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Abstract: Given a graph G = (V, F') we define é(X ), the mean eccentricity of a vertex X, as the
average distance from X to all the other vertices of the graph. The computation of this parameter
appears to be nontrivial in the case of the de Bruijn networks. In this paper we consider upper and
lower bounds for é(X). For the directed de Bruijn network, we provide tight bounds as well as the
extremal vertices which reach these bounds. These bounds are expressed as the diameter minus
some constants. In the case of undirected networks, the computation turns out to be more difficult.
We provide lower and upper bounds which differ from the diameter by some small constants.
We conjecture that the vertices of the form «---a have the largest mean eccentricity. Numerical
computations indicate that the conjecture holds for binary de Bruijn networks with diameters up to
18. We prove that the asymptotic difference, when the diameter goes to infinity, between the mean
eccentricities of an arbitrary vertex and that of a---a is smaller than a small constant tending
to zero with the degree. We also provide a simple recursive scheme for the computation of the
asymptotic mean eccentricity of the vertices a---a. A by-product of our analysis is that in both
directed and undirected de Bruijn networks, most of the vertices are at distance near from the
diameter and that all of the mean eccentricities tend to the diameter when the degree goes to
infinity.
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1 Introduction and Notation

Graphs are widely used in the design and analysis of computer networks. A vertex in the graph
denotes a node or processor in the corresponding network, and an edge denotes a communication
link between two nodes. If a network is unidirectional, i.e., the communication links in the network
are unidirectional, a digraph (i.e., directed graph) is used. Whereas for a bidirectional network, an

undirected graph (or simply, graph) is used.

Let G = (V,E) be a (strongly) connected graph (or digraph), where V' denotes the set of
vertices, and E the set of edges (or arcs for digraphs). We will denote by N = |V| the number of

vertices in G.

The vertex X is a neighbor of the vertex Y if (X,Y) € E or (Y, X) € E. The degree of a vertex
is the number of its neighbors. The degree of a graph is the maximum degree of the vertices. In
case of a digraph, we can distinguish the predecessors and successors of vertex X, which correspond
to the neighbors Y which satisfy (Y, X) € F and (X,Y) € F, respectively. The number of arcs
entering (resp. going out from) a vertex X is called the in-degree (resp. out-degree) of X. The

in-degree (resp. out-degree) of a graph is the maximum in-degree (resp. out-degree) of the vertices.

A path (resp. a dipath) between two vertices X and Y (resp. from X to Y) in a graph (resp. a
digraph) G' is a sequence of vertices {X = Xy, X3, -+, X3 = Y} such that two consecutive vertices
in the sequence are joined by an edge (resp. an arc). The length of a path is the number of edges
on this path. The length of a shortest path (resp. dipath) between X and Y (from X to Y) is
called the distance and is denoted by d(X,Y'). Note that in the case of digraphs it is not a classical
distance as d(X,Y) might be different from d(Y, X'). The diameter of a graph is the maximum
distance in the graph.

The de Bruijn digraph (resp. graph), denoted by B(d, D) (resp. UB(d, D)), has N = d”
vertices with diameter D and in-degree or out-degree d (resp. degree 2d). The vertices correspond
to the words of length D over an alphabet of d symbols. The arcs (or edges) correspond to the shift
operations: Given a word X = zy ---xp on an alphabet A of d letters, where z; € A, 01 =1,2,---, D,
and given A € A, the operation:

e xy---xp — Xo---xpA is called a left shift;

e x1---xp — Axy---xp_q is called a right shift.

In the de Bruijn digraph B(d, D), the successors are obtained by left-shift operations, whereas in
the de Bruijn graph UB(d, D), the neighbors are obtained by either left or right shift operations.
An example of a de Bruijn digraph is given in Figure 1. The corresponding undirected de Bruijn

graph is obtained by transforming arcs to edges (i.e., removing the directions of the arcs) and
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Figure 1: Example of a de Bruijn digraph B(2,3).

removing the redundant edges (i.e., those with multiple occurrences in the graph, or those linking
the same vertices). The multiprocessor system which can be modeled by a de Bruijn graph is called

de Bruijn network.

The reader can see that in B(d, D), each vertex has in-degree and out-degree d, and there are

Nd arcs. Whereas in UB(d, D), there exist N — d? vertices of degree 2d, d* — d vertices of degree
2d — 1 and d vertices of degree 2d — 2.

These networks have been discovered by many authors and are named after de Bruijn [7]. They

are sometimes also called Good graphs [9].

They present many attractive features. In particular they are among the best known networks
for a given degree and diameter (see the survey [2] for more details on this problem known as the
(d, D)or (A, D) graph problem). They have a good vulnerability, being able to tolerate up to d — 1
faults in the directed case and 2d — 2 in the undirected case, while the diameter can still be left
small (see [3]). They are adequate for various applications as one can embed in them linear arrays,
rings, and complete binary trees. They can also emulate without loss of time shuffle-exchange or
hypercubes for the class of ascend-descend algorithms.

They have also many others interesting properties like easy greedy routing. This greedy al-
gorithm is a simple D-step routing which consists in uni-directional shifts or “bit-erosion” of the
destination address. Namely, in order to go from X = &1 ---2p to Y = g1 ---yp, we apply D left
shifts (and also right shifts in the undirected case) introducing successively the letters y1,y2,- -, yp,
corresponding to the dipath

Ty TD = Tyt tTDYL = TzeccTDYLY2 — = Yoo YD-

We refer the reader to one of the two recent surveys concerning de Bruijn networks written by
Bermond and Peyrat [4] and Samatham and Pradhan [13] or to the recent book of Leighton [10].



In this paper, we analyze the mean eccentricity of these graphs. The eccentricity of a vertex X
is defined [6] as the distance to the farthest node from this vertex: e(X) = max{d(X,Y):Y € V}.
We define the mean eccentricity of a vertex X, denoted é(X), as the average distance from X to

all the others vertices:
1
e((X)= —— d(X,Y). 1.1
(X)= o X dXY) (1)
YeV-{X}
The computation of this parameter appears to be nontrivial in the case of the de Bruijn networks.

