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AbstratWe onsider tra� grooming in WDM unidiretional rings with all-to-all uniform unitarytra�. We determine the minimum number of SONET/SDH add-drop multiplexers (ADMs)required when the grooming ratio is 3. In fat, using tools of design theory, we solve theequivalent edge partitioning problem: �nd a partition of the edges of the omplete graphon n verties (Kn) into subgraphs having at most 3 edges and in whih the total number ofverties has to be minimized.Keywords: Tra� grooming, graph, edge-partition, design theory, WDM rings.�This work has been funded by the European projet Creso.



1 IntrodutionTra� grooming is the generi term for paking low rate signals into higher speed streams (see thesurveys [9, 13, 15℄). By using tra� grooming, one an bypass the eletronis in the intermediatenodes. Typially, in a WDM network, instead of having one SONET/SDH Add Drop Multiplexer(or ADM) on every wavelength at every node, it may be possible to have ADMs only for thewavelengths used at that node (the other wavelengths being optially routed without eletroniswithing). The objetive is either to minimize the transmission ost, in partiular the numberof wavelengths, or to minimize the equipment ost, in partiular the total number of ADMs usedin the network.Here, we onsider the partiular ase of unidiretional rings with stati uniform symmetriall-to-all tra�. In this ase, for eah pair fi; jg, we assoiate a irle (or iruit) whih ontainsboth the request from i to j and from j to i. If eah irle requires only 1C of the bandwidth ofa wavelength, we an �groom� C irles on the same wavelength. C is alled the grooming ratio(or grooming fator). For example, if the request from i to j (and from j to i) is one OC-12and a wavelength an arry an OC-48, the grooming fator is 4. Given the grooming ratio Cand the size n of the ring, the objetive is to minimize the total number of ADMs used, denotedA(C; n), and therefore to redue the network ost by eliminating as many ADMs as possible fromthe �no grooming ase�. For example, let n = 4; we have 6 irles orresponding to the 6 pairsf1; 2g ; f1; 3g ; f1; 4g ; f2; 3g ; f2; 4g ; f3; 4g. Without grooming, that is if we assign one wavelengthper irle, we need 2 ADMs per irle; then a total of 12 ADMs are required. Suppose now thatC = 3, that is we an groom 3 irles on one wavelength. One an groom on wavelength 1 theirles assoiated with f1; 2g ; f1; 3g ; f1; 4g using 4 ADMs and on wavelength 2 those assoiated2



with f2; 3g ; f2; 4g ; f3; 4g using 3 ADMs for a total of 7 ADMs.This ase of unidiretional rings with stati uniform symmetri all-to-all tra� has beenonsidered by many authors [1, 3, 8, 10, 11, 12, 16, 17, 18, 19, 20℄ and numerial results, heuristisand tables have been given (see for example those in [17℄). This ase presents the advantage ofonentrating on the grooming phase (exluding the routing). It an also be applied to groomomponents of more general onnetions than two opposite pairs into wavelengths or more generallasses. These omponents are alled irles [3, 20℄ or iruits [17℄ or primitive rings [6, 7℄.In [1℄ it is noted that the problem of minimizing the number of ADMs for the unidiretionalring Cn, with a grooming fator C, an be expressed as follows: partition the edges of theomplete graph on n verties (Kn) into W subgraphs B�, � = 1; 2; : : : ;W , having jE(B�)j edgesand jV (B�)j verties, with jE(B�)j � C and where PW�=1 jV (B�)j has to be minimized (the edgesof Kn orrespond to the irles, the subgraphs B� orrespond to the wavelengths and a vertex ofB� orresponds to an ADM). In [1℄ various results are given using tools of design theory [5℄ andthey improve and unify all the preeding results in the literature. Note that design theory wasalso used in [6, 7℄ for a slightly di�erent problem with C = 8, as they onsider bidiretional ringsand 4 requests are grouped in a irle.Here we ompletely solve the ase C = 3. This ase is easy to solve when there exists apartition of Kn into K3's (triangles), as K3 is the graph with 3 edges having the minimum numberof verties. For that we an use the existene of Steiner Triple Systems or (n; 3; 1)-designs whihan be stated as follows (for a proof see [2℄).Theorem 1 (Steiner's theorem) For any n � 1; 3 (mod 6), the edges of Kn an be partitionedinto K3's. 3



