a bus may only connect a limited numberof processors (this number is known as the bus size). Therefore, messages may have to berelayed by a number of intermediate processors before arriving at their destinations, and thusthe message transmission time becomes a function of the distance (measured in terms of thenumber of buses traversed by a message) between processors. The maximum distance over allpairs of processors is the network diameter. Figure 1 depicts a bus network of degree 3, bus size3, and diameter 1. For some other examples see Figure 2.�Supported by the French GDR-PRC C3yOn leave from Queen's University at Kingston, Canada1



For given upper bounds on the processor degree �, bus size r, and network diameter D,the construction of bus networks with maximal number of processors is an important problemin the design of interconnection networks. Our aim is to survey the results obtained on thisproblem with an emphasis on the tools used in the construction. Other design parameters suchas network reliability, symmetry properties, ease of message routing, balanced message tra�cthroughout the network, implementation issues (algorithms and architecture) should also betaken into consideration.In the case of traditional point-to-point networks, where a link can connect only two proces-sors (these networks are modelled by graphs) the aforementioned problem has been extensivelystudied in the literature. As a result, di�erent families of networks with large number of pro-cessors for given degree and diameter have been proposed. (Surveys on this topic can be foundin [6], [11], and [23] and also in the special issues [3], [41].)Although considerably less studied, the construction of bus networks (r > 2) is receivingmore interest due to the technological advances (see for example [43]). In this paper, we surveythe results obtained on the construction methods that connect a large number of processors ina bus network, given �, D, and r.This paper is organized as follows: Section 2 deals with the undirected bus networks. InSection 2.1 we give the terminology of hypergraphs and de�ne the (�; D; r)-hypergraph problem.In Section 2.2, an upper bound on the number of vertices in the (�; D; r)-hypergraphs (knownas the Moore bound) is introduced and some general results concerning this bound are given.Section 2.3 is devoted to the case of diameter 1 in which there are in�nitely many of (�; D; r)-hypergraphs attaining the Moore bound. This case is a subject of study in the CombinatorialDesign Theory. In Section 2.4 we survey the results in the case of degree 2, where the dualitytools are helpful. In Section 2.5, we describe compound techniques to obtain large (�; D; r)-hypergraphs. In Section 2.6, we survey various other families of bus networks proposed in theliterature.Section 3 deals with the directed bus networks. We give the terminology in Section 3.1. TheMoore bound and the directed hypergraphs that attain it are the subject of Section 3.2. InSection 3.3 we give two in�nite families of directed hypergraphs that approach the Moore boundasymptotically, and generalize the well-known de Bruijn and Kautz networks.2 Design of Bus NetworksWe use hypergraphs to represent the underlying topology of the bus interconnection networks.The vertices of the hypergraph correspond to the processors and the edges correspond to thebuses. 2



