
Minimizing SONET ADMs in unidire
tional WDM ringswith grooming ratio 3�Jean-Claude Bermond, Stephan CeroiMas
otte proje
t, I3S-Cnrs/Inria/Université de Ni
e-Sophia Antipolis,B.P. 93, F-06902 Sophia Antipolis Cedex, Fran
e.Www: http://www-sop.inria.fr/mas
otteE-mail: {Jean-Claude.Bermond,Stephan.Ceroi}�sophia.inria.fr.
Abstra
tWe 
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 grooming in WDM unidire
tional rings with all-to-all uniform unitarytra�
. We determine the minimum number of SONET/SDH add-drop multiplexers (ADMs)required when the grooming ratio is 3. In fa
t, using tools of design theory, we solve theequivalent edge partitioning problem: �nd a partition of the edges of the 
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1 Introdu
tionTra�
 grooming is the generi
 term for pa
king low rate signals into higher speed streams (see thesurveys [9, 13, 15℄). By using tra�
 grooming, one 
an bypass the ele
troni
s in the intermediatenodes. Typi
ally, in a WDM network, instead of having one SONET/SDH Add Drop Multiplexer(or ADM) on every wavelength at every node, it may be possible to have ADMs only for thewavelengths used at that node (the other wavelengths being opti
ally routed without ele
troni
swit
hing). The obje
tive is either to minimize the transmission 
ost, in parti
ular the numberof wavelengths, or to minimize the equipment 
ost, in parti
ular the total number of ADMs usedin the network.Here, we 
onsider the parti
ular 
ase of unidire
tional rings with stati
 uniform symmetri
all-to-all tra�
. In this 
ase, for ea
h pair fi; jg, we asso
iate a 
ir
le (or 
ir
uit) whi
h 
ontainsboth the request from i to j and from j to i. If ea
h 
ir
le requires only 1C of the bandwidth ofa wavelength, we 
an �groom� C 
ir
les on the same wavelength. C is 
alled the grooming ratio(or grooming fa
tor). For example, if the request from i to j (and from j to i) is one OC-12and a wavelength 
an 
arry an OC-48, the grooming fa
tor is 4. Given the grooming ratio Cand the size n of the ring, the obje
tive is to minimize the total number of ADMs used, denotedA(C; n), and therefore to redu
e the network 
ost by eliminating as many ADMs as possible fromthe �no grooming 
ase�. For example, let n = 4; we have 6 
ir
les 
orresponding to the 6 pairsf1; 2g ; f1; 3g ; f1; 4g ; f2; 3g ; f2; 4g ; f3; 4g. Without grooming, that is if we assign one wavelengthper 
ir
le, we need 2 ADMs per 
ir
le; then a total of 12 ADMs are required. Suppose now thatC = 3, that is we 
an groom 3 
ir
les on one wavelength. One 
an groom on wavelength 1 the
ir
les asso
iated with f1; 2g ; f1; 3g ; f1; 4g using 4 ADMs and on wavelength 2 those asso
iated2



with f2; 3g ; f2; 4g ; f3; 4g using 3 ADMs for a total of 7 ADMs.This 
ase of unidire
tional rings with stati
 uniform symmetri
 all-to-all tra�
 has been
onsidered by many authors [1, 3, 8, 10, 11, 12, 16, 17, 18, 19, 20℄ and numeri
al results, heuristi
sand tables have been given (see for example those in [17℄). This 
ase presents the advantage of
on
entrating on the grooming phase (ex
luding the routing). It 
an also be applied to groom
omponents of more general 
onne
tions than two opposite pairs into wavelengths or more general
lasses. These 
omponents are 
alled 
ir
les [3, 20℄ or 
ir
uits [17℄ or primitive rings [6, 7℄.In [1℄ it is noted that the problem of minimizing the number of ADMs for the unidire
tionalring Cn, with a grooming fa
tor C, 
an be expressed as follows: partition the edges of the
omplete graph on n verti
es (Kn) into W subgraphs B�, � = 1; 2; : : : ;W , having jE(B�)j edgesand jV (B�)j verti
es, with jE(B�)j � C and where PW�=1 jV (B�)j has to be minimized (the edgesof Kn 
orrespond to the 
ir
les, the subgraphs B� 
orrespond to the wavelengths and a vertex ofB� 
orresponds to an ADM). In [1℄ various results are given using tools of design theory [5℄ andthey improve and unify all the pre
eding results in the literature. Note that design theory wasalso used in [6, 7℄ for a slightly di�erent problem with C = 8, as they 
onsider bidire
tional ringsand 4 requests are grouped in a 
ir
le.Here we 
ompletely solve the 
ase C = 3. This 
ase is easy to solve when there exists apartition of Kn into K3's (triangles), as K3 is the graph with 3 edges having the minimum numberof verti
es. For that we 
an use the existen
e of Steiner Triple Systems or (n; 3; 1)-designs whi
h
an be stated as follows (for a proof see [2℄).Theorem 1 (Steiner's theorem) For any n � 1; 3 (mod 6), the edges of Kn 
an be partitionedinto K3's. 3



