Minimizing SONET ADMs in unidirectional WDM rings
with grooming ratio 3*

Jean-Claude Bermond, Stephan Ceroi
MASCOTTE project, I3S-CNRS/INRIA /Université de Nice-Sophia Antipolis,
B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE.
Www: http://www-sop.inria.fr/mascotte

E-mail: {Jean-Claude.Bermond,Stephan.Ceroi}@sophia.inria.fr.

Abstract

We consider traffic grooming in WDM unidirectional rings with all-to-all uniform unitary
traffic. We determine the minimum number of SONET /SDH add-drop multiplexers (ADMs)
required when the grooming ratio is 3. In fact, using tools of design theory, we solve the
equivalent edge partitioning problem: find a partition of the edges of the complete graph
on n vertices (K, ) into subgraphs having at most 3 edges and in which the total number of

vertices has to be minimized.
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1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed streams (see the
surveys |9, 13, 15|). By using traffic grooming, one can bypass the electronics in the intermediate
nodes. Typically, in a WDM network, instead of having one SONET/SDH Add Drop Multiplexer
(or ADM) on every wavelength at every node, it may be possible to have ADMs only for the
wavelengths used at that node (the other wavelengths being optically routed without electronic
switching). The objective is either to minimize the transmission cost, in particular the number
of wavelengths, or to minimize the equipment cost, in particular the total number of ADMs used
in the network.

Here, we consider the particular case of unidirectional rings with static uniform symmetric
all-to-all traffic. In this case, for each pair {7, j}, we associate a circle (or circuit) which contains
both the request from i to j and from j to i. If each circle requires only % of the bandwidth of
a wavelength, we can “groom” C' circles on the same wavelength. (' is called the grooming ratio
(or grooming factor). For example, if the request from i to j (and from j to i) is one OC-12
and a wavelength can carry an OC-48, the grooming factor is 4. Given the grooming ratio C
and the size n of the ring, the objective is to minimize the total number of ADMs used, denoted
A(C,n), and therefore to reduce the network cost by eliminating as many ADMs as possible from
the “no grooming case”. For example, let n = 4; we have 6 circles corresponding to the 6 pairs
{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}. Without grooming, that is if we assign one wavelength
per circle, we need 2 ADMs per circle; then a total of 12 ADMs are required. Suppose now that

C = 3, that is we can groom 3 circles on one wavelength. One can groom on wavelength 1 the

circles associated with {1,2},{1,3},{1,4} using 4 ADMs and on wavelength 2 those associated



with {2,3},{2,4},{3,4} using 3 ADMs for a total of 7 ADMs.

This case of unidirectional rings with static uniform symmetric all-to-all traffic has been
considered by many authors [1, 3, 8, 10, 11, 12, 16, 17, 18, 19, 20| and numerical results, heuristics
and tables have been given (see for example those in [17]). This case presents the advantage of
concentrating on the grooming phase (excluding the routing). It can also be applied to groom
components of more general connections than two opposite pairs into wavelengths or more general
classes. These components are called circles [3, 20] or circuits [17]| or primitive rings |6, 7|.

In [1] it is noted that the problem of minimizing the number of ADMs for the unidirectional
ring C,, with a grooming factor C', can be expressed as follows: partition the edges of the
complete graph on n vertices (K,) into W subgraphs By, A =1,2,..., W, having |F(B,)| edges
and |V (B,)| vertices, with |F(B,)| < C and where Y21 |V (B,)| has to be minimized (the edges
of K, correspond to the circles, the subgraphs B, correspond to the wavelengths and a vertex of
B, corresponds to an ADM). In [1] various results are given using tools of design theory [5] and
they improve and unify all the preceding results in the literature. Note that design theory was
also used in |6, 7| for a slightly different problem with C' = 8, as they consider bidirectional rings
and 4 requests are grouped in a circle.

Here we completely solve the case C' = 3. This case is easy to solve when there exists a
partition of K,, into K3’s (triangles), as K3 is the graph with 3 edges having the minimum number
of vertices. For that we can use the existence of Steiner Triple Systems or (n, 3,1)-designs which

can be stated as follows (for a proof see [2]).

Theorem 1 (Steiner’s theorem) For anyn = 1,3 (mod 6), the edges of K,, can be partitioned

mto K3's.