2.1 (�;D; r)-hypergraph problemAn (undirected) hypergraph H is a pair H = (V(H); E(H)) where V(H) is a non-empty set ofelements, called vertices, and E(H) is a �nite set of subsets of V(H) called edges. The number ofvertices in the hypergraph is n(H) = j(V(H)j and the number of edges is m(H) = j(E(H)j wherethe vertical bars denote the cardinality of the set. The degree of a vertex v is the number ofedges containing it and is denoted by �H(v). The maximum degree over all of the vertices in His denoted by �(H). The size of an edge E 2 E(H) is its cardinality, and is denoted by jEj. Therank of H is the size of its largest edge, and is denoted by r(H). A path in H from vertex u tovertex v is an alternating sequence of vertices and edges u = v0; E1; v1; � � � ; Ek; vk = v such thatfvi�1; vig � Ei for all 1 � i � k. The length of a path is the number of edges in it. The distancebetween two vertices u and v is the length of a shortest path between them. The diameter of His the maximum of the distances over all pairs of vertices, and is denoted by D(H).We call a hypergraph with maximum degree �, diameter D, and rank r, a (�; D; r)-hypergraph. The problem on bus networks we considered in the introduction is known as the(�; D; r)-hypergraph problem and consists of �nding (�; D; r)-hypergraphs with the maximumnumber of vertices or �nding large (�; D; r)-hypergraphs. The maximum number of vertices inany (�; D; r)-hypergraph is denoted by n(�; D; r).In the case r = 2 (graph case), this problem has been extensively studied and is known asthe (�; D)-graph problem (see for example [11], [12]), and the maximum number of vertices inany (�; D)-graph is denoted by n(�; D).Note that parts of this problem have been studied in other contexts with di�erent notation.For example d or r is used for maximum degree, k or d is used for diameter, and b or k is usedfor rank. (In the notation of Design Theory r and k are used for maximum degree and rank,respectively.) We follow the notation of Hypergraph Theory [2].Finally, let us mention that the drawing of hypergraphs can be very complex and thereforeit is useful to represent a hypergraph H with a bipartite graph,R(H) = (V1(R) [ V2(R); E(R))called the bipartite representation graph. Every vertex vi in V(H) is represented by a vertex viin V1(R) and every edge Ej in E(H) is represented by a vertex ej in V2(R). We draw an edgebetween vi 2 V1(R) and ej 2 V2(R) if and only if vi 2 Ej in H .If H is a (�; D; r)-hypergraph and R(H) is its bipartite representation graph, then themaximum degrees in V1(R) and in V2(R) are � and r, respectively. The distance between twovertices of V1(R) is at most 2D, but the diameter of R(H) can be 2D, 2D+ 1 or 2D+ 2 as thevertices of V1(R) and V2(R) do not play the same role. So, the (�; D; r)-hypergraph problemis partly related but di�erent from the (�1;�2;D0)-bipartite graph problem, i.e. �nding largebipartite graphs with maximum vertex degrees �1, �2 and diameter D0 (for details of thisproblem see [19]). Nevertheless this bipartite representation can be helpful.3



2.2 Moore bound and Moore geometriesA bound on the maximum number of vertices in a (�; D; r)-hypergraph (analogous to the theclassical Moore bound [40]) can be easily calculated: Each vertex belongs to at most � edgesand each edge contains at most r vertices. Thus there can be at most �(r � 1) vertices atdistance one from any vertex. In general, the maximum number of vertices at distance i fromany vertex can be at most �(�� 1)i�1(r � 1)i. ThereforeProposition 1 n(�; D; r) � 1 + �(r� 1)PD�1i=0 (�� 1)i(r � 1)i:This bound is known as the Moore bound for undirected hypergraphs, and the hypergraphs thatattain it are known as Moore geometries.Combined results of Fuglister [37], [38], Damerell and Georgiacodis [27], Damerell [26], Kuichand Sauer [46], Bose and Dowling [20], and Kantor [44] show that, for D > 2, Moore geometriescannot exist, with the exception of the cycles of length 2D+ 1 (the case � = 2 and r = 2). Fora comprehensive survey on these results see [6].For D = 2 and r 6= 5, Moore geometries can exist only for a �nite number of vertices. Forr = 3, Moore geometries do not exist; and for r = 4 a Moore geometry with � = 7 may exist(with 400 vertices, and 700 edges). However, there are no known explicit constructions of Mooregeometries with D = 2 and r > 2.For D = 2 and r = 2 (graph case), only four Moore graphs can exist. Three of them are thepentagon (� = 2), the Petersen graph (� = 3) and the Ho�man-Singleton graph (� = 7) [40].A fourth Moore graph with � = 57 may exist, but so far it has not been explicitly constructed.This graph, if exists, cannot be vertex-transitive (see page 102 in [22], and [1]).2.3 Case D = 1In a hypergraph of diameter 1 every pair of vertices belongs to at least one common edge. Thereader might see the similarity with Design Theory. (For more information on Design Theorysee for example [42], and for the use of Design Theory in Computer Science see the survey [25].)Recall that an (n; r; �) design on a set of n objects (called \points") is a collection of subsets(called \blocks") such that every block contains exactly r points and every pair of points belongsto exactly � blocks. In fact, Moore geometries of diameter 1 are the (n; r; 1) designs:Proposition 2 n(�; 1; r)� 1+�(r� 1); and the equality is attained if and only if there existsan (n; r; 1) design.Simple counting arguments show that n� = mr in an (n; r; 1) design, where m is the numberof blocks (edges). Fisher's inequality (cf. [42], p. 34) states that � � r in any (n; r; �) designwith n > r points. If � = r, the existence of a (�; 1; r)-hypergraph depends on the existence4