Note that the problem we 
onsider here is di�erent from the problems of design theory inwhi
h one looks for a partition of the edges into isomorphi
 subgraphs and su
h a partition existsonly for some values of n. For other values one 
an think to use results on pa
kings or 
overingsto solve our problem. For example, for C = 3 and n 6� 1 or 3 (mod 6), one 
an think thatthe best solution is obtained by taking as many K3's as possible, but it does not ne
essarilylead to an optimal solution. Consider for example K6. It 
an be partitioned into the 4 triangles(1; 2; 3); (1; 4; 5); (2; 4; 6); (3; 5; 6) plus the 3 edges 1-6, 2-5, 3-4. So, altogether we have 5 subgraphsand 18 ADMs. However, we 
an also partition K6 into the 3 K3's (1; 2; 3); (2; 4; 5); (3; 5; 6), thestar K1;3 with edges 1-4,1-5,1-6, and the path P4 with edges 2-6,6-4,4-3. This solution uses 5subgraphs and 17 ADMs. Similarly, if we use a 
overing of the edges of K6 by 6 K3's and deletethe edges 
overed twi
e, we will have to use 6 subgraphs with 3 verti
es and altogether 18 verti
es.More generally, when n is even, a 
overing of Kn by K3's needs ln26 m triangles and 3 times moreADMs; but we will show that the optimal solution uses about �n4� fewer ADMs.Here, we determine the exa
t value of A(3; n), denoted by A(n). The main theorem 
an bestated as follows:Theorem 2(i) When n is odd, A(n) = n(n � 1)=2 + �, where � = 0 if n � 1 or 3 (mod 6), and � = 2 ifn � 5 (mod 6) ;(ii) When n is even, A(n) = n(n � 1)=2 + �n4� + �, where � = 1 if n � 8 (mod 12), and � = 0otherwise.Furthermore our solution uses the minimum number of subgraphs (wavelengths) possible, that4



is ln(n�1)6 m ; therefore for C = 3, the 
onje
ture of [3℄ that the minimum number of ADMs 
an bea
hieved with the minimum number of wavelengths is true (in [1℄ it is shown that the 
onje
tureis false for many values of C, the �rst one being C = 7).
2 NotationAs we mentioned in the introdu
tion, we want to partition the edges of Kn into subgraphs withat most 3 edges and to minimize the total number A(n) of verti
es in su
h a partition. Here arethe possible 
onne
ted subgraphs with at most 3 edges:

Name Class # verti
es # odd degree verti
esE 2 2P3 3 2K3 3 0K1;3 4 4P4 4 2For a given partition P of the edges of Kn, we denote by a1, a2, a3, b3, 
3 the number ofsubgraphs of type respe
tively E, P3, K3, K1;3, P4. By 
ounting the number of edges of Kn wehave: a1 + 2a2 + 3a3 + 3b3 + 3
3 = n(n� 1)=2 (1)The sum of the number of verti
es of the subgraphs in the partition P is denoted A(P ). ThusA(P ) = 2a1 + 3a2 + 3a3 + 4b3 + 4
3 = n(n� 1)=2 + a1 + a2 + b3 + 
3 (2)5