Note that the problem we consider here is different from the problems of design theory in
which one looks for a partition of the edges into isomorphic subgraphs and such a partition exists
only for some values of n. For other values one can think to use results on packings or coverings
to solve our problem. For example, for C = 3 and n # 1 or 3 (mod 6), one can think that
the best solution is obtained by taking as many Kj3's as possible, but it does not necessarily
lead to an optimal solution. Consider for example Kg. It can be partitioned into the 4 triangles
(1,2,3),(1,4,5),(2,4,6),(3,5,6) plus the 3 edges 1-6, 2-5, 3-4. So, altogether we have 5 subgraphs
and 18 ADMs. However, we can also partition K4 into the 3 K3’s (1,2,3),(2,4,5),(3,5,6), the
star K3 with edges 1-4,1-5,1-6, and the path P, with edges 2-6,6-4,4-3. This solution uses 5
subgraphs and 17 ADMs. Similarly, if we use a covering of the edges of K¢ by 6 K3’s and delete

the edges covered twice, we will have to use 6 subgraphs with 3 vertices and altogether 18 vertices.

n2

More generally, when n is even, a covering of K,, by K3’s needs [FW triangles and 3 times more

ADMs; but we will show that the optimal solution uses about (ﬂ fewer ADMs.
Here, we determine the exact value of A(3,n), denoted by A(n). The main theorem can be

stated as follows:
Theorem 2

(i) When n is odd, A(n) =n(n —1)/2 +¢, wheree =0 if n =1 or 3 (mod 6), and € = 2 if

n=>5 (mod 6) ;

(i) When n is even, A(n) =n(n —1)/2+ [2] +¢€, where e =1 if n = 8 (mod 12), and e =0

otherwise.

Furthermore our solution uses the minimum number of subgraphs (wavelengths) possible, that



is [n("’g])-‘ ; therefore for C' = 3, the conjecture of [3] that the minimum number of ADMs can be

achieved with the minimum number of wavelengths is true (in [1] it is shown that the conjecture

is false for many values of C, the first one being C' = 7).

2 Notation

As we mentioned in the introduction, we want to partition the edges of K, into subgraphs with
at most 3 edges and to minimize the total number A(n) of vertices in such a partition. Here are

the possible connected subgraphs with at most 3 edges:

Name Class # vertices | # odd degree vertices

HESIEN)

4 2

For a given partition P of the edges of K,, we denote by ai, as, as, b3, c¢3 the number of
subgraphs of type respectively E, P;, K3, K3, Py. By counting the number of edges of K,, we
have:

ar + 2as + 3az + 3b; + 3c; =n(n—1)/2 (1)

The sum of the number of vertices of the subgraphs in the partition P is denoted A(P). Thus

A(P) :20,] +3(J,2+3(I/3+4b3+403:’n(n*1)/24—(111 +(J,2+b3+(33 (2)
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Finally, following the definition of A(n) given in the introduction, we have

A(n) = min{A(P) : P is a partition of K,}.

3 Lower bounds

In this section we prove that A(n) has at least the value given in Theorem 2. Let P be any
partition of the edges of K,,.

Case (i): if n = 1,3 (mod 6), equation (2) gives immediately A(P) > n(n — 1)/2. Suppose
now that n = 5 (mod 6). Thus n(n — 1)/2 = 1 (mod 3). Then equation (1) modulo 3 gives
ay + 2ay # 0.

Suppose that a; + ay + b3 + c3 = 1. Note that the subgraphs E, P;, K;3 and P; have
vertices with odd degree. As every vertex in K, has even degree, we have a contradiction, thus
ay +as + by +c3 > 2.

Then by equation (2), A(P) > n(n—1)/2+ 2.

Case (i1) : As n is even, the degree of each vertex of K, is odd, so every vertex must be an
odd degree vertex of at least one subgraph; but the number of odd degree vertices of E, P;, K3,

K, 3, and Py are 2,2,0,4,2 respectively; thus we have the following additional inequality:
2(],1 + 2@2 + 4b'g + 263 Z n (3)
From (3) we deduce that

4(a1+a2+b3+c3)2n+2(a1+a2+c3)



So

n
(J,]+(I,2+b3+(332 ’VZ-‘

which gives the result for the cases n # 8 (mod 12).
Now if n = 8 (mod 12), then n(n — 1)/2 = 1 (mod 3) and thus equation (1) modulo 3
gives the additional constraint a; + 2a; > 1. Thus we have 4(a; + as + b3 + ¢3) > n+ 1 and

A(P) >n(n—1)/24n/4+ 1 as required.

4 Upper bounds

Let py,ps, ..., be some nonnegative integers; the complete multipartite graph with class sizes
P1, D2, - .-, D1, denoted K, ,, 5, is defined to be the graph with vertex set Py UP,U...U P, where
|P;| = p;, and two vertices x € P, and y € P; are adjacent if and only if ¢ # j. For ¢ > 0, we
denote K,y (resp. Kyxiu) by Kyq 4 (vesp. Ky, ,.) where g occurs ¢ times.
Using terminology of design theory, the existence of a partition of the edges of K, ,, , into
K}, is equivalent to the existence of a k-GDD (group divisible design) with group sizes py, pa, - . ., Pi,
ai _as

also known as k-GDD of type gi'gy> ... gi*, where there are a; values of the p;’s equal to g;.

