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1 Introduction and NotationGraphs are widely used in the design and analysis of computer networks. A vertex in the graphdenotes a node or processor in the corresponding network, and an edge denotes a communicationlink between two nodes. If a network is unidirectional, i.e., the communication links in the networkare unidirectional, a digraph (i.e., directed graph) is used. Whereas for a bidirectional network, anundirected graph (or simply, graph) is used.Let G = (V;E) be a (strongly) connected graph (or digraph), where V denotes the set ofvertices, and E the set of edges (or arcs for digraphs). We will denote by N = jV j the number ofvertices in G.The vertex X is a neighbor of the vertex Y if (X; Y ) 2 E or (Y;X) 2 E. The degree of a vertexis the number of its neighbors. The degree of a graph is the maximum degree of the vertices. Incase of a digraph, we can distinguish the predecessors and successors of vertex X , which correspondto the neighbors Y which satisfy (Y;X) 2 E and (X; Y ) 2 E, respectively. The number of arcsentering (resp. going out from) a vertex X is called the in-degree (resp. out-degree) of X . Thein-degree (resp. out-degree) of a graph is the maximum in-degree (resp. out-degree) of the vertices.A path (resp. a dipath) between two vertices X and Y (resp. from X to Y ) in a graph (resp. adigraph) G is a sequence of vertices fX = X1; X2; � � � ; Xk = Y g such that two consecutive verticesin the sequence are joined by an edge (resp. an arc). The length of a path is the number of edgeson this path. The length of a shortest path (resp. dipath) between X and Y (from X to Y ) iscalled the distance and is denoted by d(X; Y ). Note that in the case of digraphs it is not a classicaldistance as d(X; Y ) might be di�erent from d(Y;X). The diameter of a graph is the maximumdistance in the graph.The de Bruijn digraph (resp. graph), denoted by B(d;D) (resp. UB(d;D)), has N = dDvertices with diameter D and in-degree or out-degree d (resp. degree 2d). The vertices correspondto the words of length D over an alphabet of d symbols. The arcs (or edges) correspond to the shiftoperations: Given a wordX = x1 � � �xD on an alphabet A of d letters, where xi 2 A, i = 1; 2; � � � ; D,and given � 2 A, the operation:� x1 � � �xD �! x2 � � �xD� is called a left shift;� x1 � � �xD �! �x1 � � �xD�1 is called a right shift.In the de Bruijn digraph B(d;D), the successors are obtained by left-shift operations, whereas inthe de Bruijn graph UB(d;D), the neighbors are obtained by either left or right shift operations.An example of a de Bruijn digraph is given in Figure 1. The corresponding undirected de Bruijngraph is obtained by transforming arcs to edges (i.e., removing the directions of the arcs) and1
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110Figure 1: Example of a de Bruijn digraph B(2; 3).removing the redundant edges (i.e., those with multiple occurrences in the graph, or those linkingthe same vertices). The multiprocessor system which can be modeled by a de Bruijn graph is calledde Bruijn network.The reader can see that in B(d;D), each vertex has in-degree and out-degree d, and there areNd arcs. Whereas in UB(d;D), there exist N � d2 vertices of degree 2d, d2 � d vertices of degree2d� 1 and d vertices of degree 2d� 2.These networks have been discovered by many authors and are named after de Bruijn [7]. Theyare sometimes also called Good graphs [9].They present many attractive features. In particular they are among the best known networksfor a given degree and diameter (see the survey [2] for more details on this problem known as the(d;D) or (�; D) graph problem). They have a good vulnerability, being able to tolerate up to d�1faults in the directed case and 2d � 2 in the undirected case, while the diameter can still be leftsmall (see [3]). They are adequate for various applications as one can embed in them linear arrays,rings, and complete binary trees. They can also emulate without loss of time shu�e-exchange orhypercubes for the class of ascend-descend algorithms.They have also many others interesting properties like easy greedy routing. This greedy al-gorithm is a simple D-step routing which consists in uni-directional shifts or \bit-erosion" of thedestination address. Namely, in order to go from X = x1 � � �xD to Y = y1 � � �yD, we apply D leftshifts (and also right shifts in the undirected case) introducing successively the letters y1; y2; � � � ; yD,corresponding to the dipathx1 � � �xD ! x2 � � �xDy1 ! x3 � � �xDy1y2 ! � � � ! y1 � � �yD :We refer the reader to one of the two recent surveys concerning de Bruijn networks written byBermond and Peyrat [4] and Samatham and Pradhan [13] or to the recent book of Leighton [10].2



In this paper, we analyze the mean eccentricity of these graphs. The eccentricity of a vertex Xis de�ned [6] as the distance to the farthest node from this vertex: e(X) = maxfd(X; Y ) : Y 2 V g.We de�ne the mean eccentricity of a vertex X , denoted �e(X), as the average distance from X toall the others vertices: �e(X) = 1N � 1 XY 2V�fXgd(X; Y ): (1:1)The computation of this parameter appears to be nontrivial in the case of the de Bruijn networks.In this paper we consider the upper and lower bounds of �e(X).In Section 2, we analyze the directed de Bruijn networks. We provide the tight bounds as wellas the extremal vertices which reach these bounds. These bounds are expressed as the diameterminus some constants.In Section 3, we analyze the undirected networks. The computation turns out to be more di�-cult. We provide lower and upper bounds which di�er from the diameter by some small constants.We conjecture that the vertices of the form a � � �a have the largest mean eccentricity. Numericalcomputations indicate that the conjecture holds for binary de Bruijn networks with diameters upto 18. We will show that the asymptotic di�erence, when the diameter goes to in�nity, between themean eccentricities of an arbitrary vertex and that of a � � �a is smaller than 0.22. We also providea simple recursive scheme for the computation of the asymptotic mean eccentricity of the verticesa � � �a.A by-product of our analysis is that in both directed and undirected de Bruijn networks, mostof the vertices are at distance near from the diameter and that all of the mean eccentricities tendto the diameter when the degree goes to in�nity.Our results also imply that optimal routing algorithms are in most of the cases not advantageousdue to their overheads. Instead, one can use the simple D-step routing algorithm as described above.The following formulae will be extensively used in this paper:pXk=0 dk = dp+1 � 1d� 1 : (1.2)pXk=1 kdk�1 = (p+ 1)dpd� 1 � dp+1 � 1(d� 1)2 = pdp+1 � (p+ 1)dp + 1(d� 1)2 : (1.3)2 Directed caseIn the case of a digraph B(d;D), it is well known (see e.g. Fiol et al. [8]) that there is a uniqueshortest dipath from a given vertex X = x1 � � �xD to a vertex Y = y1 � � �yD. To �nd the distanced(X; Y ) and the shortest dipath one has to �nd the smallest i such that xi+1 � � �xD = y1 � � �yD�i.3