of a (q2 + q + 1; q + 1; 1) design, known as a projective plane of order q, with q = r � 1. Thiswas already pointed out by Mickunas [48]. It is well known that a projective plane exists whenq is a prime power. It is also known by the Bruck-Ryser-Chowla theorem (cf. [42], p. 56) thata projective plane does not exist when q � 1; 2 (mod 4), and q is not the sum of two integersquares (for example q = 6 or q = 14). Figure 1 depicts the symmetric (7,3,1) design (alsoknown as the Fano plane). In this �gure the circles represent the points (vertices) and the linesrepresent the blocks (edges).
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2Figure 1: Fano plane: (3,1,3)-hypergraph and its bipartite representation graphWhen the Moore bound cannot be attained, Bermond, Bond, Sacl�e [8], Bermond, Bond,Sotteau [9], and Bermond, Bond [4] established tight upper bounds on n(�; 1; r). For � � r,the results on coverings were used. We give the following theorem as an example:Theorem 3 [8] If � � r, thenn(�; 1; 3) = ( 2� + 1 if � � 0 or 1 (mod 3);2� if � � 2 (mod 3):In the case D = 1 and � < r, Bermond, Bond and Sacl�e [8] showed that a (�; 1; r)-hypergraph with �r � (� � 1)dr=�e vertices can be constructed if there exists a projectiveplane of order � � 1, namely by splitting each vertex into roughly r=� vertices. F�uredi [39]proved that this bound is asymptotically optimal.2.4 Duality toolsThe dual of a hypergraph H = (V(H); E(H)) is the hypergraph H� = (V(H�); E(H�)) where thevertices of H� correspond to the edges of H , and the edges of H� correspond to the vertices ofH . A vertex e�j is a member of an edge V �i in H� if and only if the vertex vi is a member of Ejin H . Figure 2 shows some graphs and their dual hypergraphs.5



n = 10 n = 16 n = 20Figure 2: Some (2,2,4)-hypergraphs obtained by dual hypergraph operationBermond, Bond and Peyrat [7] observed the following relationship between a hypergraphand its dual:Proposition 4 [7] If H is a (�; D; r)-hypergraph then its dual hypergraph H� is a (r;D�;�)-hypergraph where D � 1 � D� � D + 1.Note that, if G is a graph of maximum degree � and diameter D then its dual is a (2; D�;�)-hypergraph. Furthermore,Proposition 5 [7] If G is a bipartite (�; D)-graph then its dual hypergraph H� is a (2; D�;�)-hypergraph where D� � D.With the help of Propositions 4 and 5, it is possible to construct large (2; D; r)-hypergraphsby using the existing large (�; D)-graphs. Below, we give some examples (For more examples,see [7].)The dual hypergraph of binary hypercube was conceived as a bus network [55], where everyedge of the hypercube represents a processor and every vertex represents a bus. Thus everyprocessor is connected to two buses and if the hypercube is d-dimensional then every bus connectsd processors. Using the same technique the dual hypergraph of the generalized hypercube hasalso been proposed as a bus network [17].In [52], Pradhan proposed a generalization of the shu�e-exchange network. The dual of thisnetwork gives a hypergraph of degree 2, rank r, diameter 2k� 1 (k is a positive integer). It hasrk+1=2 vertices. 6