In this paper we consider the upper and lower bounds of e(.X).

In Section 2, we analyze the directed de Bruijn networks. We provide the tight bounds as well
as the extremal vertices which reach these bounds. These bounds are expressed as the diameter
minus some constants.

In Section 3, we analyze the undirected networks. The computation turns out to be more diffi-
cult. We provide lower and upper bounds which differ from the diameter by some small constants.
We conjecture that the vertices of the form «---a have the largest mean eccentricity. Numerical
computations indicate that the conjecture holds for binary de Bruijn networks with diameters up
to 18. We will show that the asymptotic difference, when the diameter goes to infinity, between the
mean eccentricities of an arbitrary vertex and that of a---a is smaller than 0.22. We also provide

a simple recursive scheme for the computation of the asymptotic mean eccentricity of the vertices
a/ .. a/‘

A by-product of our analysis is that in both directed and undirected de Bruijn networks, most

of the vertices are at distance near from the diameter and that all of the mean eccentricities tend
to the diameter when the degree goes to infinity.

Our results also imply that optimal routing algorithms are in most of the cases not advantageous
due to their overheads. Instead, one can use the simple D-step routing algorithm as described above.

The following formulae will be extensively used in this paper:

. drtt — 1
dodb o= — (1.2)
k=0 -1

- . (1.3)

Zp: pgi-1 DA A -1 pdtt — (pt D+ 1
= o d-1 (d—1)2 (d—1)2

2 Directed case

In the case of a digraph B(d, D), it is well known (see e.g. Fiol et al. [8]) that there is a unique
shortest dipath from a given vertex X = z;---2p to a vertex Y = y;---yp. To find the distance
d(X,Y) and the shortest dipath one has to find the smallest ¢ such that z;41---2p = y1---yp—s.



The distance is then ¢, and the shortest path is obtained by doing the left shifts introducing
successively ypyi—i,---,yp. This fact allows one to compute easily d(X,Y) and so e(X) for any

X. But unfortunately that does not give a closed formula.

In this section, we provide upper and lower bounds of the mean eccentricities of B(d, D), and

show that these bounds are reached.

Our analysis will need some notions on trees (or more precisely, the outtrees). The level of a
vertex in a tree is the distance from the root to the vertex, where by convention, the root is at
level 0. The weight of a tree is the sum of the levels of all vertices. We call a shortest path tree of
a (di)graph G rooted at vertex X a spanning tree of GG with root X such that the (di)path in the
tree from X to any vertex is a shortest (di)path in G. It can be obtained, e.g., using the “breadth
first” search algorithm. Observe that for any given G and X, this tree is not unique. However, the
vertices at level [ of a shortest path tree of G rooted at vertex X are exactly all the vertices that
are at distance [ from X in . Therefore, the weights of the shortest path trees rooted at vertex X
are identical. The mean eccentricity of a vertex is in fact the weight of a shortest path tree rooted
at this vertex divided by N — 1.

Let [x(X) be the width, i.e., the number of vertices, at level k in the shortest path trees rooted
at vertex X . Then,

1 D
k=1

We first look at the minimal mean eccentricity. We will need the following on the comparison
result.

Lemma 2.1 Let n be a positive integer, and mq, - - -, m, positive real numbers such that
n
1<n<D-1, > mp<N-1
k=1

If for all 1 <k < mn, lx(X) < my, then

HX)>nt1- ﬁ (Zn:(n b1 k)mk) . (2.2)

k=1

Proof: Let m,y1 =N —1—->"7_1 mg,and m; =0 for all n + 1 < ¢ < D. It then follows that

D D
N—1=> L(X)=> my,
k=1 k=1



and that for all 2 <1< D,

D D i1 D i—1 D
IUIEIED SIS SED SUETED SITED SETED B
k=1 k=1 k=1 i—1 ] —

Thus, according to (2.1),

1 D
k=1
1 D D
= o722 kD)
1=1 k=1
1 D D
SR
1=1 k=¢
1 D
= S,
N - k=1
1 i3 i3
= ¥ 1 (kak+(n+1)(]\7—1— ka))
a k=1 k=1
=1
|
Proposition 2.1 Foranyd > 2 and D > 2, and for all X = z1---2p € B(d, D),
d d D
eax)>Dn (2.3)

R el i B I

Moreover, the equality holds if and only if x; # xp foralli=1,---,D — 1.

Proof: The minimal mean eccentricity corresponds to the shortest path tree with the minimal
weight, which, owing to Lemma 2.1, requires that as many as possible vertices should be put in the

smallest levels. Since B(d, D) has out-degree d, a vertex has at most d vertices at distance 1, and
so d? vertices at distance 2, - - -, and d”* vertices at distance k. Therefore, in the shortest path trees,
there are at most d* vertices at level k.k=1,2,---,.D—1. As1+d+ A2+ ...+ dP1 = ddD_—_ll we
have still at least z = d” — ddD_—_l vertices which are at level D. Figure 2 illustrates such a tree for

1
the case d = 2.



1 vertex at level 0

2 vertices at level 1

4 vertices at level 2

D-1
2 vertices at D-1

1 vertex at level D

Figure 2: Shortest path tree with the minimal weight

Therefore, we can apply Lemma 2.1 with n = D — 1 and my, = d* for 1 < k < D — 1.

v

D-1
&(X) D—N%T(EXD—kmﬂ

k=1

1 dP —d  DdP 4Pt 4
D - - +
N—-1\"d=1 d—1" (d—1)

d d D

= D- . .
-1z ta—i v-1

Assume now the vertex X = 21 ---2p is such that ; # ap forall e = 1,---, D — 1. We want to
show the equality in (2.3). Indeed, for all 1 <k < D — 1, the vertices at distance k from z1---zp
are of the form: zp4q ---2pyy - - - yi, where 4y - - -y are arbitrary letters of the alphabet A. For all
1 < j < k, the vertices at distance j from x; ---2p are of the form: z;41---2p_p4;---2p21---7j,
where 2y ---z; are arbitrary letters of the alphabet A. Since 2p_g4; # xp, none of the vertices

41 xDY1 - Y are at distance 3 < k. Thus, the width of the shortest path tree of X at level
k, 1<k < D-—1,is d*, so that the equality in (2.3) holds.