The distance is then i, and the shortest path is obtained by doing the left shifts introducingsuccessively yD+1�i; � � � ; yD. This fact allows one to compute easily d(X; Y ) and so �e(X) for anyX . But unfortunately that does not give a closed formula.In this section, we provide upper and lower bounds of the mean eccentricities of B(d;D), andshow that these bounds are reached.Our analysis will need some notions on trees (or more precisely, the outtrees). The level of avertex in a tree is the distance from the root to the vertex, where by convention, the root is atlevel 0. The weight of a tree is the sum of the levels of all vertices. We call a shortest path tree ofa (di)graph G rooted at vertex X a spanning tree of G with root X such that the (di)path in thetree from X to any vertex is a shortest (di)path in G. It can be obtained, e.g., using the \breadth�rst" search algorithm. Observe that for any given G and X , this tree is not unique. However, thevertices at level l of a shortest path tree of G rooted at vertex X are exactly all the vertices thatare at distance l from X in G. Therefore, the weights of the shortest path trees rooted at vertex Xare identical. The mean eccentricity of a vertex is in fact the weight of a shortest path tree rootedat this vertex divided by N � 1.Let lk(X) be the width, i.e., the number of vertices, at level k in the shortest path trees rootedat vertex X . Then, �e(X) = 1N � 1 DXk=1 k � lk(X): (2:1)We �rst look at the minimal mean eccentricity. We will need the following on the comparisonresult.Lemma 2.1 Let n be a positive integer, and m1; � � � ; mn positive real numbers such that1 � n � D � 1; nXk=1mk � N � 1:If for all 1 � k � n, lk(X) � mk, then�e(X) � n + 1� 1N � 1  nXk=1(n+ 1� k)mk! : (2:2)Proof : Let mn+1 = N � 1�Pnk=1mk , and mi = 0 for all n+ 1 < i � D. It then follows thatN � 1 = DXk=1 lk(X) = DXk=1mk;4



and that for all 2 � i � D,DXk=i lk(X) = DXk=1 lk(X)� i�1Xk=1 lk(X) � DXk=1mk � i�1Xk=1mk = DXk=imk :Thus, according to (2.1),�e(X) = 1N � 1 DXk=1 k � lk(X)= 1N � 1 DXi=1 DXk=i lk(X)� 1N � 1 DXi=1 DXk=imk= 1N � 1 DXk=1 kmk= 1N � 1  nXk=1 kmk + (n + 1)(N � 1� nXk=1mk)!= n + 1� 1N � 1  nXk=1(n+ 1� k)mk! :Proposition 2.1 For any d � 2 and D � 2, and for all X = x1 � � �xD 2 B(d;D),�e(X) � D � d(d� 1)2 + dd� 1 � DN � 1 : (2:3)Moreover, the equality holds if and only if xi 6= xD for all i = 1; � � � ; D� 1.Proof : The minimal mean eccentricity corresponds to the shortest path tree with the minimalweight, which, owing to Lemma 2.1, requires that as many as possible vertices should be put in thesmallest levels. Since B(d;D) has out-degree d, a vertex has at most d vertices at distance 1, andso d2 vertices at distance 2, � � �, and dk vertices at distance k. Therefore, in the shortest path trees,there are at most dk vertices at level k, k = 1; 2; � � � ; D� 1. As 1 + d+ d2 + � � �+ dD�1 = dD�1d�1 wehave still at least x = dD � dD�1d�1 vertices which are at level D. Figure 2 illustrates such a tree forthe case d = 2. 5
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2   vertices at D−1
D−1Figure 2: Shortest path tree with the minimal weightTherefore, we can apply Lemma 2.1 with n = D � 1 and mk = dk for 1 � k � D � 1.�e(X) � D � 1N � 1  D�1Xk=1 (D� k)dk!= D � 1N � 1  DdD � dd� 1 � DdDd� 1 + dD+1 � d(d� 1)2 != D � d(d� 1)2 + dd� 1 � DN � 1 :Assume now the vertex X = x1 � � �xD is such that xi 6= xD for all i = 1; � � � ; D� 1. We want toshow the equality in (2.3). Indeed, for all 1 � k � D � 1, the vertices at distance k from x1 � � �xDare of the form: xk+1 � � �xDy1 � � �yk , where y1 � � �yk are arbitrary letters of the alphabet A. For all1 � j < k, the vertices at distance j from x1 � � �xD are of the form: xj+1 � � �xD�k+j � � �xDz1 � � �zj ,where z1 � � �zj are arbitrary letters of the alphabet A. Since xD�k+j 6= xD, none of the verticesxk+1 � � �xDy1 � � �yk are at distance j < k. Thus, the width of the shortest path tree of X at levelk, 1 � k � D � 1, is dk, so that the equality in (2.3) holds.Assume now that for some vertex X = x1 � � �xD, the equality in (2.3) holds. Then, necessarily,the width of its shortest path tree at level D�1 is dD�1, so that all the vertices at level D�1 whichhave the form xDy1 � � �yD�1, should not already be at levels k = 0; � � � ; D � 2, where y1 � � �yD�1are arbitrary letters of the alphabet A. Thus, for all k = 0; � � � ; D� 2, we should have xk+1 6= xD,which completes the proof. 6
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D−1Figure 3: Shortest path tree with the maximal weightWe now look at the upper bound of the mean eccentricities. We will need the following propertyof the shortest path tree with the maximal weight. An example is given for the case d = 2.Lemma 2.2 An outtree of out-degree d with dD vertices and D levels is such that:DXk=i lk � DXk=i dk�1(d� 1) 8i; 1 � i � Dwhere lk is the number of vertices at distance k from the root.Proof : Suppose the lemma is not true and let i0 be the largest i � 1 such that PDk=i lk >PDk=i dk�1(d � 1). Then, li0 > di0�1(d � 1), which in turn, as the out-degree is d, implies li0�1 >di0�2(d� 1), which further implies that li0�2 > di0�3(d� 1), and so on. Therefore,li � di�1(d� 1) + 1; 1 � i � i0 � 1;which, together with the fact that PDk=i0 lk � 1 +PDk=i0 dk�1(d� 1), imply thatDXk=1 lk � i0 + DXk=1 dk�1(d� 1) = i0 + dD � 1 � dD:This contradicts the fact that the tree has dD vertices. (Note that the root which is at level 0 isnot included in the above summation.) 7



Proposition 2.2 For any d � 2 and D � 2, and for all X 2 B(d;D),�e(X) � D � 1d� 1 + DN � 1 : (2:4)Moreover, the inequality becomes equality if and only if X = a � � �a, where a 2 A.Proof : Note �rst that �e(X) = 1N � 1 DXk=1 k � lk(X) = 1N � 1 DXi=1 DXk=i lk(X):It follows from Lemma 2.2 thatDXi=1 DXk=i lk(X) � DXi=1 DXk=i dk�1(d� 1)= (d� 1) DXk=1 kdk�1= (D + 1)dD � dD+1 � 1d� 1= DdD � dD � 1d� 1= D(N � 1)� N � 1d� 1 +D:Therefore, �e(X) � D � 1d� 1 + DN � 1 :We now show that �e(X) = D � 1d� 1 + DN � 1if and only if X = a � � �a. Firstly, the vertices at distance k from a � � �a are of the form: a1 � � �aD,with a1 = � � � = aD�k = a, aD�k+1 = �a and aD�k+1; � � � ; aD can be any letter of the alphabet A,where �a 6= a. None of these vertices are at distance j < k. Their number is dk�1(d � 1), so thatall the inequalities in the above derivation of the proof become equalities. Secondly, by lemma 2.2,a necessary condition for �e(X) to reach the bound is that l1 = d� 1. Only the the vertices a � � �ahave this property.The following properties are immediate consequences:8



Corollary 2.1 For any d � 2 and D � 2, and for all X 2 B(d;D),D � d(d� 1)2 + dd� 1 � DN � 1 � �e(X) � D � 1d� 1 + DN � 1 : (2:5)In particular, when d = 2, D � 2 + 2DN � 1 � �e(X) � D � 1 + DN � 1 : (2:6)Corollary 2.2 limd!1 �e(X) = D; D � 2:1d� 1 � lim infD!1 (D � �e(X)) � lim supD!1 (D � �e(X)) � d(d� 1)2 ; d � 2:Our results indicate that the upper and the lower bounds of the mean eccentricities are bothclose to the diameter. This is especially true when the degree of the de Bruijn network is large. In[11], a linear (in time and in space with respect to the diameter) algorithm was proposed for theoptimal routing of directed de Bruijn networks. However, even if we use D shifts to route insteadof the optimal routing, the global communication delay of the network should not be a�ected toomuch. The routing scheme in D steps corresponds to a simple \bit-erosion" of the destinationaddress, a very simple routing function that could be implemented with only a very few VLSIcomponents on chip.3 Undirected caseWe now consider the mean eccentricities of UB(d;D). It turns out that the computation of boundsis much more di�cult. This is partially due to the facts that the sortest paths are in general notunique and that the determination of the distances between the vertices is more complicate.In what follows, we will �rst study some properties of the shortest paths in undirected de Bruijnnetworks. We then derive the lower and upper bounds respectively.3.1 Characterization of the Shortest PathsSince the neighborhood in UB(d;D) can be de�ned by the left and right shift operations, a pathcan be described by a sequence of corresponding shifts. The length of a path connecting X to Y isequal to the cardinality of this sequence of shifts. Formally, let L be the operation consisting of a9