Kautz graphs are obtained from Kautz digraphs [15] by replacing the directed edges withundirected ones. Kautz graphs of maximum degree r (r is even) and diameter D have (r=2)D+(r=2)D�1 vertices. The dual hypergraph of the Kautz graph of diameter D � 1, and maximumdegree r, is a (2; D; r)-hypergraph with (r=2)D + (r=2)D�1 vertices.The bipartite double ~G of a graph G is constructed as follows [21]: For every vertex v 2 V(G)there are two vertices v+ and v� 2 V( ~G). The vertices v+i and v�j are adjacent in ~G, if andonly if the vertices vi and vj are adjacent in G. Let ~G be the bipartite double of the de Bruijngraph (see [15], or [53]) of maximum degree r (r is even), and diameter D � 1. Then ~G isregular of degree r, has 2(r=2)D�1 vertices and diameter D. The dual hypergraph of ~G is a(2; D; r)-hypergraph with 2(r=2)D vertices.An extension of the bipartite double of de Bruijn graphs, is the \Cs graphs" of Delorme andFarhi [28]. The vertices of \Cs graphs" are labeled by (i; a1; � � � ; ak) where i belongs to Zq (setof integers modulo q) and aj ; 1 � j � k; belongs to an alphabet A of d letters. The vertex(i; a1; � � � ; ak) is joined to the vertices (i+ 1; a2; � � � ; ak; �) and (i� 1;�; a1; � � � ; ak�1) where � isany letter from the alphabet A. These graphs have qdk vertices and maximum degree 2d. Theirdiameter depends on the values of q and k. For example, if q = 3, the diameter is always k + 1.If q = 5, the diameter is k + 1 for k � 1 or 4 (mod 5), and k + 2, otherwise.Bermond, Bond and Peyrat [7] used the dual hypergraphs of \Cs graphs" to obtain large(2; D; r)-hypergraphs. A particular case of the \Cs graphs" (q = 5 and k = 1) is the graph Gobtained from the pentagon by replacing each vertex with r=2 vertices and every edge with theedges of a complete bipartite graph K r2 ; r2 (see Figure 2). Let H be the dual hypergraph of G.Then H has diameter 2, rank r, and 54r2 vertices.The result for the cases q = 3 and q = 5 are given in the following theorem (the case q = 3was pointed out by Rote). Although these results are for even values of r, they can be extendedto the odd values as well.Theorem 6 [7] If r is even, thenn(2; D; r)� 3(r2)D:n(2; D; r)� 5(r2)D; if D � 0 or 2 (mod 5):Furthermore, from the work of Kleitman (unpublished) and from [24] and [51], it follows thatTheorem 7 If r is even, then n(2; 2; r) = 54r2:Finally, we note that the duals of the asymmetric block designs give hypergraphs of diametertwo [16], [50]. 7



2.5 Compound techniquesOne of the techniques used to construct large (�; D; r)-hypergraphs is to start from good onesfor small values of �, D and r, then to combine them to build larger ones. Bond [18] constructs(�; D; r)-hypergraphs by taking r copies of a (��1; D�1; r)-hypergraph and joining the verticeswith the same labels through a common edge. Thus,Proposition 8 [18] n(�; D; r) � r � n(�� 1; D� 1; r):For example, from Theorem 6, n(2; 1; r) = 3r=2 (for r even), thus we obtain n(3; 2; r)� 3r2=2.Somewhat more sophisticated construction is the following: Consider a (p(r � 1) + 1; r; 1)design, that is a (p; 1; r)-hypergraph H . Replace each vertex x of H by a copy of a (�; D; r)-hypergraph H 0 on p vertices, in such a way that each of the p edges of H containing x containexactly one vertex of the copy H 0x. The hypergraph thus obtained is denoted by H [H 0], and hasdegree � + 1, diameter 2D + 1, and edge size r. ThereforeProposition 9 [6] n(� + 1; 2D+ 1; r) � n(�; D; r) � (1 + (r � 1) � n(�; D; r)):For example, we have n(1; 1; r) = r. If q = r�1 is a prime power, there exists a (r(r�1)+1; r; 1)design and in that case n(2; 3; r)� r3�r2+r. For these values of r, the result is better than thelower bound n(2; 3; r)� 38r3 obtained in Theorem 6. Slight improvements can still be obtained(see [29]). For instance, n(2; 1; r) = 3r=2 (for r even), and thus n(3; 3; r)� 14(9r3 � 9r2 + 6r) ifthere exists a (32r(r� 1) + 1; r; 1) design.Bermond, Bond and Djelloul (see [5], [29]) have used more elaborated techniques mixingtransversal designs (or orthogonal latin squares) and large bipartite regular graphs of diameter�ve. (For the construction of large bipartite graphs see [19].) These techniques give the bestknown large hypergraphs of diameter two. For example they proved that n(3; 2; r) � 289 r2 ifr � 0 (mod 3) and n(4; 2; 1)� 92r2 if r � 0 (mod 4), and r 6= 8; 24.2.6 Various Families of Bus NetworksIn this section we survey various direct constructions of bus networks. Some of these construc-tions apply only in particular cases such as maximum degree 2, or degree equal to the diameter.For � = 2, Finkel and Solomon [34] have proposed two networks, called snow
ake bus networkand dense snow
ake bus network. These networks have rlog2D processors.A construction method based on hypercube to obtain bus networks of varying degree and bussize is the spanning bus hypercube [56]. In an r-ary, d-dimensional spanning bus hypercube eachbus connects processors in one direction (i.e. processors sharing a bus spanning the hypercube inthe ith dimension have identical coordinates except in the ith position). Therefore each processoris connected to d buses. Recall that in this network the diameter is equal to the degree.8



