A Distributed Scheduling Algorithm for Wireless Networks
with Constant Overhead and Arbitrary Binary Interference.

Jean-Claude Bermond*, Dorian Mazauric!?, Vishal Misra®, Philippe Nain?

1: Mascotte, INRIA, I3S(CNRS/Univ of Nice-Sophia), Sophia Antipolis, France
2 : Maestro, INRIA, Sophia Antipolis, France
3 : Columbia University, New York, USA

Categories and Subject Descriptors: F.2.2 Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Performance, Theory.

Keywords: wireless network, transmission scheduling, interfer-
ence, distributed algorithm, stability.

This work investigates distributed transmission scheduling in wire-
less networks. Due to interference constraints, “neighboring links”
cannot be simultaneously activated, otherwise transmissions will
fail. Hereafter, we consider any binary model of interference. We
follow the model described by Bui, Sanghavi, and Srikant in [3].
We assume. There are two phases during each slot: first the control
phase which determines what links will be activated next, followed
by a transmission phase during which data is transmitted. We as-
sume random arrivals of data (packets) on each link during each
slot, so that a buffer (queue) is associated to each link. It takes ex-
actly one time slot to transmit a packet on a link. Since nodes do not
have a global knowledge of the network, our aim (like in [3]) is to
design for the control phase a distributed algorithm which identifies
a set of non-interfering links.

For example, in the primary node interference model (where two
links interfere only if they are incident), a set of non interfering
edges is called a matching. In order to ensure the largest stability
region of the system we want to choose links so that the sum of
their weight (queue-length) is as large as possible so as to realize
a maximum matching. The idea behind the maximum matching is
to decrease the largest queues. Centralized algorithms have been
proposed to solve this problem both for random arrivals in [7] and
deterministic arrivals in [6]. To be efficient the control phase should
be as short as possible; this is done by exchanging control messages
during a constant number of mini-slots (constant overhead).

In this work we design the first fully distributed local algorithm
with the following properties: it works for any arbitrary binary in-
terference model; it has a constant overhead (independent of the
size of the network and of the queue-lengths) and it requires no
knowledge. Indeed the algorithm in [5] does not have a constant
overhead, whereas the one described in [3] is only valid for the pri-
mary node interference model. Furthermore, both algorithm need
to know the queue lengths of the “neighboring links”, which are dif-
ficult to obtain in a wireless network with interference. We prove
that our algorithm gives a maximal set of active links (in each inter-
ference set, there is at least one active edge). We also give sufficient
conditions for stability under Markovian assumptions. Finally the
performance of our algorithm (throughput, stability) is investigated
and compared via simulations to that of previous schemes.

Copyright is held by the author/owner(s).
SIGMETRICS’10, June 14-18, 2010, New York, New York, USA.
ACM 978-1-4503-0038-4/10/06.

Let us sketch the main ideas of our algorithm Algorithm Log.
Details, proofs and examples can be found in the full version [1].

We use a binary symmetric interference model and define the
interference set of a link e € F, denoted by £(e), as the set of
edges interfering with e. We denote by c(e), the capacity of the
edge e, that is the number of packets that e can serve during one
time slot if the link e is active. Let g:(e) (also called the weight
of link e) be the number of packets in the queue of link e € FE at
the beginning of step ¢ > 1. Algorithm Log concerns only the
control phase which determines at each step the set of active links
(on which data will be sent during the data phase). The control
phase is divided into mini-slots.

A first idea consists in associating virtual weights (see below) to
current queue-lengths. These virtual weights will be used to deter-
mine in each mini-slot which edges will send a control message.
Only edges with weight greater than their capacity (g:(e) > c(e))
will participate in Algorithm Log. We then split the values of
g+(e)/c(e) into a small number K of disjoint intervals (classes)
lo, ..., Ix—1 with the constraint that the largest class Ix_1 con-
tains all the values greater than some value L: Ix_1 =]L,00[. In
the example (Figure 1), we choose ¢(e) = 1, L = 100 and K = 5;
the five classes associated to the values of ¢;(e) are: Iy = [1, 10];
I, =]10, 30]; I, =]30, 60]; I3 =]60,100] and I, =]100, oo.