Assume now that for some vertex X = 21 ---ap, the equality in (2.3) holds. Then, necessarily,
the width of its shortest path tree at level D —1is d”~', so that all the vertices at level D —1 which
have the form zpy; - - -yp—_1, should not already be at levels k = 0,---, D — 2, where y1 ---yp_1
are arbitrary letters of the alphabet A. Thus, for all £ = 0,---, D — 2, we should have ;41 # zp,
which completes the proof. |



1 vertex at level 0

1 vertex at level 1

2 vertices at level 2

-1
2 vertices at level k

D-1
2 vertices at level D

Figure 3: Shortest path tree with the maximal weight

We now look at the upper bound of the mean eccentricities. We will need the following property
of the shortest path tree with the maximal weight. An example is given for the case d = 2.

Lemma 2.2 An outtree of out-degree d with d° vertices and D levels is such that:
D D
Yol <> dNd-1) Vi, 1<i<D

where [ is the number of vertices at distance k from the root.

Proof: Suppose the lemma is not true and let ¢y be the largest ¢+ > 1 such that E?:i ly >
SP_ . d*'(d —1). Then, l;, > d~'(d — 1), which in turn, as the out-degree is d, implies l;,_; >
d©=2(d — 1), which further implies that {;,_» > d"~3(d — 1), and so on. Therefore,

L>d Y d-1)+1, 1<i<ip—1,

which, together with the fact that ZE:Z»O lp>1+ ZE:Z»O d*=1(d — 1), imply that
Zlk>zo—|—2dk d=1)=ig+d” —1>d".

This contradicts the fact that the tree has d” vertices. (Note that the root which is at level 0 is

not included in the above summation.) |



Proposition 2.2 For any d > 2 and D > 2, and for all X € B(d, D),
<D— — 4+ —. (2.4)
Moreover, the inequality becomes equality if and only if X = a---a, where a € A.

Proof: Note first that

1 D 1 D D
k=1 =1 k=¢

It follows from Lemma 2.2 that
D D

D D
So> dFd-1)

1=1 k=1 1=1 k=1

D
= (d—1))_ kd*!
k=1

dPt —1
d—1

]
]
E
IA

= (D+1)d”

Therefore,

We now show that

if and only if X = a---a. Firstly, the vertices at distance k from a---a are of the form: aq ---ap,
with a3 = --- = ap_p = a, ap_g+1 = @ and ap_gy1,---,ap can be any letter of the alphabet A,
where @ # a. None of these vertices are at distance j < k. Their number is d*~1(d — 1), so that
all the inequalities in the above derivation of the proof become equalities. Secondly, by lemma 2.2,
a necessary condition for €(X) to reach the bound is that [; = d — 1. Only the the vertices a---a

have this property. |

The following properties are immediate consequences:



Corollary 2.1 For anyd > 2 and D > 2, and for all X € B(d, D),

d d D 1 D
<HX)< D= —— 4 ——. (2.5)

D .
-1z taci v-i° -1t N1

In particular, when d = 2,

1§é(X)§D—1—|—N—. (2.6)

Corollary 2.2

ﬁ < 1%n_}£of (D—e(X)) < hgﬂ_ilop (D—e(X)) < ﬁv d>2.

Our results indicate that the upper and the lower bounds of the mean eccentricities are both
close to the diameter. This is especially true when the degree of the de Bruijn network is large. In
[11], a linear (in time and in space with respect to the diameter) algorithm was proposed for the
optimal routing of directed de Bruijn networks. However, even if we use D shifts to route instead
of the optimal routing, the global communication delay of the network should not be affected too
much. The routing scheme in D steps corresponds to a simple “bit-erosion” of the destination
address, a very simple routing function that could be implemented with only a very few VLSI
components on chip.

3 Undirected case

We now consider the mean eccentricities of UB(d, D). It turns out that the computation of bounds
is much more difficult. This is partially due to the facts that the sortest paths are in general not
unique and that the determination of the distances between the vertices is more complicate.

In what follows, we will first study some properties of the shortest paths in undirected de Bruijn

networks. We then derive the lower and upper bounds respectively.

3.1 Characterization of the Shortest Paths

Since the neighborhood in UB(d, D) can be defined by the left and right shift operations, a path
can be described by a sequence of corresponding shifts. The length of a path connecting X to Y is
equal to the cardinality of this sequence of shifts. Formally, let L be the operation consisting of a



sequence of [ left shifts, introducing a suffix B = by, ---,b; with |L| = [, and let R be the operation
consisting in a sequence of r right shifts, introducing a prefix A = a, ---ay with |R| = r. Then,
applying L to a vertex X = x1---2p yields vertex x;y1---xpby---b;, which corresponds to the
path

Ty ap — e wpby — a3 wpbiby — oo — g - apby by

Applying R to the vertex X = xy---zp yields vertex a, ---a121 - - -2 p_,, which corresponds to the
path

T1 XD — QQT1 TP — A201T1 " TD_g —> ==+ —> Qp+*Q1T1 " TD—p-

In general, any path of the de Bruijn graph can be denoted by LiRyLoRy--- L, R, with |L;| =;
and |R;| = r;, meaning that we successively apply Ly, then Ry, then Ly and so on. The length of
the path is equal to ly +ry + I3 + 79 + - - -1, + r,. Note that one can have [y = 0 or r, = 0.

We will use the following results established by Bond [5, p92] and Peyrat [12, annexe 3.2]. For
sake of completeness, we give a slightly simpler proof. We will also give a more precise property

pertaining to the shortest paths from vertices a---a (cf. Proposition 3.2 below).