Finally, following the de�nition of A(n) given in the introdu
tion, we haveA(n) = minfA(P ) : P is a partition of Kng.
3 Lower boundsIn this se
tion we prove that A(n) has at least the value given in Theorem 2. Let P be anypartition of the edges of Kn.Case (i): if n � 1; 3 (mod 6), equation (2) gives immediately A(P ) � n(n � 1)=2. Supposenow that n � 5 (mod 6). Thus n(n � 1)=2 � 1 (mod 3). Then equation (1) modulo 3 givesa1 + 2a2 6= 0.Suppose that a1 + a2 + b3 + 
3 = 1. Note that the subgraphs E, P3, K1;3 and P4 haveverti
es with odd degree. As every vertex in Kn has even degree, we have a 
ontradi
tion, thusa1 + a2 + b3 + 
3 � 2.Then by equation (2), A(P ) � n(n� 1)=2 + 2.Case (ii) : As n is even, the degree of ea
h vertex of Kn is odd, so every vertex must be anodd degree vertex of at least one subgraph; but the number of odd degree verti
es of E, P3, K3,K1;3, and P4 are 2,2,0,4,2 respe
tively; thus we have the following additional inequality:2a1 + 2a2 + 4b3 + 2
3 � n (3)From (3) we dedu
e that4(a1 + a2 + b3 + 
3) � n+ 2(a1 + a2 + 
3)6



So a1 + a2 + b3 + 
3 � ln4mwhi
h gives the result for the 
ases n 6� 8 (mod 12).Now if n � 8 (mod 12), then n(n � 1)=2 � 1 (mod 3) and thus equation (1) modulo 3gives the additional 
onstraint a1 + 2a2 � 1. Thus we have 4(a1 + a2 + b3 + 
3) � n + 1 andA(P ) � n(n� 1)=2 + n=4 + 1 as required.
4 Upper boundsLet p1; p2; : : : ; pl be some nonnegative integers; the 
omplete multipartite graph with 
lass sizesp1; p2; : : : ; pl, denoted Kp1;p2;:::;pl is de�ned to be the graph with vertex set P1[P2[ : : :[Pl wherejPij = pi, and two verti
es x 2 Pi and y 2 Pj are adja
ent if and only if i 6= j. For t > 0, wedenote Kg�t (resp. Kg�t;u) by Kg;g;:::;g (resp. Kg;g;:::;g;u) where g o

urs t times.Using terminology of design theory, the existen
e of a partition of the edges of Kp1;p2;:::;pl intoKk is equivalent to the existen
e of a k-GDD (group divisible design) with group sizes p1; p2; : : : ; pl,also known as k-GDD of type ga11 ga22 : : : gass , where there are ai values of the pj's equal to gi.The following theorem of Colbourn [4℄ (see also [14, Theorem 1.24℄) will be used repeatedly:Theorem 3 Let g; t and u some nonnegative integers. Kg�t;u 
an be de
omposed into K3's ifand only if the following 
onditions are all satis�ed:(i) if g > 0 then t � 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;(ii) u � g(t� 1) or gt = 0;(iii) g(t� 1) + u � 0 (mod 2) or gt = 0; 7



(iv) gt � 0 (mod 2) or u = 0;(v) g2t(t� 1)=2 + gtu � 0 (mod 3).We now prove the upper bounds in Theorem 2. A
tually we give a stronger result, by exhibitingthe 
lasses of the de
omposition.Theorem 4 Let n � 2. There exists a partition of Kn using1. if n � 1; 3 (mod 6), n(n�1)6 K3;2. if n � 5 (mod 6), n(n�1)�86 K3 and 2 P3;3. if n � 0; 4 (mod 12), n(n�1)6 � n4 K3 and n4 K1;3;4. if n � 2; 8 (mod 12), n(n�1)�26 � dn�24 e K3, dn�24 e K1;3 and 1 E;5. if n � 6; 10 (mod 12), n(n�1)6 � n+24 K3, n�24 K1;3 and 1 P4.Proof.First 
ase : n odd.If n � 1; 3 (mod 6), the result is exa
tly Theorem 1. Suppose now that n � 5 (mod 6).First we deal with the 
ases n = 5 and n = 11 :� K5 
an be de
omposed into 2 K3's (1; 2; 3), (1; 4; 5), and 2 P3's with edges 4-2,2-5 and4-3,3-5;� K11 is the union of a K5 and a K1�6;5. This K5 
an be de
omposed as seen above into 2K3's and 2 P3's. By Theorem 3 (with g = 1, t = 6 and u = 5), K1�6;5 
an be de
omposedinto 15 K3's. So K11 
an be de
omposed into 17 K3's and 2 P3's.8