Note that the problem we onsider here is di�erent from the problems of design theory inwhih one looks for a partition of the edges into isomorphi subgraphs and suh a partition existsonly for some values of n. For other values one an think to use results on pakings or overingsto solve our problem. For example, for C = 3 and n 6� 1 or 3 (mod 6), one an think thatthe best solution is obtained by taking as many K3's as possible, but it does not neessarilylead to an optimal solution. Consider for example K6. It an be partitioned into the 4 triangles(1; 2; 3); (1; 4; 5); (2; 4; 6); (3; 5; 6) plus the 3 edges 1-6, 2-5, 3-4. So, altogether we have 5 subgraphsand 18 ADMs. However, we an also partition K6 into the 3 K3's (1; 2; 3); (2; 4; 5); (3; 5; 6), thestar K1;3 with edges 1-4,1-5,1-6, and the path P4 with edges 2-6,6-4,4-3. This solution uses 5subgraphs and 17 ADMs. Similarly, if we use a overing of the edges of K6 by 6 K3's and deletethe edges overed twie, we will have to use 6 subgraphs with 3 verties and altogether 18 verties.More generally, when n is even, a overing of Kn by K3's needs ln26 m triangles and 3 times moreADMs; but we will show that the optimal solution uses about �n4� fewer ADMs.Here, we determine the exat value of A(3; n), denoted by A(n). The main theorem an bestated as follows:Theorem 2(i) When n is odd, A(n) = n(n � 1)=2 + �, where � = 0 if n � 1 or 3 (mod 6), and � = 2 ifn � 5 (mod 6) ;(ii) When n is even, A(n) = n(n � 1)=2 + �n4� + �, where � = 1 if n � 8 (mod 12), and � = 0otherwise.Furthermore our solution uses the minimum number of subgraphs (wavelengths) possible, that4



is ln(n�1)6 m ; therefore for C = 3, the onjeture of [3℄ that the minimum number of ADMs an beahieved with the minimum number of wavelengths is true (in [1℄ it is shown that the onjetureis false for many values of C, the �rst one being C = 7).
2 NotationAs we mentioned in the introdution, we want to partition the edges of Kn into subgraphs withat most 3 edges and to minimize the total number A(n) of verties in suh a partition. Here arethe possible onneted subgraphs with at most 3 edges:

Name Class # verties # odd degree vertiesE 2 2P3 3 2K3 3 0K1;3 4 4P4 4 2For a given partition P of the edges of Kn, we denote by a1, a2, a3, b3, 3 the number ofsubgraphs of type respetively E, P3, K3, K1;3, P4. By ounting the number of edges of Kn wehave: a1 + 2a2 + 3a3 + 3b3 + 33 = n(n� 1)=2 (1)The sum of the number of verties of the subgraphs in the partition P is denoted A(P ). ThusA(P ) = 2a1 + 3a2 + 3a3 + 4b3 + 43 = n(n� 1)=2 + a1 + a2 + b3 + 3 (2)5



Finally, following the de�nition of A(n) given in the introdution, we haveA(n) = minfA(P ) : P is a partition of Kng.
3 Lower boundsIn this setion we prove that A(n) has at least the value given in Theorem 2. Let P be anypartition of the edges of Kn.Case (i): if n � 1; 3 (mod 6), equation (2) gives immediately A(P ) � n(n � 1)=2. Supposenow that n � 5 (mod 6). Thus n(n � 1)=2 � 1 (mod 3). Then equation (1) modulo 3 givesa1 + 2a2 6= 0.Suppose that a1 + a2 + b3 + 3 = 1. Note that the subgraphs E, P3, K1;3 and P4 haveverties with odd degree. As every vertex in Kn has even degree, we have a ontradition, thusa1 + a2 + b3 + 3 � 2.Then by equation (2), A(P ) � n(n� 1)=2 + 2.Case (ii) : As n is even, the degree of eah vertex of Kn is odd, so every vertex must be anodd degree vertex of at least one subgraph; but the number of odd degree verties of E, P3, K3,K1;3, and P4 are 2,2,0,4,2 respetively; thus we have the following additional inequality:2a1 + 2a2 + 4b3 + 23 � n (3)From (3) we dedue that4(a1 + a2 + b3 + 3) � n+ 2(a1 + a2 + 3)6



So a1 + a2 + b3 + 3 � ln4mwhih gives the result for the ases n 6� 8 (mod 12).Now if n � 8 (mod 12), then n(n � 1)=2 � 1 (mod 3) and thus equation (1) modulo 3gives the additional onstraint a1 + 2a2 � 1. Thus we have 4(a1 + a2 + b3 + 3) � n + 1 andA(P ) � n(n� 1)=2 + n=4 + 1 as required.
4 Upper boundsLet p1; p2; : : : ; pl be some nonnegative integers; the omplete multipartite graph with lass sizesp1; p2; : : : ; pl, denoted Kp1;p2;:::;pl is de�ned to be the graph with vertex set P1[P2[ : : :[Pl wherejPij = pi, and two verties x 2 Pi and y 2 Pj are adjaent if and only if i 6= j. For t > 0, wedenote Kg�t (resp. Kg�t;u) by Kg;g;:::;g (resp. Kg;g;:::;g;u) where g ours t times.Using terminology of design theory, the existene of a partition of the edges of Kp1;p2;:::;pl intoKk is equivalent to the existene of a k-GDD (group divisible design) with group sizes p1; p2; : : : ; pl,also known as k-GDD of type ga11 ga22 : : : gass , where there are ai values of the pj's equal to gi.The following theorem of Colbourn [4℄ (see also [14, Theorem 1.24℄) will be used repeatedly:Theorem 3 Let g; t and u some nonnegative integers. Kg�t;u an be deomposed into K3's ifand only if the following onditions are all satis�ed:(i) if g > 0 then t � 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;(ii) u � g(t� 1) or gt = 0;(iii) g(t� 1) + u � 0 (mod 2) or gt = 0; 7