Lemma 3.1 If a path of the form LRL' is a shortest path, where | > 0, v > 0, ' > 0, then
L+1" < r. Similarly, if a path of the form RLR' is a shortest path, where v > 0,1 >0, ' > 0, then
r4+r <L

Proof: We consider the shortest paths of the form LRL'. The case of RLR' is analogous. We first
prove that [ < r and I’ < r.

Given a path of the form LRI’ from X = zq---2p to Y, suppose that [ > r, then after the
application of L to X we reach vertex ;41 ---2pby---b;. The application of R leads to the vertex
@+ a1xpyq - -xpby -+ -bi_,. The first shift of L' leads to the vertex a,_1 - - -ay 241 - - xpby - - by, 3.

But the vertex a,_q - - -a12741 - - -2 pby - - - bj—, B could have been reached by a shorter path L1 Ry
with [y = [ and r; = r — 1 (L introduces the word by ---b;_,3--- and Ry the word a,_1---a1).
Therefore, LRI’ is not a shortest path.

Thus, we have necessarily [ < r, and, by symmetry (in considering the reverse path from Y to

X, which is also a shortest path), I < r.
Now, the vertices obtained by LRI’ are of the form
a’/’—l/ . 'alwl-l—l . 'wD—(’/’—l)bl . 'bl/7

where aq ---a,_p and by ---by are arbitrary letters. These vertices can also be obtained via the
sequence of shifts Ry LR with

m=r—1, Lh=r, ro=r-1.

10



As LRI’ is a shortest path, we
mAh+ro=3r—1-U>1+r+10,

which implies that [ + ' < r. [ |

Proposition 3.1 A shortest path of UB(d, D) is made of the concatenation of at most 3 directed

paths, that is the shortest path is of the form LRI’ or RLR', where the cardinalities of these shift
sequences can be zero.

Proof: Suppose that a shortest path from X to Y is made of more than 3 directed paths, then a
part of this shortest path is either L1 R{LoR9 or RiL1RoLo, with I{ > 0,71 > 0,13 > 0 and 72 > 0.
Let us assume that it is the first case. It then follows that L{Ri;LoR9 is a shortest path, so are
LiR1Ly and RyL;Ry. By Lemma 3.1, we get [ < rq and ry < I3, which is a contradiction. [ |

Proposition 3.2 A shortest path between a vertex X and the vertex a---a is of the form LR (with
0<r<l)orRL (with0<Il<r)

Proof: Without loss of generality, suppose that the path from a---a to X is of the form LRL'.
Suppose | < r, which is in particular the case if I’ > 0 by Lemma 3.1. The vertex reached after
the operation LR is a,---aja---a, which could have been reached directly by the path R which is
shorter. |

3.2 Lower Bound

We now consider the lower bound of the mean eccentricity for general UB(d, D).

Proposition 3.3 For any D > 2, and any X € UB(d, D),

D-3-% > D-42, d=2;

D-1-8%8 > D-19, d=3;

9
e{(xX) > (3.1)
D-1-2 > D-14, d=4
2(d+1)?
D—Ziiqe 2 D-09, dx5

11



Proof: Consider the shortest path tree rooted at X = z¢---xp. As in the case of directed

de Bruijn networks, the more vertices are at the first levels of the shortest path tree, the smaller

is the mean eccentricity (cf. Lemma 2.1). We will use the fact that the shortest paths are made

of the concatenation of at most 3 directed paths to obtain upper bounds of the widths of the first

levels in the shortest path tree.

At level k, 1 < k< D —1, we have 3 kinds of vertices:

(a)

those obtained with a directed path containing only left (resp. right) shifts. Their number is
at most 24y, with

Ay =d*, 1<k<D-1. (3.2)

those obtained with the concatenation of 2 directed paths corresponding to a sequence of LR
(resp. RL) shifts with I > 0,7 >0 and [+ r = k, where [ = |L| and r = | R|.

Consider the vertices obtained with a path LR. They are of the form

Gy anzigs - zpby by 13 1
Ap Q1T 41 " TD—(r-1) it < T,

where a, ---ay and by ---b;_, are arbitrary letters, and a; # z;. Indeed, if a1 = 2;, these
vertices would have been reached with a path L{ Ry withl{y =[—1 and ry = r — 1, and so are
already at level k& — 2. Thus, there are at most (d — 1)d™~! vertices reached by such paths,
where m = max({, r).

Hence, for fixed k£, 2 < k < D — 1, the number of vertices reached by the concatenation of 2
directed paths is at most 2B}, with

k-1
B, = Z(d_l)dmax(l,k—l)—l
=1

k—1
k
= 2(d - 1) Z dl_l - (d - 1)d|—5-|_11{km0d2:0}
I=[4]

= Qdk_l — le—g]_l - (d - 1)d|—§-|_11{km0d2:0}7 (33)

where [z] denotes the smallest integer greater than or equal to z, and 1,y is the indicator
function. Therefore,

By <24l 2<k<D-1. (3.4)

those obtained with the concatenation of 3 directed paths corresponding to a sequence of

LRI (resp. RLR') shifts. Consider the path LRL'. We have [ > 0, » > 0, !’ > 0 and

12



l+r+1U' =k, wherel = |L|,r = |R| and I’ = |L'|. According to Lemma 3.1, [+ {" < r so that
k> 4.

Consider the vertices obtained with a path LRL’. They are of the form
aT_l/---a2a1x1+1---aq)_(T_Ublbg---bp,

where @,y -+ -ay and by - - -by are arbitrary letters, and a; # @y, b1 # ¥p_(,—p)41 (otherwise,

these vertices are already at a preceding level). Thus, there are at most (d — 1)?d"~2 vertices

reached by such paths.

Hence, for fixed k, 4 < k < D — 1, the number of vertices reached by the concatenation of 3
directed paths is at most 2C%, with

k=2 k—r—1
Cr= >, Y, (d=1)d
r—= E] =1
2
A simple calculation yields
k—2
Cr = (k—7r—1)(d—1)*d"?