The Dual-bus hypercube [56] is derived from the spanning bus hypercube by removing somespanning buses so that every processor is connected only to two spanning buses. (Note that theterm \dual" in this construction does not refer to the dual hypergraph of any graph, but it simplystates the fact that every processor is connected to two buses.) The number of processors in thisnetwork is relatively small (of order rD+12 , to be compared with 3( r2)D obtained in Theorem 6).An iterative method to construct bus networks of degree � and the bus size r is the \lensinterconnection strategy" [35]. In this method, at level-1 all of the r � 1 processors are on all ofthe ��1 buses. At this level every processor is de�cient, i.e. it is connected to only ��1 of the� buses allowed. The buses are also de�cient, since each bus has only r�1 processors. At level-k, ��1 copies of the level-(k�1) lens network are taken and connected together as follows: Foreach de�cient processor a new bus is introduced and is connected to the corresponding processor.A number of new processors are introduced such that each new processor is on the same busin each copy, and each new bus has r processors on it. The number of processors at level-k isn = Pki=1(�� 1)k�i(r� 1)i. The diameter of the level-k lens interconnection network is 2k. If� = r, this scheme produces symmetric networks, that is every processor's view of the networkis the same. Furthermore, in this special case, the dual of this network is also a lens network.By connecting the de�cient processors to the de�cient buses at the last level, the completed lensis obtained which has diameter b32kc.Another method to construct bus networks is to partition the set of links in a point-to-point network into the buses. A particular case of this method is the spanning bus hypercube(see above). Ferreira, Goldman and Song [32] considered such a generalization of grids (calledhypergrids) and studied communication problems on them. See also the works of Stout [54] andPrasanna and Raghavendra [47] where buses are used on top of a classical grid to speed up thealgorithms. (Also see [49] for meshes with recon�gurable buses.)Doty [30] partitioned the links of the point-to-point de Bruijn networks to buses, and obtainedbus networks with large number of vertices. Bermond, Dawes and Ergincan [10] gave formalmethods for this partitioning. Similarly, Kautz bus networks are obtained from the point-to-point Kautz networks by grouping certain links into buses [10]. The number of processorsin de Bruijn bus networks is (�r4 )D, and the number of processors in Kautz bus networks is(�r4 )D + (�r4 )D�1 where D is the diameter, and � and r always assume even values.In Table 1 we list some properties of some of the networks discussed above, for comparison.3 Directed Bus NetworksDe Bruijn and Kautz bus networks are in fact obtained by extending the de�nition of de Bruijnand Kautz digraphs to directed bus networks. In the directed bus networks the processors ona bus are divided into two, not necessarily disjoint, sets. The processors in one set can use thebus only to send messages while the processors in the other set can use the bus only to receivemessages. Formally, we represent the directed bus networks with directed hypergraphs.9



Network Max. Diam. No of No of Node BusDeg. Nodes Buses Conn. Conn.Snow
ake 2 2k � 1 rk rk�1r�1 1 1Dual ofBinary 2 r r2r�1 2r 2(r � 1) 2HypercubeDual-busHypercube 2 2k � 1 rk 2rk�1 2(r � 1) 2Dual ofKautz 2 D ( r2 )D + ( r2 )D�1 ( r2 )D�1 + ( r2 )D�2 2(r � 1) 2GraphsDual ofCs graphs 2 D 3( r2 )D 3( r2 )D�1SpanningBus � � r� �r��1 �(r � 1) �HypercubeCompletedLens r b 32kc k(r � 1)k k(r � 1)k(if � = r)de BruijnBus � D (�r4 )D �24 (�r4 )D�1 12�r � 2 �� 1; if r � 8Networks � �� 2; if r � 6KautzBus � D > 2 (�r4 )D + (�r4 )D�1 �24 (�r4 + 1)(�r4 )D�2NetworksNotes:1. The bus size is r in all of the networks.2. All bus networks in this table are undirected.3. In the Dual of Cs graphs r assumes even values.4. In de Bruijn and Kautz bus networks � and r assume even values.Table 1: Comparison of some bus networks
10