The following theorem of Colbourn [4] (see also [14, Theorem 1.24]) will be used repeatedly:

Theorem 3 Let g,t and u some nonnegative integers. K, , can be decomposed into Ky's if

and only if the following conditions are all satisfied:
(1) ifg>0thent >3, ort=2andu=g, ort=1andu=0, ort=0;
(17) u < g(t—1) or gt =0;

(13i) g(t — 1) +u =0 (mod 2) or gt = 0;



(1v) gt =0 (mod 2) or u = 0;
(v) g*(t —1)/2 + gtu =0 (mod 3).

We now prove the upper bounds in Theorem 2. Actually we give a stronger result, by exhibiting

the classes of the decomposition.

Theorem 4 Let n > 2. There exists a partition of K, using

1. ifn=1,3 (mod 6), ") F,;

2. ifn=>5 (mod 6), "2 Ky and 2 Py;

3. if n=0,4 (mod 12), "D — Ky and © K, 4;

’ 6

4. if n=2,8 (mod 12), "=2 — [ Iy, [%2] Ky and 1
5. if n=6,10 (mod 12), " n2 g, 02 i o and 1 P,

Proof.

First case : n odd.
If n =1,3 (mod 6), the result is exactly Theorem 1. Suppose now that n =5 (mod 6).

First we deal with the cases n =5 and n = 11 :

e K5 can be decomposed into 2 Kj3's (1,2,3), (1,4,5), and 2 P3’s with edges 4-2,2-5 and

4-3,3-5;

e K is the union of a K; and a Ki,65. This K5 can be decomposed as seen above into 2
K3’s and 2 Py’s. By Theorem 3 (with g =1, ¢t =6 and u = 5), K65 can be decomposed

into 15 K3’s. So K;; can be decomposed into 17 K3’s and 2 Ps’s.



Now for n > 17 and n = 6p+ 5 (p > 2), Kgpss is the union of 2p K3’s, 1 K5 and a Kjyop 5.
But K5 can be decomposed into 2 K3’s and 2 Py’s, and K39, 5 can be decomposed into K3’s by

Theorem 3 with ¢ =3, ¢t =2p and u = 5.

Second case : n even.

First, we deal with the following small cases:

e case n = 2 : trivial;

e case n =4 : K, can be decomposed into the K3 (1,2, 3) and the K 3 with edges 4-1,4-2,4-3;

e case n = 6 : as stated in the introduction, K¢ can be decomposed into the P, with edges

2-6,6-4,4-3, the K, 3 with edges 1-4,1-5,1-6, and the K3's (1,2,3), (2,4,5), (3,5,6);

e case n = 8 : take a decomposition of K; in Kj3’s, and connect an additional vertex oo to all

vertices of the K;. The 7 edges incident to oo can be decomposed in 2 K; 3’s and one E;

e case n = 10 : Kjy can be decomposed into the K3 with edges 9-2,9-4,9-6, the K, 3 with

edges 10-1,10-3,10-5, the P, with edges 8-9,9-10,10-7, and the following Kj3’s:

(1,5,6) (1,2,8) (1,3,9)
(2,6,7) (2,3,5) (2,4,10)
(3,7,8) (3,4,6) (5,7,9)

(4,8,5) (4,1,7) (6,8,10)

Now let n = 4t+u with ¢ = 0 (mod 3),¢t > 3 and u = 0,2,4,6,8 or 10. K,, can be decomposed

into ¢t K4’s, a K, and a Ky4y;,. By Theorem 3 with g = 4, K44, can be decomposed into K3’s,



except when ¢ = 3 and u = 10, i.e. n = 22, for which the condition (7i) is not satisfied. Now for
n # 22, each K, can be decomposed into a K3 and a K, 3, and K, can be decomposed as shown
above. Hence we get a partition of K, into the required number of K3’s, K 3’s, E and P,.

Finally for n = 22, Ky, can be decomposed into 4 K,’s, a K and a K4.46. Each K, can be
decomposed into a K3 and a K; 3. The K4 can be decomposed as seen above into a Py, a K3,
and 3 K3’s. By Theorem 3 with g =t =4 and u = 6, K446 can be decomposed into K3’s. Thus
we get a partition of Ky, into a Py, 5 K 3’s and some Kj’s, as required.

Note that, as mentioned in the introduction, our solution uses the minimum number of sub-

n(n—1)

G W, showing that for C' = 3, the conjecture of [3] is true. |

graphs possible, that is {

5 Conclusion

In this article, we have determined the minimum number of SONET add-drop multiplexers
(ADMs) required with a grooming ratio 3 in unidirectional WDM rings with all-to-all uniform
unitary traffic. We have also shown that this minimum number is attained with a minimum
number of wavelengths. The same ideas can be used to determine the minimum number A(C,n)
for larger values of C. For C' = 4 an optimal solution can be obtained easily as we can partition
the edges of K,, into Cy’s and K3+ E. Therefore we have A(4,n) = n(n—1)/2 with the minimum
number of wavelengths, a result obtained also in [12|. We have also obtained partial results for
the cases C' = 5 and C' = 6. In the latter case we can use results on 4-GDD but they are not

sufficient for all the congruence classes.
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