sequence of l left shifts, introducing a su�x B = b1; � � � ; bl with jLj = l, and let R be the operationconsisting in a sequence of r right shifts, introducing a pre�x A = ar � � �a1 with jRj = r. Then,applying L to a vertex X = x1 � � �xD yields vertex xl+1 � � �xDb1 � � �bl, which corresponds to thepath x1 � � �xD ! x2 � � �xDb1 ! x3 � � �xDb1b2 ! � � � ! xl+1 � � �xDb1 � � �bl:Applying R to the vertex X = x1 � � �xD yields vertex ar � � �a1x1 � � �xD�r, which corresponds to thepath x1 � � �xD ! a1x1 � � �xD�1 ! a2a1x1 � � �xD�2 ! � � � ! ar � � �a1x1 � � �xD�r :In general, any path of the de Bruijn graph can be denoted by L1R1L2R2 � � �LnRn with jLij = liand jRij = ri, meaning that we successively apply L1, then R1, then L2 and so on. The length ofthe path is equal to l1 + r1 + l2 + r2 + � � � ln + rn. Note that one can have l1 = 0 or rn = 0.We will use the following results established by Bond [5, p92] and Peyrat [12, annexe 3.2]. Forsake of completeness, we give a slightly simpler proof. We will also give a more precise propertypertaining to the shortest paths from vertices a � � �a (cf. Proposition 3.2 below).Lemma 3.1 If a path of the form LRL0 is a shortest path, where l > 0, r > 0, l0 > 0, thenl+ l0 � r. Similarly, if a path of the form RLR0 is a shortest path, where r > 0, l > 0, r0 > 0, thenr + r0 � l.Proof : We consider the shortest paths of the form LRL0. The case of RLR0 is analogous. We �rstprove that l < r and l0 < r.Given a path of the form LRL0 from X = x1 � � �xD to Y , suppose that l � r, then after theapplication of L to X we reach vertex xl+1 � � �xDb1 � � �bl. The application of R leads to the vertexar � � �a1xl+1 � � �xDb1 � � �bl�r. The �rst shift of L0 leads to the vertex ar�1 � � �a1xl+1 � � �xDb1 � � �bl�r�.But the vertex ar�1 � � �a1xl+1 � � �xDb1 � � �bl�r� could have been reached by a shorter path L1R1with l1 = l and r2 = r � 1 (L1 introduces the word b1 � � �bl�r� � � � and R1 the word ar�1 � � �a1).Therefore, LRL0 is not a shortest path.Thus, we have necessarily l < r, and, by symmetry (in considering the reverse path from Y toX , which is also a shortest path), l0 < r.Now, the vertices obtained by LRL0 are of the formar�l0 � � �a1xl+1 � � �xD�(r�l)b1 � � �bl0 ;where a1 � � �ar�l0 and b1 � � �bl0 are arbitrary letters. These vertices can also be obtained via thesequence of shifts R1L1R2 with r1 = r � l; l1 = r; r2 = r � l0:10



As LRL0 is a shortest path, wer1 + l1 + r2 = 3r � l � l0 � l + r + l0;which implies that l+ l0 � r.Proposition 3.1 A shortest path of UB(d;D) is made of the concatenation of at most 3 directedpaths, that is the shortest path is of the form LRL0 or RLR0, where the cardinalities of these shiftsequences can be zero.Proof : Suppose that a shortest path from X to Y is made of more than 3 directed paths, then apart of this shortest path is either L1R1L2R2 or R1L1R2L2, with l1 > 0, r1 > 0, l2 > 0 and r2 > 0.Let us assume that it is the �rst case. It then follows that L1R1L2R2 is a shortest path, so areL1R1L2 and R1L2R2. By Lemma 3.1, we get l2 < r1 and r1 < l2, which is a contradiction.Proposition 3.2 A shortest path between a vertex X and the vertex a � � �a is of the form LR (with0 � r < l) or RL (with 0 � l < r).Proof : Without loss of generality, suppose that the path from a � � �a to X is of the form LRL0.Suppose l � r, which is in particular the case if l0 > 0 by Lemma 3.1. The vertex reached afterthe operation LR is ar � � �a1a � � �a, which could have been reached directly by the path R which isshorter.3.2 Lower BoundWe now consider the lower bound of the mean eccentricity for general UB(d;D).Proposition 3.3 For any D � 2, and any X 2 UB(d;D),�e(X) � 8>>>>>>>>>><>>>>>>>>>>: D � 3� 98 > D � 4:2; d = 2;D � 1� 89 > D � 1:9; d = 3;D � 1� 2572 > D � 1:4; d = 4;D � 2(d+1)2d(d�1)2 � D � 0:9; d � 5: (3:1)11



Proof : Consider the shortest path tree rooted at X = x1 � � �xD. As in the case of directedde Bruijn networks, the more vertices are at the �rst levels of the shortest path tree, the smalleris the mean eccentricity (cf. Lemma 2.1). We will use the fact that the shortest paths are madeof the concatenation of at most 3 directed paths to obtain upper bounds of the widths of the �rstlevels in the shortest path tree.At level k, 1 � k � D � 1, we have 3 kinds of vertices:(a) those obtained with a directed path containing only left (resp. right) shifts. Their number isat most 2Ak, with Ak = dk; 1 � k � D � 1: (3:2)(b) those obtained with the concatenation of 2 directed paths corresponding to a sequence of LR(resp. RL) shifts with l > 0, r > 0 and l + r = k, where l = jLj and r = jRj.Consider the vertices obtained with a path LR. They are of the form( ar � � �a1xl+1 � � �xDb1 � � �bl�r; if l � r;ar � � �a1xl+1 � � �xD�(r�l) if l < r;where ar � � �a2 and b1 � � �bl�r are arbitrary letters, and a1 6= xl. Indeed, if a1 = xl, thesevertices would have been reached with a path L1R1 with l1 = l� 1 and r1 = r� 1, and so arealready at level k � 2. Thus, there are at most (d� 1)dm�1 vertices reached by such paths,where m = max(l; r).Hence, for �xed k, 2 � k � D � 1, the number of vertices reached by the concatenation of 2directed paths is at most 2Bk, withBk = k�1Xl=1(d� 1)dmax(l;k�l)�1= 2(d� 1)0B@ k�1Xl=d k2 e dl�11CA � (d� 1)dd k2 e�11fkmod2=0g= 2dk�1 � 2dd k2 e�1 � (d� 1)dd k2 e�11fkmod2=0g; (3.3)where dxe denotes the smallest integer greater than or equal to x, and 1f�g is the indicatorfunction. Therefore, Bk � 2dk�1; 2 � k � D � 1: (3:4)(c) those obtained with the concatenation of 3 directed paths corresponding to a sequence ofLRL0 (resp. RLR0) shifts. Consider the path LRL0. We have l > 0, r > 0, l0 > 0 and12