When K is small, many interfering edges might belong to the
same interval. To differentiate them, we also give to each edge
a color (integer), y(e), in such a way that two interfering edges
have different colors. Let C' be the number of colors. In order
to get different rankings in consecutive slots, we will permute the
colors. To this end, we associate in the slot ¢ the value v:(e) =
(v(e) +t — 2)moac + 1. Figure 1(b) shows a coloring for a cycle
of length 9, with C' = 3, when the primary node interference model
is used (i.e. two edges interfere if they are incident). The coloring
is given at some step ¢; the first edge will get color 3 at step ¢ + 1,
then color 1 at step ¢ + 2, color 2 again at step ¢ + 3 and so on.

Finally, we assign to an edge of class 4 a virtual weight g;(e) =
C * 1 + ~y(e). The virtual weights satisfy the two properties: for
any edge e, 0 < qi(e) < CK V¥Vt > 1,andif €' € e(e) (and
e € g(€')) then, g;(e) # gi(€¢'). Let T = [log2(CK) + 1]. We
associate to q;(e) a control vector vi.e = (vi,e(1),...,v:.e(T))
where v (i), 1 < ¢ < T, corresponds to the ith bit of ¢ (e). Table
1 gives these values for the example in Figure 1(c).

Another main idea of Algorithm Log is to use interference
as information. More precisely at each mini-slot of Algorithm
Log, an edge can be active, inactive, or still undetermined. The
control phase is itself divided into « subphases. The first subphase
consists of 7" mini-slots. During a mini-sloti, 1 <7 < T,e € E
sends a control message if and only if e is still undetermined and
vt,e(1) = 1. We have the three rules:

(d) mini-slot 1 and vy (1)

el o0 ol 0l et 0l gl ol o.. eu

(e) mini-slot 2 and vy ¢ (2)

U e 0 - 9 - 0_ * L. ol “““““ ol “““““ .- 0 1 0 u

(f) mini-slot 3 and v¢ ¢ (3)

Uo——l—0——1—0-—1—0-9—01—0-9—0-1—0-—0—0%u

(g) mini-slot 4 and vy . (4)

Ug - - @ - - - - - u

(h) after « suphases

Figure 1: Algorithm Log for a cycle: C=3, K=5, L=100

(a) if e sends a control message and e does not receive one from an
edge in £(e), then e becomes active;

(b) if e receives a control message (coming from an edge in £(¢e))
and does not send a control message, then e becomes inactive;

(c¢) otherwise e remains undetermined.

At the end of subphase 1 (after 7" mini-slots), we get a valid set
of active links, meeting the interference constraints. Figure 1(d-g)
shows the application of Algorithm Log on the example. One
can prove furthermore that there is no undetermined edge (see [1]).
After subphase 1, it may happen that the set of active links is not
maximal (edges can be added to this set without removing current
edges in this one). This is the case in the example in Figure 1(g),
where the two active edges do not form a maximal matching. To
deal with this situation, we apply o — 1 times the scheme described
for subphase 1, but only with edges which can be added, that is
inactive edges without active links in their interference sets (Fig-
ure 1(h)). We prove that choosing @« = T, Algorithm Log
always computes a maximal set of active edges.

THEOREM 1. If we choose « = T = [log2(CK) + 1] in
Algorithm Log, then for any edge e, with positive virtual weight,
there exists one edge €' € (e) U {e} such that €’ is active at the
end of Algorithm Log.