Now for n � 17 and n = 6p + 5 (p � 2), K6p+5 is the union of 2p K3's, 1 K5 and a K3�2p;5.But K5 
an be de
omposed into 2 K3's and 2 P3's, and K3�2p;5 
an be de
omposed into K3's byTheorem 3 with g = 3, t = 2p and u = 5.Se
ond 
ase : n even.First, we deal with the following small 
ases:� 
ase n = 2 : trivial;� 
ase n = 4 : K4 
an be de
omposed into the K3 (1; 2; 3) and the K1;3 with edges 4-1,4-2,4-3;� 
ase n = 6 : as stated in the introdu
tion, K6 
an be de
omposed into the P4 with edges2-6,6-4,4-3, the K1;3 with edges 1-4,1-5,1-6, and the K3's (1; 2; 3), (2; 4; 5), (3; 5; 6);� 
ase n = 8 : take a de
omposition of K7 in K3's, and 
onne
t an additional vertex 1 to allverti
es of the K7. The 7 edges in
ident to 1 
an be de
omposed in 2 K1;3's and one E;� 
ase n = 10 : K10 
an be de
omposed into the K1;3 with edges 9-2,9-4,9-6, the K1;3 withedges 10-1,10-3,10-5, the P4 with edges 8-9,9-10,10-7, and the following K3's:(1; 5; 6) (1; 2; 8) (1; 3; 9)(2; 6; 7) (2; 3; 5) (2; 4; 10)(3; 7; 8) (3; 4; 6) (5; 7; 9)(4; 8; 5) (4; 1; 7) (6; 8; 10)Now let n = 4t+u with t � 0 (mod 3), t � 3 and u = 0; 2; 4; 6; 8 or 10. Kn 
an be de
omposedinto t K4's, a Ku and a K4�t;u. By Theorem 3 with g = 4, K4�t;u 
an be de
omposed into K3's,9



ex
ept when t = 3 and u = 10, i.e. n = 22, for whi
h the 
ondition (ii) is not satis�ed. Now forn 6= 22, ea
h K4 
an be de
omposed into a K3 and a K1;3, and Ku 
an be de
omposed as shownabove. Hen
e we get a partition of Kn into the required number of K3's, K1;3's, E and P4.Finally for n = 22, K22 
an be de
omposed into 4 K4's, a K6 and a K4�4;6. Ea
h K4 
an bede
omposed into a K3 and a K1;3. The K6 
an be de
omposed as seen above into a P4, a K1;3,and 3 K3's. By Theorem 3 with g = t = 4 and u = 6, K4�4;6 
an be de
omposed into K3's. Thuswe get a partition of K22 into a P4, 5 K1;3's and some K3's, as required.Note that, as mentioned in the introdu
tion, our solution uses the minimum number of sub-graphs possible, that is ln(n�1)6 m, showing that for C = 3, the 
onje
ture of [3℄ is true. �
5 Con
lusionIn this arti
le, we have determined the minimum number of SONET add-drop multiplexers(ADMs) required with a grooming ratio 3 in unidire
tional WDM rings with all-to-all uniformunitary tra�
. We have also shown that this minimum number is attained with a minimumnumber of wavelengths. The same ideas 
an be used to determine the minimum number A(C; n)for larger values of C. For C = 4 an optimal solution 
an be obtained easily as we 
an partitionthe edges of Kn into C4's and K3+E. Therefore we have A(4; n) = n(n�1)=2 with the minimumnumber of wavelengths, a result obtained also in [12℄. We have also obtained partial results forthe 
ases C = 5 and C = 6. In the latter 
ase we 
an use results on 4-GDD but they are notsu�
ient for all the 
ongruen
e 
lasses.A
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