l+ r+ l0 = k, where l = jLj, r = jRj and l0 = jL0j. According to Lemma 3.1, l+ l0 � r so thatk � 4.Consider the vertices obtained with a path LRL0. They are of the formar�l0 � � �a2a1xl+1 � � �xD�(r�l)b1b2 � � �bl0 ;where ar�l0 � � �a2 and b2 � � �bl0 are arbitrary letters, and a1 6= xl, b1 6= xD�(r�l)+1 (otherwise,these vertices are already at a preceding level). Thus, there are at most (d� 1)2dr�2 verticesreached by such paths.Hence, for �xed k, 4 � k � D � 1, the number of vertices reached by the concatenation of 3directed paths is at most 2Ck, withCk = k�2Xr=d k2 e k�r�1Xl=1 (d� 1)2dr�2:A simple calculation yieldsCk = k�2Xr=d k2 e(k � r � 1)(d� 1)2dr�2= (k � 1)(d� 1)2 k�2Xr=d k2 edr�2 � (d� 1)2d k�2Xr=d k2 e rdr�1= (k � 1)(d� 1)(dk�3 � dd k2 e�2)� 1d �(k� 2)dk�1 � (k � 1)dk�2 � (dk2 e � 1)dd k2 e + dk2 edd k2 e�1�= dk�2 � bk2 cdd k2 e�1 + (bk2c � 1)dd k2 e�2; (3.5)where bxc denotes the integer part of x. Hence,Ck � dk�2: (3:6)For 1 � k � D � 1, let mk = 2(dk + 2dk�1 + dk�2) = 2(d+ 1)2dk�2 (3:7)It follows from relations (3.2,3.4,3.6) thatlk(X) � 2Ak + 2Bk1fk�2g + 2Ck1fk�4g < 2(dk + 2dk�1 + dk�2) = mk; 1 � k � D � 1; (3:8)13



where lk(X) is the width of level k in the shortest path trees rooted at vertex X .Let nd be the greatest integer n such that for all D � 2,nXk=1mk � N � 1: (3:9)Note that N = dD and nXk=1mk = 2(d+ 1)2d(d� 1) (dn � 1) :Hence, it is readily checked that nd � 8><>: D � 4; d = 2;D � 2; d = 3; 4;D � 1; d � 5: (3:10)In fact, we have equality in (3.10) as soon as D � 7 for d = 2, D � 4 for d = 4, and any D � 2 forother values of d.Applying now Lemma 2.1 implies that�e(X) � nd + 1� 1N � 1  ndXk=1(nd + 1� k)mk!= nd + 1� 2(d+ 1)2dD � 1  (nd + 1) dnd � 1d(d� 1) � (nd + 1)dndd(d� 1) + dnd+1 � 1d(d� 1)2 != nd + 1� 2(d+ 1)2dD � 1 � dnd+1 � (nd + 1)d+ ndd(d� 1)2Therefore �e(X) � nd + 1� 2(d+ 1)2d(d� 1)2 � dnd+1dD : (3:11)It is now a simple calculation from (3.10) and (3.11) to obtain relation (3.1).Observe that for small values of d and D, closer lower bounds can be obtained using the exactvalues of Ak , Bk and Ck (see (3.2), (3.3), (3.5)) inmk = 2Ak + 2Bk1fk�2g + 2Ck1fk�4g:Note also that for X = a � � �a, the lower bounds of Proposition 3.3 can be improved. Indeed,in that case, it follows from Proposition 3.2 that there exist only two kinds of vertices: type (a)14



with Ak = dk and type (b) with Bk � dk�1 (as l > r in the paths LR). Hence, we can do thecomputation with mk = 2(d+ 1)dk�1. This gives�e(a � � �a) � n0d + 1� 2(d+ 1)(d� 1)2 � dn0d+1dD : (3:12)where n0d � 8><>: D � 3; d = 2;D � 2; d = 3;D � 1; d � 4: (3:13)As a simple corollary of Proposition 3.3, we obtain the asymptotic mean eccentricity when dgoes to in�nity.Corollary 3.1 For any D � 2, and any X 2 UB(d;D),limd!1 �e(X) = D:The above property shows that all the mean eccentricities are close to the diameter when thedegree of the de Bruijn network is large. Therefore, in this case, we can simply use D shifts to routeinstead of the sophisticated optimal routing of the shortest path [11] . The global communicationdelay would even be decreased due to the simplicity of the routing algorithm.3.3 Upper BoundIt is clear that the mean eccentricity of any vertex X in the undirected de Bruijn network UB(d;D)is smaller than the mean eccentricity of the same vertex in the directed de Bruijn network B(d;D).Therefore, Proposition 2.2 still holds for undirected de Bruijn network UB(d;D), i.e., for any d � 2and D � 2, and for all X 2 UB(d;D),�e(X) � D � 1d� 1 + DN � 1 : (3:14)This bound is not tight. In the remainder of the paper, we will study upper bounds in moredetail.In order to get some intuition, we start with numerical computations for the case of smalldiameters. In Table 1, we provide the numerical results of the mean eccentricities in the binaryde Bruijn network UB(2; D). In particular, we present, for diameter D = 2; 3; � � � ; 18, the average15



D average �e(X) maximum �e(X) minimum �e(X) verticesvertex a � � �a2 1.1667 1.3333 1.0000 01103 1.6429 2.0000 1.4286 001, 011110, 1004 2.1417 2.6667 1.8667 001111005 2.7540 3.4516 2.5484 00011, 0011111100, 110006 3.4534 4.2698 3.2063 0010111101007 4.2148 5.1654 3.9685 0001011, 00101111110100, 11010008 5.0280 6.0706 4.8078 00010111111010009 5.8844 7.0098 5.6888 001111010, 010111100110000101, 10100001110 6.7737 7.9589 6.5689 0010111100, 00111101001101000011, 110000101111 7.6886 8.9253 7.4934 00101111100, 0011111010011010000011, 1100000101112 8.6232 9.8960 8.4308 001101011100, 001110101100110010100011, 11000101001113 9.5733 10.8764 9.3770 0011010111100, 00111101011001100101000011, 110000101001114 10.5351 11.8594 10.3377 001011111101001101000000101115 11.5063 12.8473 11.3107 001011111101100, 001101111110100110100000010011, 11001000000101116 12.4844 13.8372 12.2936 0010111111101100, 00110111111101001101000000010011, 110010000000101117 13.4678 14.8297 13.2790 00101101111110100, 0010111111011010011010010000001011, 1101000000100101118 14.4554 15.8233 14.2669 001011111010100011, 001110101000001011110100000101011100, 110001010111110100Table 1: Mean Eccentricities of UB(2; D)16



(taken over all vertices) of the mean eccentricities, the maximal and the minimal weights of theshortest path trees as well as the vertices which exhibit these weights.While the minimal weights are reached by di�erent vertices, the maximal weights are obtainedby the vertices 0 � � �0 and 1 � � �1 in all our experimentation. This leads us to the following conjecture:Conjecture: For any d � 2 and D � 2, the vertices a � � �a, a 2 A, have the maximal meaneccentricity in UB(d;D).This conjecture is numerically veri�ed for the binary de Bruijn network UB(2; D) with diametersup to 18. However, we were unable to prove it for the general case. Unlike the case of de Bruijndigraphs where we got closed formulae for the mean eccentricities of some extremal vertices, inthe undirected de Bruijn graphs, we were not even able to obtain a closed formula for the meaneccentricity of the probably simplest vertices a � � �a.Numerical computation (see Table 2) indicates that the widths in the shortest path trees ofUB(2; D) rooted at a � � �a are quite regular. It is possible to prove that for any 1 � k � D=2, thewidth at level k of the shortest path trees of UB(2; D), denoted lk(2; D), can be expressed aslk(2; D) = 8><>: 2k + 2k�2 + 2k�3 + � � �+ 22p + 22p�2 = 2k + 2k�1 � 22p + 22p�2; k = 3p;2k + 2k�2 + 2k�3 + � � �+ 22p = 2k + 2k�1 � 22p; k = 3p+ 1;2k + 2k�2 + 2k�3 + � � �+ 22p+1 = 2k + 2k�1 � 22p+1; k = 3p+ 2:Unfortunately, it is nontrivial to characterize lk(2; D) for k > D=2. These numbers are not soregular as to yield simple recursive equations. It seems that for any �xed diameter, the widthsare unimodal with the maximum at D � 1. It also seems that lD+1�k(2; D+ 1) � 2lD�k(2; D) fork = 0; 1; 2, and lD+1�k(2; D+ 1) � 2lD�k(2; D) for k � 3.In what follows, we will �rst consider the asymptotic value of �e(a � � �a) when D tends to in�nity.More precisely, we will prove that the limit of�(X) def= D � �e(X)exists when X = a � � �a, and we will provide a numerical recursive scheme for its computation. Wewill also establish an upper bound (better than (3.14)) for arbitrary X . As a consequence of thesetwo results, we show that for any �xed degree (2d), the asymptotic di�erence between �e(X) and�e(a � � �a) when the diameter goes to in�nity is smaller than 0.22.Let X 2 UB(d;D) and 0 � h � D. De�ne Eh(X) to be the set of vertices that are at distanceno greater than D � h from X : Eh(X) = fY j d(X; Y ) � D � hg:17