= (k—1)(d—1)(dF=2 = dl51-2)
- % [(k —2)d* 7t — (k- 1)d*? - ([%1 — 1l 4 [SW[%H
- g2 _ ngdfﬁ—l + (LSJ _ 1)df§1—27 (3.5)

where |z denotes the integer part of z. Hence,

Cr < d"2, (3.6)

For1<k<D-1,let
my = 2(d¥ + 24" 4 dF7E) = 2(d + 1)%dF 2 (3.7)
It follows from relations (3.2,3.4,3.6) that

lk(X) < 24, + 2Bk1{k22} + QCkl{kZ4} < Q(dk + 2451 + dk_z) = mg, 1<kE<D-1, (3.8)

13



where [ (X') is the width of level k in the shortest path trees rooted at vertex X.

Let ng be the greatest integer n such that for all D > 2,

> mp <N -1 (3.9)
k=1
Note that N = d” and
- 2(d+1)?
ka =——="(d"-1).
Pt d(id-1)
Hence, it is readily checked that
D — 4, d=2;
ng>+< D—2, d=3,4; (3.10)
D—-1, d>5.

In fact, we have equality in (3.10) as soon as D > 7 for d = 2, D > 4 for d = 4, and any D > 2 for

other values of d.

Applying now Lemma 2.1 implies that

(X)) > ma+l- ﬁ (i(nd +1- k)mk)

= matl- 251?— 1)2 (("d i 1)5:;:11) B (n;(zzr—l)fl)nd i gg:i I)i)
SSRS IYS § LBy s
Therefore
6(X) > ng+1— ZEZf 32 . d:;. (3.11)
It is now a simple calculation from (3.10) and (3.11) to obtain relation (3.1). [

Observe that for small values of d and D, closer lower bounds can be obtained using the exact

values of Ay, By, and C} (see (3.2), (3.3), (3.5)) in

my = 245 + 2Br 150y + 2Ck 1543

Note also that for X = a---a, the lower bounds of Proposition 3.3 can be improved. Indeed,

in that case, it follows from Proposition 3.2 that there exist only two kinds of vertices: type (a)

14



with Ay = d* and type (b) with By < d*~! (as [ > r in the paths LR). Hence, we can do the
computation with my = 2(d 4 1)d*~'. This gives

2d+1) dvat!

é(a...a)znglJrl—(d_l)? oD (3.12)
where
D -3, d=2;
ny><¢ D-2, d=3; (3.13)
D -1, d>4

As a simple corollary of Proposition 3.3, we obtain the asymptotic mean eccentricity when d
goes to infinity.

Corollary 3.1 For any D > 2, and any X € UB(d, D),

lim &(X) = D.

d—co

The above property shows that all the mean eccentricities are close to the diameter when the
degree of the de Bruijn network is large. Therefore, in this case, we can simply use D shifts to route
instead of the sophisticated optimal routing of the shortest path [11] . The global communication

delay would even be decreased due to the simplicity of the routing algorithm.

3.3 Upper Bound

It is clear that the mean eccentricity of any vertex X in the undirected de Bruijn network UB(d, D)
is smaller than the mean eccentricity of the same vertex in the directed de Bruijn network B(d, D).
Therefore, Proposition 2.2 still holds for undirected de Bruijn network UB(d, D), i.e., for any d > 2
and D > 2, and for all X € UB(d, D),

e(xX)<hD—-——+4 ——. (3.14)

This bound is not tight. In the remainder of the paper, we will study upper bounds in more
detail.

In order to get some intuition, we start with numerical computations for the case of small
diameters. In Table 1, we provide the numerical results of the mean eccentricities in the binary

de Bruijn network UB(2, D). In particular, we present, for diameter D = 2,3,---,18, the average

15



D | average é(X) || maximum €(X) | minimum €(X) vertices
vertex a---a
2 1.1667 1.3333 1.0000 01
10
3 1.6429 2.0000 1.4286 001, 011
110, 100
4 2.1417 2.6667 1.8667 0011
1100
5 2.7540 3.4516 2.5484 00011, 00111
11100, 11000
6 3.4534 4.2698 3.2063 001011
110100
7 4.2148 5.1654 3.9685 0001011, 0010111
1110100, 1101000
8 5.0280 6.0706 4.8078 00010111
11101000
9 5.8844 7.0098 5.6888 001111010, 010111100
110000101, 101000011
10 6.7737 7.9589 6.5689 0010111100, 0011110100
1101000011, 1100001011
11 7.6886 8.9253 7.4934 00101111100, 00111110100
11010000011, 11000001011
12 8.6232 9.8960 8.4308 001101011100, 001110101100
110010100011, 110001010011
13 9.5733 10.8764 9.3770 0011010111100, 0011110101100
1100101000011, 1100001010011
14 10.5351 11.8594 10.3377 00101111110100
11010000001011
15 11.5063 12.8473 11.3107 001011111101100,001101111110100
110100000010011, 110010000001011
16 12.4844 13.8372 12.2936 0010111111101100, 0011011111110100
1101000000010011, 1100100000001011
17 13.4678 14.8297 13.2790 00101101111110100, 00101111110110100
11010010000001011, 11010000001001011
18 14.4554 15.8233 14.2669 001011111010100011, 001110101000001011

110100000101011100, 110001010111110100

Table 1: Mean Eccentricities of UB(2, D)
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(taken over all vertices) of the mean eccentricities, the maximal and the minimal weights of the

shortest path trees as well as the vertices which exhibit these weights.

While the minimal weights are reached by different vertices, the maximal weights are obtained

by the vertices 0---0and 1---1in all our experimentation. This leads us to the following conjecture:

Conjecture: For any d > 2 and D > 2, the vertices a---a, a € A, have the mazimal mean
eccentricity in UB(d, D).