3.1 Terminology and NotationA directed hypergraphH is a pair (V(H); E(H))where V(H) is a non-empty set of elements (calledvertices) and E(H) is a set of ordered pairs of non-empty subsets of V(H) (called hyperarcs). IfE = (E�; E+) is a hyperarc in E(H), then the non-empty vertex sets E� and E+ are calledthe in-set and the out-set of the hyperarc E, respectively. The sets E� and E+ need not bedisjoint. jE�j is the in-size, and jE+j is the out-size of hyperarc E. The maximum in-size andthe maximum out-size of a directed hypergraph H are, respectively,s�(H) = maxE2E(H) jE�j and s+(H) = maxE2E(H) jE+j:If s� = s+ = 1, a directed hypergraph is nothing more than a digraph.Let v be a vertex in V(H). The in-degree of v is the number of hyperarcs that contain v intheir out-set, and is denoted by d�H(v). Similarly, the out-degree of vertex v is the number ofhyperarcs that contain v in their in-set, and is denoted by d+H(v). The maximum in-degree andthe maximum out-degree of H are, respectively,d�(H) = maxv2V(H)d�H(v) and d+(H) = maxv2V(H)d+H(v):A walk in H from vertex u to vertex v is an alternating sequence of vertices and hyperarcsu = v0; E1; v1; E2; v2; � � � ; Ek; vk = v such that vi�1 2 E�i and vi 2 E+i for each 1 � i � k. Thelength of a walk is equal to the number of hyperarcs on it. The distance and the diameter arede�ned analogously to those in the undirected case.We can represent the incidence relations between the vertices and hyperarcs in a directedhypergraph H using a bipartite digraph,R(H) = (V1(R) [ V2(R); E(R))called the bipartite representation digraph. Every vertex vi in V(H) is represented by a vertexvi in V1(R) and every hyperarc Ej in E(H) is represented by a vertex ej in V2(R). We drawan arc from vi 2 V1(R) to ej 2 V2(R) if and only if vi 2 E�j in H , and we draw an arc fromej 2 V2(R) to vi 2 V1(R) if and only if vi 2 E+j in H .If only the adjacency relations between the vertices in a directed hypergraph H are con-sidered, we can use the underlying multi-digraph bH (also called associated multi-digraph anddenoted by A(H)). The vertex set of bH is the same as that of H . There are as many arcs fromu to v in bH , as there are hyperarcs E in H such that u 2 E� and v 2 E+. Then a hyperarc ofH corresponds to a \bipartite complete digraph" (shortly diclique), and a directed hypergraphcorresponds to a multi-digraph with a partitioning of its arc set into dicliques.3.2 Directed Moore HypergraphsWe call a directed hypergraph with maximum out-degree d, maximum out-size s, and diameterD, a (d;D; s)-directed hypergraph. The (d;D; s)-directed hypergraph problem is the directed11