lk(2; D)k UB(2; 18) UB(2; 19) UB(2; 20) UB(2; 21) UB(2; 22)1 2 2 2 2 22 4 4 4 4 43 9 9 9 9 94 20 20 20 20 205 40 40 40 40 406 84 84 84 84 847 176 176 176 176 1768 352 352 352 352 3529 720 720 720 720 72010 1469 1471 1472 1472 147211 2926 2936 2941 2943 294412 5865 5911 5934 5944 594913 11648 11846 11945 11991 1201414 22444 23268 23680 23878 2397715 41559 45081 46764 47588 4800016 68474 83382 90549 93976 9566017 79558 136638 166578 180959 18788818 26793 158954 273450 333665 36267919 53393 317504 547235 66839720 106351 633746 109334721 212347 126671422 423855Table 2: Widths in the shortest path trees of UB(2; D) rooted at a � � �a
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By de�nition, E0(X) contains all the vertices of UB(d;D) and ED(X) is a singleton. Let eh(X) =jEh(X)j=N be the proportion of vertices that are at distance no greater than D�h from X . Then,e0(X) = 1 and eD(X) = 1=N .Lemma 3.2 For any d � 2, D � 2, and any X 2 UB(d;D),�e(X) = D + D � 1N � 1 � NN � 1 D�1Xh=1 eh(X): (3:15)Proof : For any 0 � h � D � 1, the set of vertices that are exactly at distance D � h from X isEh(X)� Eh+1(X). Since Eh+1(X) � Eh(X), we obtain that the number of vertices that are atdistance D � h from X is Neh(X)�Neh+1(X). Therefore,�e(X) = 1N � 1 D�1Xh=0 (D� h)N(eh(X)� eh+1(X))= NN � 1(De0(X)� e1(X)� e2(X)� � � � � eD(X))= NN � 1  D � 1N � D�1Xh=1 eh(X)!= D + D � 1N � 1 � NN � 1 D�1Xh=1 eh(X):We will �rst consider the vertices a � � �a. For simplicity of notation, we arbitrarily �x a lettera 2 A, and denote Eh � Eh(a � � �a), and eh � eh(a � � �a).Let Ph;k = fX j X = UAV; A = a � � �a; jAj = k + h; jU j = kg;Sh;k = fX j X = UAV; A = a � � �a; jAj = k + h; jV j = kg:Lemma 3.3 For any 0 � h � D, Eh = [0�k�bD�h2 cEh;k;where Eh;k = Ph;k SSh;k. 19



Proof : Let X be a vertex in Ph;k , where 0 � k � (D � h)=2. Then X = UAV , with A = a � � �a,jAj = k+h and jU j = k. Thus, X can be reached from a � � �a by �rst D� (k+h) left shifts appliedto a � � �a introducing the su�x V V 0, where V 0 is an arbitrary word with length k, and then k rightshifts introducing pre�x U . The length of the corresponding path is D � (k + h) + k = D � h.Hence X 2 Eh. Similarly, we can show that if X 2 Rh;k, then X 2 Eh. Therefore,Eh � [0�k�bD�h2 cEh;k: (3:16)Suppose now that X is a vertex in Eh. Then, by Proposition 3.2, there exists a path (notnecessarily a shortest one) between a � � �a and X of the type LR or RL with r+ l � D� h, wherer = jRj, l = jLj. Without loss of generality, suppose that this path is of the form LR. Thus Xcan be written as X = UAV with U = ar � � �a1, A = a � � �a, V = b1 � � �bl�r, where l � r (cf.Proposition 3.2, where the equality holds when l = r = 0). It then follows thatjAj = D � r � (l� r) � D � (D � h) + r = r + h:Let A0 be the pre�x of A with size r+ h. Then X can be written as X = UA0V 0 so that X 2 Ph;r.Since jV 0j = D � r � (r+ h) � jV j � 0, we get that r � (D� h)=2. Therefore,Eh � [0�k�bD�h2 cEh;k: (3:17)Combining relations (3.16) and (3.17) readily implies the assertion of the lemma.For h � 1 and k � 0, let eh;k = jEh;k �Sk�1j=0 Eh;j jN : (3:18)It then follows that eh = bD�h2 cXk=0 eh;k: (3:19)Lemma 3.4 For any �xed d � 2 and any p; q � bD=3c,pXh=1 qXk=0 eh;k � D�1Xh=1 eh �  pXh=1 qXk=0 eh;k!+ 2 d�q + d1�p(d� 1)2 ! (3:20)20



Proof : Note �rst thateh;k � 2 jPh;kjN = 2d�h�k ; 0 � k; h � D; 2k + h � D; (3:21)which implies that eh = bD�h2 cXk=0 eh;k � bD�h2 cXk=0 2d�h�k � 1Xk=0 2d�h�k = 2d1�hd� 1 : (3:22)Thus, for any p; q � bD=3c,D�1Xh=1 eh = pXh=1 qXk=0 eh;k + pXh=1 bD�h2 cXk=q+1 eh;k + D�1Xh=p+1 eh� pXh=1 qXk=0 eh;k + pXh=1 bD�h2 cXk=q+1 2d�h�k + D�1Xh=p+1 2d1�hd� 1� pXh=1 qXk=0 eh;k + 1Xh=1 1Xk=q+1 2d�h�k + 1Xh=p+1 2d1�hd� 1=  pXh=1 qXk=0 eh;k!+ 2 "d�q + d1�p(d� 1)2 # :On the other hand, it is easy to see thatD�1Xh=1 eh � nXh=1 bD�h2 cXk=0 eh;k � pXh=1 qXk=0 eh;k;hence the result.Proposition 3.4 For any �xed d � 2,limD!1�(a � � �a) = 1Xh=1 1Xk=0 eh;k � 2d(d� 1)2 : (3:23)Proof : Let p = q = bD=3c in (3.20), and let D go to 1 readily implies that the limit of PD�1h=1 ehexists when D !1 and that limD!1 D�1Xh=1 eh = 1Xh=1 1Xk=0 eh;k :21



Applying Lemma 3.2 entails that limD!1�(a � � �a) = 1Xh=1 1Xk=0 eh;k :Using again inequality (3.21) yields1Xh=1 1Xk=0 eh;k � 2 1Xh=1 1Xk=0d�h�k = 2d(d� 1)2 :The proof is thus completed.Observe that the relations (3.26), (3.27) and (3.31) provide a recursive scheme for the com-putation of limD!1�(a � � �a). The convergence of the series P1h=1P1k=0 eh;k is very fast. Goodprecisions are obtained with computations stopped at quite small indices h; k. Indeed, Lemma 3.4and Proposition 3.4 imply that for any n � 1,nXh=1 nXk=0 eh;k � limD!1�(a � � �a) <  nXh=1 nXk=0 eh;k!+ 2(d+ 1)(d� 1)2 d�n: (3:24)In view of the above results, we see that the computation of limit of �(a � � �a) can be carriedout on the values of eh;k for small h and k. We derive below a recursive computational scheme foreh;k . This will be based on counting the proportion of words (of length D over the alphabet A)ful�lling some conditions. This approach and some of the ideas can be found in [1].Let C be a condition on the words of length D over A. Let C be the opposite condition of C.Two conditions C1 and C2 are said to be independent if they concern disjoint subgroups of lettersof the word. Let p(C) denote the proportion of words satisfying a condition C.We recall the following basic computation rules which will be used in the remainder of the paper.� The proportion of words satisfying C is 1� p(C), i.e., p(C) = 1� p(C).� If C1 and C2 are independent, then the proportion of words satisfying both C1 and C2 isp(C1)p(C2), i.e., p(C1; C2) = p(C1)p(C2).For h � 1 and k � 0, let�h;k = jPh;k+1 � Ph;k jN � jSh;k+1 � Sh;kjN ;22