This conjecture is numerically verified for the binary de Bruijn network UB(2, D) with diameters
up to 18. However, we were unable to prove it for the general case. Unlike the case of de Bruijn
digraphs where we got closed formulae for the mean eccentricities of some extremal vertices, in
the undirected de Bruijn graphs, we were not even able to obtain a closed formula for the mean

eccentricity of the probably simplest vertices a - - -a.

Numerical computation (see Table 2) indicates that the widths in the shortest path trees of
UB(2, D) rooted at a---a are quite regular. It is possible to prove that for any 1 < k < D/2, the
width at level k of the shortest path trees of UB(2, D), denoted [;(2, D), can be expressed as

Qk + 2k—2 + 2k—3 4ot 92p + 922p—2 _ Qk + Qk—l —92p + 22})—27 = 3p7
I(2,D) =< 2F 4 2k=2 p 2k=3 1 ... 4 2% = 2k 4 2k-1 _ 92, E=3p+1;
2k + 2k—2 + 2k—3 4ot 22p-l—1 — 2k + 2k—1 _ 22])-|—17 = 3p + 2.

Unfortunately, it is nontrivial to characterize [x(2, D) for k& > D/2. These numbers are not so
regular as to yield simple recursive equations. It seems that for any fixed diameter, the widths
are unimodal with the maximum at D — 1. It also seems that [py1-x(2, D+ 1) < 2Ip_(2, D) for
k=0,1,2,and lD_H_k(Q,D + 1) > QZD_k(Q,D) for k> 3.

In what follows, we will first consider the asymptotic value of €(a - --a) when D tends to infinity.

More precisely, we will prove that the limit of

AX)E D —g(x)

exists when X = a---a, and we will provide a numerical recursive scheme for its computation. We
will also establish an upper bound (better than (3.14)) for arbitrary X. As a consequence of these
two results, we show that for any fixed degree (2d), the asymptotic difference between é(X') and

é(a---a) when the diameter goes to infinity is smaller than 0.22.

Let X € UB(d,D) and 0 < h < D. Define E"(X) to be the set of vertices that are at distance
no greater than D — h from X:

Ey(X)={Y| d(X.Y)< D - h}.

17



l(2,D)

k [UB(2,18) [ UB(2,19) | UB(2,20) | UB(2,21) | UB(2,22)
1 2 2 2 2 2
2 4 4 4 4 4
3 9 9 9 9 9
4 20 20 20 20 20
5 40 40 40 40 40
6 84 84 84 84 84
7 176 176 176 176 176
8 352 352 352 352 352
9 720 720 720 720 720
10 1469 1471 1472 1472 1472
11 2926 2936 2941 2943 2944
12 5865 5911 5934 5944 5949
13 11648 11846 11945 11991 12014
14 22444 232683 23680 23878 23977
15 41559 45081 46764 47588 48000
16 68474 83382 90549 93976 95660
17 79558 | 136638 | 166578 | 180959 | 187888
18 26793 | 158954 | 273450 | 333665 | 362679
19 53393 | 317504 | 547235 | 668397
20 106351 | 633746 | 1093347
21 212347 | 1266714
22 423855

18

Table 2: Widths in the shortest path trees of UB(2, D) rooted at a - - -




By definition, Eo(X) contains all the vertices of UB(d, D) and Ep(X) is a singleton. Let e;,(X) =
| EL(X)|/N be the proportion of vertices that are at distance no greater than D — h from X. Then,
eo(X)=1and ep(X)=1/N.

Lemma 3.2 Foranyd>2, D >2, and any X € UB(d, D),

. p-1 N A
(X)=D+ 57~ v ; en(X). (3.15)

Proof: For any 0 < h < D — 1, the set of vertices that are exactly at distance D — h from X is
En(X) — Eppa(X). Since Epyq(X) C Ep(X), we obtain that the number of vertices that are at
distance D — h from X is Nep(X)— Nepy1(X). Therefore,

D-1
fX) = 5 Y (D= WN(en(X) — enpa (X))
h=0
N
= o (Deo(X) — en(X) — ea(X) -+ = ep(X )
D-1
_ %(D—%—};eh()())

D-1 N =
N_—1 N_-1 D enlX).
h=1

= D+

We will first consider the vertices a---a. For simplicity of notation, we arbitrarily fix a letter
a € A, and denote £, = Fp(a---a), and e, = ep(a---a).

Let

Ph,k = {X|XIUAV,AI(Z---(Z, |A|Ik+h, |U|Ik},
Spr = {X|X=UAV, A=a---a, |[A|=k+h, |V|=k}.

Lemma 3.3 For any 0 < h < D,

where Ey j = Pr U Shk-
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Proof: Let X be a vertex in Py, where 0 < k < (D — h)/2. Then X = UAV, with A=a---a,
|A| = k+h and |U| = k. Thus, X can be reached from a - --a by first D — (k+ h) left shifts applied
to @ - --a introducing the suffix VV’, where V' is an arbitrary word with length k, and then & right
shifts introducing prefix U. The length of the corresponding path is D — (k+ h)+ k = D — h.
Hence X € Ej. Similarly, we can show that if X € Ry, j, then X € Fj,. Therefore,

E,2 U Ew (3.16)
0<k< [ P52

Suppose now that X is a vertex in Fj. Then, by Proposition 3.2, there exists a path (not
necessarily a shortest one) between a---a and X of the type LR or RL with r4+1 < D — h, where
r = |R|, | = |L|. Without loss of generality, suppose that this path is of the form LR. Thus X
can be written as X = UAV with U = a,---ay, A =a---a, V = by---bj_,, where [ > r (cf.
Proposition 3.2, where the equality holds when { = r = 0). It then follows that

Al=D—r—(-1)2D-(D-h)+r=r+h

Let A’ be the prefix of A with size r 4+ h. Then X can be written as X = UA'V’ so that X € P, .
Since |[V/| =D —r—(r+ h) > |V] >0, we get that r < (D — h)/2. Therefore,