(iv) gt � 0 (mod 2) or u = 0;(v) g2t(t� 1)=2 + gtu � 0 (mod 3).We now prove the upper bounds in Theorem 2. Atually we give a stronger result, by exhibitingthe lasses of the deomposition.Theorem 4 Let n � 2. There exists a partition of Kn using1. if n � 1; 3 (mod 6), n(n�1)6 K3;2. if n � 5 (mod 6), n(n�1)�86 K3 and 2 P3;3. if n � 0; 4 (mod 12), n(n�1)6 � n4 K3 and n4 K1;3;4. if n � 2; 8 (mod 12), n(n�1)�26 � dn�24 e K3, dn�24 e K1;3 and 1 E;5. if n � 6; 10 (mod 12), n(n�1)6 � n+24 K3, n�24 K1;3 and 1 P4.Proof.First ase : n odd.If n � 1; 3 (mod 6), the result is exatly Theorem 1. Suppose now that n � 5 (mod 6).First we deal with the ases n = 5 and n = 11 :� K5 an be deomposed into 2 K3's (1; 2; 3), (1; 4; 5), and 2 P3's with edges 4-2,2-5 and4-3,3-5;� K11 is the union of a K5 and a K1�6;5. This K5 an be deomposed as seen above into 2K3's and 2 P3's. By Theorem 3 (with g = 1, t = 6 and u = 5), K1�6;5 an be deomposedinto 15 K3's. So K11 an be deomposed into 17 K3's and 2 P3's.8



Now for n � 17 and n = 6p + 5 (p � 2), K6p+5 is the union of 2p K3's, 1 K5 and a K3�2p;5.But K5 an be deomposed into 2 K3's and 2 P3's, and K3�2p;5 an be deomposed into K3's byTheorem 3 with g = 3, t = 2p and u = 5.Seond ase : n even.First, we deal with the following small ases:� ase n = 2 : trivial;� ase n = 4 : K4 an be deomposed into the K3 (1; 2; 3) and the K1;3 with edges 4-1,4-2,4-3;� ase n = 6 : as stated in the introdution, K6 an be deomposed into the P4 with edges2-6,6-4,4-3, the K1;3 with edges 1-4,1-5,1-6, and the K3's (1; 2; 3), (2; 4; 5), (3; 5; 6);� ase n = 8 : take a deomposition of K7 in K3's, and onnet an additional vertex 1 to allverties of the K7. The 7 edges inident to 1 an be deomposed in 2 K1;3's and one E;� ase n = 10 : K10 an be deomposed into the K1;3 with edges 9-2,9-4,9-6, the K1;3 withedges 10-1,10-3,10-5, the P4 with edges 8-9,9-10,10-7, and the following K3's:(1; 5; 6) (1; 2; 8) (1; 3; 9)(2; 6; 7) (2; 3; 5) (2; 4; 10)(3; 7; 8) (3; 4; 6) (5; 7; 9)(4; 8; 5) (4; 1; 7) (6; 8; 10)Now let n = 4t+u with t � 0 (mod 3), t � 3 and u = 0; 2; 4; 6; 8 or 10. Kn an be deomposedinto t K4's, a Ku and a K4�t;u. By Theorem 3 with g = 4, K4�t;u an be deomposed into K3's,9



exept when t = 3 and u = 10, i.e. n = 22, for whih the ondition (ii) is not satis�ed. Now forn 6= 22, eah K4 an be deomposed into a K3 and a K1;3, and Ku an be deomposed as shownabove. Hene we get a partition of Kn into the required number of K3's, K1;3's, E and P4.Finally for n = 22, K22 an be deomposed into 4 K4's, a K6 and a K4�4;6. Eah K4 an bedeomposed into a K3 and a K1;3. The K6 an be deomposed as seen above into a P4, a K1;3,and 3 K3's. By Theorem 3 with g = t = 4 and u = 6, K4�4;6 an be deomposed into K3's. Thuswe get a partition of K22 into a P4, 5 K1;3's and some K3's, as required.Note that, as mentioned in the introdution, our solution uses the minimum number of sub-graphs possible, that is ln(n�1)6 m, showing that for C = 3, the onjeture of [3℄ is true. �
5 ConlusionIn this artile, we have determined the minimum number of SONET add-drop multiplexers(ADMs) required with a grooming ratio 3 in unidiretional WDM rings with all-to-all uniformunitary tra�. We have also shown that this minimum number is attained with a minimumnumber of wavelengths. The same ideas an be used to determine the minimum number A(C; n)for larger values of C. For C = 4 an optimal solution an be obtained easily as we an partitionthe edges of Kn into C4's and K3+E. Therefore we have A(4; n) = n(n�1)=2 with the minimumnumber of wavelengths, a result obtained also in [12℄. We have also obtained partial results forthe ases C = 5 and C = 6. In the latter ase we an use results on 4-GDD but they are notsu�ient for all the ongruene lasses.Aknowledgment. We thank David Coudert and Joseph Yu for their helpful omments.10
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