h;k = ���Skj=0 Ph;j���N � ���Skj=0 Sh;j���N ;�h;k = ���Ph;k+1 �Skj=0 Ph;j ���N � ���Sh;k+1 � Skj=0 Sh;j ���N :For k = �1, �h;�1 = �h;�1 = jPh;0 jN = d�h. For k � �1, 
h;k = 0. It is also clear that 
h;0 = d�h.Lemma 3.5 For all h � 1 and k � 0 such that 2k + 2 + h � D,�h;k = (d� 1)d�(k+h+2): (3:25)Proof : The words in Ph;k+1 are of the form x1 � � �xk+1Ak+1+hV , where x1; � � � ; xk+1 are arbitraryletters, Ai is a word of length i with letter a, V is an arbitrary word. The words in Ph;k are of theform x1 � � �xkAk+hV 0. Therefore, the words in Ph;k+1 � Ph;k are of the form x1 � � �xk�aAk+1+hV ,where �a is an arbitrary letter in A � fag. Thus, �h;k = d�(k+h+1)(d� 1)=d.Lemma 3.6 For all h � 1 and k � 0 such that 2k + 2 + h � D,
h;k+1 = 
h;k + �h;k : (3:26)Proof : The assertion comes from the fact that������k+1[j=0 Ph;j ������ = ������ k[j=0Ph;j ������+ ������Ph;k+1 � k[j=0Ph;j������ :Lemma 3.7 For all h � 1 and k � �1 such that 2k + 2+ h � D,�h;k = �1� 
h;b k�h2 c� �h;k; k � �1; (3.27)= �1� 
h;b k�h2 c� (d� 1)d�(k+h+2); k � 0: (3.28)Proof : As seen in the proof of Lemma 3.5, the words in Ph;k+1�Ph;k are of the form x1 � � �xk�aAk+1+hV ,where �a is an arbitrary letter in A � fag. It then follows that these words will not appear in Ph;jfor all j such that j < k and 2j + h > k. Therefore,Ph;k+1 � Ph;k = Ph;k+1 � k[j=b k�h2 c+1Ph;j ; (3:29)23



which, in turn, implies thatPh;k+1 � k[j=0Ph;j = Ph;k+1 � Ph;k � b k�h2 c[j=0 Ph;j : (3:30)It is easily veri�ed that the conditions for words to be in Ph;k+1 � Ph;k and in Sb k�h2 cj=0 Ph;j areindependent (the former is on xk+1 � � �x2k+2+h of word X = x1 � � �xD, whereas the latter is onx1 � � �xk). Therefore, relation (3.30) implies relation (3.27) according to the basic computationrule. Relation (3.28) follows from those of (3.25) and (3.27).Proposition 3.5 For all h � 1 and k � 0 such that 2k + h � D=2,eh;k = (2� 
h;k�1 � 
h;k)�h;k�1; k � 0; (3.31)eh;k = (2� 
h;k�1 � 
h;k)�1� 
h;b k�h�12 c� (d� 1)d�(k+h+1); k � 1: (3.32)Proof : eh;k = ���Ph;k SSh;k � Sk�1j=0 Eh;j���N= ���Ph;k � Sk�1j=0 Eh;j���N + ���Sh;k � Ph;k �Sk�1j=0 Eh;j���N= ���Ph;k � Sk�1j=0 Ph;j �Sk�1j=0 Sh;j���N + ���Sh;k �Sk�1j=0 Sh;j � Skj=0 Ph;j ���NUnder the assumption that 2k + h � D=2, the conditions for words to be in Ph;k � Sk�1j=0 Ph;j andin Sk�1j=0 Sh;j are independent (the former is on the left-half part of the word, whereas the latter ison the right-half part of the word). Therefore,���Ph;k �Sk�1j=0 Ph;j � Sk�1j=0 Sh;j ���N = �h;k�1(1� 
h;k�1):Similarly, ���Sh;k �Sk�1j=0 Sh;j � Skj=0 Ph;j ���N = �h;k�1(1� 
h;k):Hence, relation (3.31) holds. Relation (3.32) follows from (3.27) and (3.31).24



eh;k k=0 k=1 k=2 k=3 k=4 k=5 P5k=1 eh;kh=1 0:75000 0:10938 0:02246 0:01050 0:00381 0:00188 0:89802h=2 0:43750 0:08984 0:04110 0:01524 0:00752 0:00342 0:59552h=3 0:23438 0:05371 0:02612 0:01288 0:00560 0:00279 0:33547h=4 0:12109 0:029053 0:01434 0:00713 0:00355 0:00166 0:17683h=5 0:06152 0:01508 0:00750 0:00373 0:00186 0:00093 0:09062h=6 0:03101 0:00768 0:00383 0:00191 0:00095 0:00048 0:04585P6h=1 eh;k 1:63550 0:30473 0:11624 0:05140 0:02330 0:01116 2:14232êk 1:66667 0:31250 0:11914 0:05235 0:02388 0:01146 2:18600Table 3: �(a � � �a) in UB(2; D)Lemmas 3.5, 3.6, 3.7 and proposition 3.5 enable us to compute recursively eh;k . In Table 3, weindicate the values of eh;k in the case d = 2 for 1 � h � 6 and 0 � k � 5. This gives already a lowerbound of 2:14 for �(a � � �a). In fact we have computed all the eh;k for d = 2, h � 30 and k � 85.Results for eh are given in Table 4. The values are given with 10 digits but we have computedthem with in�nity precision. Recall that having the values of eh we obtain the number of verticesat distance exactly D � h. For instance we have 1 � e1 ' 10:03% of vertices at distance D from(a � � �a) in the case d = 2. This table shows that most of the vertices are at distance D� h with hsmall.Finally, let us note that one can get closed formulae for êk where :êk = 1Xh=1 eh;k : (3:33)We give below this formulae for 0 � k � 6.ê0 = 2d+ 1d2 � 1ê1 = 2d2 � 2d+ 1d4ê2 = 2d6 � 4d5 + 4d4 + d3 � 3d2 + 1d9ê3 = d�16(2d12 � 4d11 + 4d10� 2d9 + d8 + 2d7 � 3d6 + 2d5 � d4 � 2d3 + d2 + 2d� 1)ê4 = d�22(2d17 � 4d16 + 2d15+ 4d14 � 4d13 + d12 � 2d11 � d10 + 7d9 � 6d7 � d6 + 5d5�4d4 + 2d3 � d2 + 2d� 1) 25