E,C U Ews (3.17)
0<k< [ 252
Combining relations (3.16) and (3.17) readily implies the assertion of the lemma. [

For h > 1 and k > 0, let

| Enge — UNZS Bl

5 (3.18)

enk —
It then follows that
| 252

> enk (3.19)
k=0

Lemma 3.4 For any fired d > 2 and any p,q < |D/3],

P D-1 q 1-p
b oFIS JR o o B (s

h=1 k=0 h=1 h=1 k=0

20



Proof: Note first that

| Pk

enp < 20 = 2d=hk, 0<kh<D, 2k+h<D, (3.21)
which implies that
D—h
’ Cheh N ek 24"
kZ:;J enk < kZ:;J 2d < Z_:Qd = - (3.22)
Thus, for any p,q < | D/3],
- P g p 25"
Zeh = Zzeh, -I-Z Z enk T Z €n
h=1 h=1 k=0 h=1 k=qg+1 h=p+1
P g p L5 D-1 le R
DI ITTED S SIETE N S
h=1k=0 h=1k=g+1 h=p+1
p q 0 2d1 h
< ZZ%HZ Z 2704 D0
h=1 k=0 h=1 k=qg+1 hp—l—l
d=9 4 dt=p
=i -1

On the other hand, it is easy to see that

_hJ

D-1 n
> en Z
h=1 h=1

i M
-
agl

hence the result. [ |

Proposition 3.4 For any fived d > 2,

lim A Z Z Eh.k < dl) (323)

D=oo h=1 k=0

Proof: Let p=¢ = |D/3] in (3.20), and let D go to oo readily implies that the limit of Zh 1 €h
exists when D — oo and that

lim Zeh_ZZehk

D=oo h=1 k=0
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Applying Lemma 3.2 entails that

lim A(a Zzehk

D=eo h=1k=0
Using again inequality (3.21) yields
2d
S enr <233 dhk = -
h=1 k=0 h=1 k=0
The proof is thus completed. |

Observe that the relations (3.26), (3.27) and (3.31) provide a recursive scheme for the com-
putation of imp_.. A(a---a). The convergence of the series Y 32, > 72 epx is very fast. Good
precisions are obtained with computations stopped at quite small indices h, k. Indeed, Lemma 3.4

and Proposition 3.4 imply that for any n > 1,

Zn: Zn:ehk < hm Ala (Zn: Zn:e bk ) (di—l_l;)d_”. (3.24)

h=1 k=0 h=1 k=0

In view of the above results, we see that the computation of limit of A(a---a) can be carried
out on the values of e, ; for small & and k. We derive below a recursive computational scheme for
enk. This will be based on counting the proportion of words (of length D over the alphabet A)

fulfilling some conditions. This approach and some of the ideas can be found in [1].

Let C' be a condition on the words of length D over A. Let C' be the opposite condition of C'.
Two conditions €7 and C5 are said to be independent if they concern disjoint subgroups of letters

of the word. Let p(C') denote the proportion of words satisfying a condition C.

We recall the following basic computation rules which will be used in the remainder of the paper.

e The proportion of words satisfying C is 1 — p(C), i.e., p(C) =1 — p(C).

o If C1 and Cy are independent, then the proportion of words satisfying both C7 and Cy is
p(C1)p(Ca), i.e., p(C1,C2) = p(C1)p(Ca).

For h > 1 and k > 0, let

_ Pt — Prgel _ [Shp1 — Shl
L N = N
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k k
_|Ui=o Ph,j‘ B ‘Uj:o Sh,j‘
Yhk = N = N )
5 Prps1 — Uizg Ph,j‘ B ‘Sh,k-l-l —Uro Sh;
ok N - N

For k= -1, np,—1 = bp,—1 = |PX;°| =d". For k < —1, Yhk = 0. It is also clear that v, = d=".

Lemma 3.5 Forallh > 1 and k > 0 such that 2k +2+h < D,

g = (d — 1)d=(FH+2), (3.25)
Proof: The words in P ;41 are of the form xy - -2py1 Apy141V, where 1, -, 244 are arbitrary
letters, A; is a word of length ¢ with letter a, V' is an arbitrary word. The words in P}, j are of the

form xq -2 Ag4p V', Therefore, the words in Pj, p41 — Py are of the form zq - - 2paAp1144V,
where @ is an arbitrary letter in A — {a}. Thus, n, = -5+ (d - 1)/d. [

Lemma 3.6 Forallh > 1 and k > 0 such that 2k +2+h < D,

Vh+1 = Vhok + On k- (3.26)

Proof: The assertion comes from the fact that

k+1 k k
U Pl = U P+ | Prgsr — U Pyl -
7=0 7=0 7=0
[ |
Lemma 3.7 Forallh > 1 and k > —1 such that 2k +2+ h < D,
ongp = (1 - Vh,m;hj) N,k k> —1; (3.27)
= (1= kmn) ) (d= D)a~ D>, (3.28)
b 257

Proof: Asseen in the proof of Lemma 3.5, the words in P 41— P, 1 are of the form z1 - - -zpaAp 144V,
where a is an arbitrary letter in A — {a}. It then follows that these words will not appear in P ;
for all j such that j < k and 2j + h > k. Therefore,

k

Puojsr = Pk = Puogri— U Py, (3.29)
=l
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which, in turn, implies that

k 1552
Pugrr = U Prj = Pupsr = Pug— U Paye (3.30)
J=0 7=0

h=h
It is easily verified that the conditions for words to be in P py1 — Ppr and in U]L:% JP;LJ are
independent (the former is on @g41 - @2p4244 of word X = xq---zp, whereas the latter is on
21 ---2r). Therefore, relation (3.30) implies relation (3.27) according to the basic computation

rule. Relation (3.28) follows from those of (3.25) and (3.27). [

Proposition 3.5 For all h > 1 and k > 0 such that 2k + h < D/2,

enk = (2= Ynk-1— Vhk)Oh k-1, k> 0; (3.31)
eh,k = (2 — 7h,k—1 — ')/h,k) (1 — ’yhvl_%J) (d — 1)d_(k+h+1), k Z 1. (332)
Proof:
k-1
P UShie —UjSo Eh,j‘
TS ~
Py — Uiz, Eh,j‘ ‘Sh,k — Pox —UMZ) By
o N + N
Pak = U Py = USZ) S| | Sk = UBSS S — Uiz Pa
o N + N