analogue of the (�; D; r)-hypergraph problem: Find directed hypergraphs of maximum out-degree (resp. in-degree) d, diameter D, and maximum out-size (resp. in-size) s, such that thenumber of vertices in the hypergraph is maximized. The maximum number of vertices in any(d;D; s)-directed hypergraph can be at most1 + ds+ (ds)2 + � � �+ (ds)D = DXi=0(ds)i:We call this upper bound the Moore bound for directed hypergraphs, and we call the hypergraphsattaining it the directed Moore hypergraphs.Ergincan and Gregory [31] showed that Moore bound for directed hypergraphs cannot beattained if ds > 1 or D > 1. If ds = 1 then the directed Moore hypergraph is nothing morethan a directed cycle of length D + 1. Finding directed Moore hypergraphs of diameter 1 isequivalent to �nding matrix factorizations J � I = XY where J is the all-ones matrix, I is theidentity matrix, X is an n � m (0,1)-matrix and Y is an m � n (0,1)-matrix; both X and Yhave constant row sums [31]. There may exist several such matrix factorizations even if someextra conditions (for example m = n) are introduced. This problem is also equivalent to thepartitioning of the arc set of a complete symmetric digraph into dicliques.Since the directed Moore hypergraphs exist only in a few cases, it is of interest to constructdirected hypergraphs with a large number of vertices. In the following section we survey twofamilies of directed hypergraphs that approach the Moore bound asymptotically.3.3 De Bruijn and Kautz hypergraphsDe Bruijn and Kautz hypergraphs are the generalizations of de Bruijn digraphs and Kautzdigraphs to directed hypergraphs. De Bruijn and Kautz digraphs can be de�ned in at leastthree di�erent ways (see [15]). These de�nitions are based on (1) alphabets, (2) line digraphiterations on complete digraphs, and (3) arithmetical congruences.In the same manner, de Bruijn hypergraphs can be de�ned using three di�erent de�nitions asmentioned above, and Kautz hypergraphs can be de�ned using the last two de�nitions. Detailsof these de�nitions can be found in [10]; here we will only mention some techniques used in thegeneralization.To generalize the second de�nition, a new notion was introduced [14]: The directed linehypergraph, L(H), of a directed hypergraph H has the following vertex set and hyperarc set:V(L(H)) = [E2E(H)f(uEv) j u 2 E�; v 2 E+gE(L(H)) = [v2V(H)f(EvF ) j E+ 3 v; F� 3 vg;The in-set and the out-set of a hyperarc (EvF ) are, respectively,(EvF )� = f(uEv) j u 2 E�g and (EvF )+ = f(vFu) j u 2 F+g:12



Note that, the vertices and the hyperarcs of L(H) correspond to the paths of length one in Hand its directed dual H�, respectively. (Also note that, L(H) as de�ned above does not denotethe line graph of a hypergraph de�ned in [2], p. 31.)For maximum out-degree d, maximum out-size s and diameter D, de Bruijn hypergraphshave (ds)D vertices and Kautz hypergraphs have (ds)D+(ds)D�1 vertices. They also have othergood properties such as optimum connectivity [13].In the arithmetical de�nition of de Bruijn and Kautz hypergraphs the vertices are numberedfrom 0 to n � 1 and the hyperarcs are numbered from 0 to m � 1 where n is the number ofvertices and m is the number of hyperarcs. The incidence relations between the vertices andhyperarcs are given using arithmetic congruences. For example, in Kautz hypergraphs vertex vis incident to the hyperarcsEj � dv + � (mod m) 0 � � � d� 1;and the out-set of hyperarc E isvi � �sE � � (mod n) 1 � � � s:The arithmetical de�nition lets us to de�ne hypergraphs with properties similar to those ofde Bruijn and Kautz hypergraphs, but on any number of vertices n and hyperarcs m, so long asthe following two conditions hold:dn � 0 (mod m) and sm � 0 (mod n):Nice properties, such as optimal connectivity are obtained when dn = sm (see [13]). Further-more, the bipartite representation digraphs of Kautz hypergraphs give large bipartite digraphs.(In the case d = s these digraphs were already found by Fiol and Yebra [36].)4 ConclusionWe hope to have shown to the reader how di�erent tools of the theory of hypergraphs and directedhypergraphs can be helpful in the design of the large bus interconnection networks. Thereremains a lot to do on this topic in di�erent ways. There are still studies on the tools developed, inparticular for directed hypergraphs. One can also consider �nding new large bus interconnectionnetworks. However one of the promising areas will be to study the properties such as routing,communication, bus load, extension, algorithm construction, and implementation issues for theexisting networks.An important problem in the implementation of the bus networks is the communicationmethod used on the buses to resolve the con
icts. There is a rich literature on this subject withperformance evaluation of di�erent models. We did not include this topic in the survey.13



The nature of the data exchanges and the technology to be used in the implementation ofthe buses are very important issues in the design of bus interconnection networks. If the dataexchanges are limited to certain permutations among the processors, solutions that do not causecon
icts have been proposed in [45] and [33]. Recently, an implementation using �ber optics,which realizes simultaneous broadcasting without con
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