h eh Phi=1 ei1 0.8997111342 0.8997111342 0.5988445366 1.4985556713 0.3381424180 1.8366980894 0.1784738644 2.0151719535 0.0915215694 2.1066935236 0.0463216922 2.1530152157 0.0232996659 2.1763148818 0.0116843542 2.1879992359 0.0058507839 2.19385001910 0.0029275407 2.19677756011 0.0014643071 2.19824186712 0.0007322877 2.19897415513 0.0003661774 2.199340332... ...30 0.0000000027 2.199706529... ...60 0:260� 10�17 2.199706532Table 4: �(a � � �a) in UB(2; D)
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ê5 = d�28(2d22 � 4d21 + 2d20+ 4d19 � 6d18 + 4d17+ d16 � 6d15 + d14 + 8d13 � 2d12�10d11 + 11d10 � 2d9 � 3d8 � d6 + 2d5 � d2 + 2d� 1)ê6 = d�34(�1 + 2d+ 8d10� d2 + 2d24 + 3d20 � 2d4 + 6d5 � 3d6 + 5d18 + d8 � 2d7 � 3d12�2d9 � 2d16 � 8d11 � 2d15� 2d14 + 8d13 � 4d19 + 2d17 � 4d21 + 2d25 � 4d26+ 2d27)In Table 3, we also provided exact values of êk for d = 2. Again, we note that using onlyP6k=0 êk gives a very good estimation of �(a � � �a).Indeed it follows from Lemma 3.4 and Proposition 3.4 that for any q � 0,qXk=0 êk � limD!1�(a � � �a) <  qXk=0 êk!+ 2d�q(d� 1)2 : (3:34)The following proposition gives values of limD!1�(a � � �a) for d � 7. There again we giveonly truncated values with 5 decimals. The values given in parenthesis are approximation usingP6k=0 êk.Proposition 3.6 In the de Bruijn network UB(d;D),limD!1�(a � � �a) = 8>>>>>>><>>>>>>>: 2:19970 d = 2 (2:19151)1:09605 d = 3 (1:09556)0:72359 d = 4 (0:72353)0:53752 d = 5 (0:53751)0:42652 d = 6 (0:42652)0:35304 d = 7 (0:35303)We now turn back to upper bounds for arbitrary vertex X . Let us consider an arbitrarily �xedvertex X = x1 � � �xD. LetPh;k(X) = fZ j Z = UXh;kV; Xh;k = xD�h�k+1xD�h�k+2 � � �xD; jU j = kg;Sh;k(X) = fZ j Z = UXsh;kV; Xsh;k = x1x2 � � �xh+k ; jV j = kg;Eh;k(X) = Ph;k(X)[Sh;k(X);Lemma 3.8 For any 0 � h � D, Eh(X) � [0�k�bD�h2 cEh;k(X):27



Proof : The proof is analogous to the �rst part of the proof of Lemma 3.3, and is thus omitted.Proposition 3.7 For any �xed d � 2, and D � 2,D�1Xh=1 eh(X) > �(d)� 22d�D4 ; (3:35)where�(d) = 2d+ 1d2 � 1 + 2d� 1d3 � (d� 1)2 � 1d3 + 1 = 2d6 � d5 + 2d4 � d3 + d2 + d� 1d7 � 2d6 + 3d5 � 2d4 � d3 + 3d2 � 3d+ 1 : (3:36)Proof : For 1 � h � D=2 and 0 � k � (D � 2h)=4, letP 0h;k(X) = fZ = a1 � � �akxD�h�k+1xD�h�k+2 � � �xDV b0h+2k�2 � � �b0kbk�1 � � �b1 j81 � i � k : ai 6= xD�h�i+2 ; 81 � j � k � 1 : bj 6= xh+j�1; b0h+2k�2 � � �b0k 6= x1 � � �xh+k�1gS0h;k(X) = fZ = a1 � � �aka0k+1 � � �a0h+2kV x1x2 � � �xh+kbkbk�1 � � �b1 j81 � i � k : ai 6= xD�h�i+2 ; bi 6= xh+i�1; a0k+1 � � �a0h+2k 6= xD�h�k+1 � � �xDgIt is clear that P 0h;k(X) � Ph;k(X), S 0h;k(X) � Sh;k(X). Therefore, it follows from Lemma 3.8that Eh(X) � [0�k�bD�h2 cEh;k(X) � [0�k�bD�2h4 c�P 0h;k(X)[ S 0h;k(X)� :Let e0h(X) = ���S0�k�bD�2h4 c �P 0h;k(X)[ S 0h;k(X)����N :It then follows that D�1Xh=1 eh(X) � bD2 cXh=1 e0h(X): (3:37)For any �xed 1 � h � D=2, the sets P 0h;k(X) and S 0h;k(X), 0 � k � (D� 2h)=4, are disjoint:P 0h;k(X)\P 0h;j(X) = ;; j < k; (3.38)S 0h;k(X)\S0h;j(X) = ;; j < k; (3.39)P 0h;k(X)\S0h;j(X) = ;; j � k: (3.40)S 0h;k(X)\P 0h;j(X) = ;; j � k: (3.41)28



Indeed, (3.38) comes from the constraint on P 0h;k(X) that for aj+1 6= xD�h�j+1 , so that for allZ 2 P 0h;k(X), Z 62 P 0h;j(X). Relation (3.39) comes from the constraint on S 0h;k(X) that for bj+1 6=xh+j , so that for all Z 2 S 0h;k(X), Z 62 S 0h;j(X). Last, concerning relation (3.40), if j < k � 1, thenfor all Z 2 P 0h;k(X), bj+1 6= xh+j , so that Z 62 P 0h;j(X). If j = k � 1, then for all Z 2 P 0h;k(X),b0h+2k�2 � � �b0k 6= z1 � � �zh+k�1, so that Z 62 P 0h;k�1(X). Finally, if j = k, then for all Z 2 S 0h;k(X),a0k+1 � � �a0h+2k 6= zD�h�k+1 � � �zD , so that Z 62 P 0h;k(X). Relation (3.41) can be proved exactly inthe same manner.Let �h;k = jP 0h;k(X)j=N , �h;k = jS 0h;k(X)j=N . It is now clear thate0h(X) = bD�2h4 cXk=0 (�h;k + �h;k) (3:42)It is also simple to see from the de�nitions of P 0h;k(X) and S 0h;k(X) that�h;0 = d�h (3.43)�h;k = �d� 1d �k d�(h+k) �d� 1d �k�1 �1� d�(h+k�1)�= d�(h+3k�1)(d� 1)2k�1 �1� d�(h+k�1)� ; (3.44)�h;0 = d�h �1� d�h� (3.45)�h;k = �d� 1d �k �1� d�(h+k)�d�(h+k) �d� 1d �k= d�(h+3k)(d� 1)2k �1� d�(h+k)� : (3.46)Thus,bD2 cXh=1 e0h(X) = bD2 cXh=1 bD�2h4 cXk=0 (�h;k + �h;k)= bD2 cXh=1 nd�h + d�h �1� d�h�o+ bD2 cXh=1 bD�2h4 cXk=1 nd�(h+3k�1)(d� 1)2k�1 �1� d�(h+k�1)�+ d�(h+3k)(d� 1)2k �1� d�(h+k)�o= bD2 cXh=1 n2d�h � d�2ho 29



+ bD2 cXh=1 bD�2h4 cXk=1 d�(h+3k)(d� 1)2k � dd� 1 + 1�� bD2 cXh=1 bD�2h4 cXk=1 d�(2h+4k)(d� 1)2k  d2d� 1 + 1!def= F1 + F2 + F3 (3.47)where F1 def= bD2 cXh=1 n2d�h � d�2hoF2 def= bD2 cXh=1 bD�2h4 cXk=1 d�(h+3k)(d� 1)2k � dd� 1 + 1�F3 def= � bD2 cXh=1 bD�2h4 cXk=1 d�(2h+4k)(d� 1)2k  d2d� 1 + 1!Some simple algebra yieldsF1 = 2� 2d�bD2 cd� 1 � 1� d�2bD2 cd2 � 1= 2d� 1 � 1d2 � 1 � 2d�bD2 cd� 1 + d�2bD2 cd2 � 1Hence, F1 > 2d+ 1d2 � 1 � 2d�bD2 cd� 1 (3:48)We can also obtain a lower bound for F2:F2 = 2d� 1d� 1 bD2 cXh=1 bD�2h4 cXk=1 d�h  (d� 1)2d3 !k= 2d� 1d� 1 � (d� 1)2d3 � (d� 1)2 �0B@bD2 cXh=1 d�h � bD2 cXh=1 d�h  (d� 1)2d3 !bD�2h4 c1CA> (2d� 1)(d� 1)d3 � (d� 1)2 �0B@bD2 cXh=1 d�h � bD2 cXh=1 d�h  (d� 1)2d3 !D�2h4 �11CA30