From this theorem, we can deduce that the number of mini-slots
of the control phase of Algorithm LogisTiog = [log2(CK)+
112 4 [loge(CK) + 1] — 1. Therefore, we have interest to mini-
mize K and C. The determination of C is related to coloring prob-
lems; in particular, in the case of the primary node interference
model, minimizing C' corresponds to computing the Edge Chro-
matic Number (see [4]). If we fix in advance the number 77,4 of
mini-slots allowed, we can compute the maximum possible value
of K. We can also play with the value of L.

In [1], we analyze the stability of Algorithm Log. Under
the assumptions that the arrival processes are independent renewal
processes, we establish a sufficient stability condition by using the
approach in [2, Theorem 1]. To state this condition, let A¢(e) be the
number of arrivals on link e in slot ¢. Define H (e) as the maximum
number of links that can be scheduled if link e is not scheduled and

[a(e) [class [ve(e) [gile) [v(1) [v(2) [v(3) | v(4) |
1,10 To 1 1 0 0 0 1
1,10 To 2 2 0 0 I 0
1,10 To 3 3 0 0 1 1
10,30] | I 1 1 0 I 0 0
10,30] | I 2 5 0 1 0 1
10,30] | I 3 6 0 1 1 0
30,60] | I I 7 0 I I I
30,60] | I 2 8 I 0 0 0
30,60] | I 3 9 1 0 0 1
60,100] | Is I 10 I 0 I 0
60,100] | Is 2 11 I 0 I I
60,100] | Is 3 12 1 1 0 0
100, 00[| I I 3 I I 0 I
100,00] | I 2 14 I 1 1 0
100,00] | I 3 5 I 1 1 1

Table 1: (q;(e),v = wvy,.) for every possible pair (g:(e),v:(e))
for Algorithm Log: C=3, K=5, L=100

let H := max(l,maxecr H(e)). We show in [1] that the load
vector b = (E[A¢(e)],e € E) stabilizes Algorithm Log if
there exists € > 0 such the vector CH/(C' + H — 1))(b + €c) be-
longs to the capacity region introduced by Tassiulas et al [8], where
c:= (c(E),e € E) is the link capacity vector. We conjecture that
if forany edge e, 3 c_(oyurey BlAe(€))] < mingec(eyuiey cle’)
then Algorithm Log is stable.

In [1] we report many simulation results which confirm this con-
jecture and show a very good behavior of the algorithm and better
than that of [3]. In particular Algorithm Log gives a set of ac-
tive edges of large weight and the size of the queues remains small.

Acknowledgment: this work has been partially supported by
région PACA, ANR AGAPE and DIMAGREEN, and European
project IST FET AEOLUS.

1. REFERENCES

[1] J.-C. Bermond, D. Mazauric, V. Misra, and P. Nain.
Distributed call scheduling in wireless networks. Technical
Report RR-6763, INRIA, Dec. 2008.

[2] V. Bhandari and N. H. Vaidya. A result on hybrid scheduling
in wireless networks. Technical report, University of Illinois,
Dept. Electrical and Computer Eng., March 2009.

[3] L. X. Bui, S. Sanghavi, and R. Srikant. Distributed link

scheduling with constant overhead. IEEE/ACM Transactions

on Networking, 17(5):1467-1480, 2009.

S. Fiorini and R. J. Wilson. Edge-colourings of graphs.

Pitman, 1977.

[5]1 A. Gupta, X. Lin, and R. Srikant. Low-complexity distributed
scheduling algorithms for wireless networks. In INFOCOM,
pages 1631-1639, 2007.

[6] R. Klasing, N. Morales, and S. Pérennes. On the complexity
of bandwidth allocation in radio networks. Theoretical
Computer Science, 406(3):225 — 239, 2008.

[7] L. Tassiulas. Scheduling and performance limits of networks
with constantly changing topology. I[EEE Transactions on
Information Theory, 43(3):1067-1073, 1997.

[8] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and scheduling policies for
maximum throughput in multihop radio networks. I[EEE
Conference on Decision and Control, pages 2130-2132 vol .4,
1990.

[4

—