= (2d� 1)(d� 1)d3 � (d� 1)2 �0BB@1� d�bD2 cd� 1 �  (d� 1)2d3 !D4 �1 � 1� � pdd�1�bD2 cd�1pd � 1 1CCA= 2d� 1d3 � (d� 1)2 � (2d� 1)d�bD2 cd3 � (d� 1)2 � (2d� 1)(d� 1)d3 � (d� 1)2 � (d� 1)2d3 !D4 �1 � 1d�1pd � 1+ (2d� 1)(d� 1)d3 � (d� 1)2 �  (d� 1)2d3 !D4 �1 � � pdd�1�bD2 cd�1pd � 1It is easy to see that if d = 2, then,F2 > 2d� 1d3 � (d� 1)2 � (2d� 1)d�bD2 cd3 � (d� 1)2 � (2d� 1)(d� 1)d3 � (d� 1)2 � (d� 1)2d3 !D4 �1 � � pdd�1�bD2 c1� d�1pd= 2d� 1d3 � (d� 1)2 � 37d�bD2 c � 37d� 3D4 +3+bD2 c=2 � p2p2� 1> 2d� 1d3 � (d� 1)2 � 12d�D4 :If, however, d � 3,F2 > 2d� 1d3 � (d� 1)2 � (2d� 1)d�bD2 cd3 � (d� 1)2 � (2d� 1)(d� 1)d3 � (d� 1)2 � (d� 1)2d3 !D4 �1 � 1d�1pd � 1= 2d� 1d3 � (d� 1)2 � (2d� 1)d�bD2 cd3 � (d� 1)2 � (2d� 1)(d� 1)d3 � (d� 1)2 � d3(d� 1)2 � 1d�1pd � 1 � d�D4> 2d� 1d3 � (d� 1)2 � 2dd3 � d2d�bD2 c � d3d3 � (d� 1)2 � 2d� 1d� 1 � 1d�1pd � 1 � d�D4> 2d� 1d3 � (d� 1)2 � 13d�bD2 c � 2723 � 32 � 12p3 � 1 � d�D4> 2d� 1d3 � (d� 1)2 � 20d�D4Therefore, for any d � 2, F2 > 2d� 1d3 � (d� 1)2 � 20d�D4 (3:49)In a similar way, we obtain a lower bound for F3:F3 = � bD2 cXh=1 bD�2h4 cXk=1 d�(2h+4k)(d� 1)2k  d2d� 1 + 1!31



> � d2 + d� 1d� 1 1Xh=1 1Xk=1 d�(2h+4k)(d� 1)2k= � d2 + d� 1d� 1 � (d� 1)2d4 � (d� 1)2 1Xh=1 d�2h= � d2 + d� 1d� 1 � (d� 1)2d4 � (d� 1)2 � 1d2 � 1= � 1d3 + 1Hence, F3 > � 1d3 + 1 (3:50)Combining relations (3.37), (3.47), (3.48), (3.49) and (3.50) readily entails (3.35).As a corollary of Lemma 3.2 and Proposition 3.7, we obtainCorollary 3.2 For any d � 2, D � 2, and any X 2 UB(d;D),�e(X) < D � �(d) + 22d�D4 + 1N � 1 � �D � 1� �(d) + 22d�D4 � ; (3:51)where �(d) is de�ned in (3.36).Proof : It follows from (3.15) and (3.35) that�e(X) = D � D�1Xh=1 eh(X) + 1N � 1 � D � 1� D�1Xh=1 eh(X)!< D � �(d) + 22d�D4 + 1N � 1 � �D � 1� �(d) + 22d�D4 �As a consequence of Proposition 3.4 and the above corollary, we obtainProposition 3.8 For any �xed d � 2,lim supD!1 (�e(X)� �e(a � � �a)) <  1Xh=1 1Xk=0 eh;k!� �(d); (3:52)where �(d) is de�ned in (3.36). 32



Proof : It follows from Proposition 3.4 thatlim supD!1 (�e(X)� �e(a � � �a))= limD!1�(a � � �a)� lim infD!1 �(X)�  1Xh=1 1Xk=0 eh;k!� �(d);where the inequality comes from (3.51).Numerical results for small d are given below:Proposition 3.9 lim supD!1 (�e(X)� �e(a � � �a)) < 8>>>>>>><>>>>>>>: 0:2155 d = 20:0393 d = 30:0117 d = 40:0045 d = 50:0021 d = 60:0011 d = 74 ConclusionsIn this paper, we have provided upper and lower bounds of the mean eccentricities of the de Bruijnnetworks. For the directed de Bruijn network, we have presented tight bounds as well as the ex-tremal vertices which reach these bounds. For the undirected de Bruijn network, we have providedlower and upper bounds which di�er from the diameter by some small constants. We conjecturethat the vertices of the form a � � �a have the largest mean eccentricity. This conjecture has beenveri�ed by numerical computations for binary de Bruijn networks with diameters up to 18. Wehave shown that the asymptotic di�erence, when the diameter goes to in�nity, between the meaneccentricities of an arbitrary vertex and that of a � � �a is a small constant tending to zero with thedegree. We have also provided a simple recursive scheme for the computation of the asymptoticmean eccentricity of the vertices a � � �a.We have proved that in both directed and undirected de Bruijn networks, all the mean eccen-tricities tend to the diameter when the degree goes to in�nity. This implies that when the degree islarge, the simple routing algorithm which consists of doing left shifts all the time or right shifts allthe time is more e�cient than optimal routing algorithms. In general, the gain of applying optimalrouting algorithms is quite limited, even without considering their overheads.33



References[1] J-C. Bermond, J. Bond, W. Fernandez de la Vega, S. Rudich and M. Santha, \The radiusof graphs on alphabets", preprint Graph and Combinatorics, 1988.[2] J-C. Bermond, C. Delorme, and J-J. Quisquater, \Strategies for interconnection networks:Some methods from graph theory", JPDC, 3, pp. 433{449, 1986.[3] J-C. Bermond, N. Homobono, and C. Peyrat, \Large fault-tolerant interconnection net-works", Graph and Combinatorics, 5, pp. 107-123, 1989.[4] J-C. Bermond and C. Peyrat, \De Bruijn and Kautz networks: a competitor for the hy-percube?", In Hypercube and Distributed Computers, J. P. Verjus and F. Andr�e, (Eds.), pp.279{294, North-Holland, 1989.[5] I. Bond, Constructions de grands r�eseaux d'interconnexion. PhD thesis, Universit�e de Paris-Sud, Centre d'Orsay, 1984.[6] F. Buckley and F. Harary, Distance in Graphs. Addison Wesley, 1990.[7] N. G. de Bruijn, \A combinatorial problem", In Koninklijke Nederlands Akademie vanWetenschappen Proceedings, 49-2, pp. 758{764, 1946.[8] M. A. Fiol, J. L. A. Yebra, I. Alegre de Miquel, \Line Digraph Iterations and the (d,k)Digraph Problem," IEEE Trans. on Computers, C-33, No. 5, pp. 400-403, 1984.[9] S. W. Golomb, Shift Register Sequences. Holden-Day Inc, 1967.[10] F. T. Leighton, Introduction to Parallel Algorithms and Architectures : Arrays, Trees,Hypercubes. Morgan Kaufmann, 1991.[11] Z. Liu, \Optimal Routing in the De Bruijn Networks." Proc. of the Tenth InternationalConference on Distributed Computing Systems, May 1990, Paris, France, pp. 537-544.[12] C. Peyrat, Vuln�erabilit�e dans les grand r�eseaux d'interconnexion. PhD thesis, Universit�e deParis-Sud, Centre d'Orsay, 1984.[13] M.R. Samatham and D.K. Pradhan, \The de Bruijn multiprocessor network: a versatileparallel processing and sorting network for VLSI", IEEE Trans. on Comp., 38, No. 4, pp.567{581, 1989. 34