Under the assumption that 2k + h < D /2, the conditions for words to be in P, j — Uf;é Py, ; and

in Uf;é Sh,; are independent (the former is on the left-half part of the word, whereas the latter is
on the right-half part of the word). Therefore,

| Phk = USZS Phj = USZo S|

N = Opp—1(1 = vp k1)
Similarly,
[ = USZ S — Ulmo Ph| s
v =0pp—1(1 —vnr).
Hence, relation (3.31) holds. Relation (3.32) follows from (3.27) and (3.31). [
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[ k=0 k=1 k=2 k=3 k=4 k=5 || S0 enn

€h,k

h=1 0.75000 | 0.10938 | 0.02246 | 0.01050 | 0.00381 | 0.00188 0.89802
h=2 0.43750 | 0.08984 | 0.04110 | 0.01524 | 0.00752 | 0.00342 0.59552
h=3 0.23438 | 0.05371 | 0.02612 | 0.01288 | 0.00560 | 0.00279 0.33547
h=4 0.12109 | 0.029053 | 0.01434 | 0.00713 | 0.00355 | 0.00166 0.17683
h=5 0.06152 | 0.01508 | 0.00750 | 0.00373 | 0.00186 | 0.00093 0.09062
h=6 0.03101 | 0.00768 | 0.00383 | 0.00191 | 0.00095 | 0.00048 0.04585

| S5 ienn || 1.63550 | 0.30473 [ 0.11624 | 0.05140 | 0.02330 | 0.01116 || 2.14232 |
[ e [[1.66667 | 0.31250 | 0.11914 | 0.05235 | 0.02388 [ 0.01146 || 2.18600 |

Table 3: A(a---a)in UB(2,D)

Lemmas 3.5, 3.6, 3.7 and proposition 3.5 enable us to compute recursively ej ;. In Table 3, we
indicate the values of ey, ;, in the case d = 2 for 1 < h <6 and 0 < & < 5. This gives already a lower
bound of 2.14 for A(a---a). In fact we have computed all the e for d = 2, h < 30 and &k < 85.
Results for e; are given in Table 4. The values are given with 10 digits but we have computed
them with infinity precision. Recall that having the values of e; we obtain the number of vertices
at distance exactly D — h. For instance we have 1 — ey ~ 10.03% of vertices at distance D from
(a---a)in the case d = 2. This table shows that most of the vertices are at distance D — h with h

small.

Finally, let us note that one can get closed formulae for é; where :

e = €nk (3.33)
h=1

We give below this formulae for 0 < k£ < 6.

. 2d+1

0T B2

X 2d% — 2d + 1

61 = T

X 2d6 — 4d® + 4d* + ® — 3d% + 1
€9 =

d°

ez = d719(2d" — 4d" 4 4d"° — 2d° + d® + 2d" — 3d® + 2d° — d* — 2d° + d* +2d — 1)
by = d7*(2d" — 4d" + 24" + 4d™ — 44" + d"* — 24" — d*° + 7d° — 6d" — d° + 5d°
—4d* 4 2d° — d* 4+ 2d — 1)

25



€h

R
D i1 €

0.8997111342

0.899711134

0.5988445366

1.498555671

0.3381424180

1.836698089

0.1784738644

2.015171953

0.0915215694

2.106693523

0.0463216922

2.153015215

0.0232996659

2.176314881

0.0116843542

2.187999235

Ol 0| ~I| | O | W N =D

0.0058507839

2.193850019

—
<

0.0029275407

2.196777560

—_
—_

0.0014643071

2.198241867

—
[N

0.0007322877

2.198974155

—
w

0.0003661774

2.199340332

o

0.0000000027

2.199706529

60

0.260 x 10~17

2.199706532

Table 4: A(a---a) in UB(2, D)
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85 = d—28(2d22 —Ad? 4 2420 4 440" — 648 4+ 40T 4+ d'6 — 60 4+ 14 4 8413 — 2412
—10d™ +11d"° — 2d° — 3d® — d® + 2d° — d* +2d — 1)

b6 = d7(—1+2d+8d"0 — d* + 2d** + 3d*° — 2d* + 6d° — 3d° 4 5d"® + d° — 2d" — 3d"*
—2d” — 2d" — 8d" — 2d"° — 2d"* 4 84" — 4d™® + 247 — 4d** + 2d*° — 4d*¢ + 24°7)

In Table 3, we also provided exact values of é; for d = 2. Again, we note that using only

S8 o €k gives a very good estimation of A(a---a).

Indeed it follows from Lemma 3.4 and Proposition 3.4 that for any ¢ > 0,

Zek < hm Ala (Z ek) % (3.34)

k=0

The following proposition gives values of limp_, A(a---a) for d < 7. There again we give

only truncated values with 5 decimals. The values given in parenthesis are approximation using

Proposition 3.6 In the de Bruijn network UB(d, D),

2.19970 d=2 (2.19151)
1.09605 d =3 (1.09556)
. 0.72359 d=4 (0.72353)
im Alaq---a) =
Am Al@-a) =9 a0 =5 (0.53751)
042652 d=6 (0.42652)
035304 d=7 (0.35303)

We now turn back to upper bounds for arbitrary vertex X. Let us consider an arbitrarily fixed

vertex X = x1---xp. Let

Pop(X) = {Z|Z=UXpiV, Xnk = CD-h—kt12D—h—k+2 - - ZD, |U| =k},
Sh,k(X) = {Z | Z = UXZ,kvv XfSL,k = 1&2 " Thk, |V| = k}v

Enp(X) = Pup(X)JShi(X)

Lemma 3.8 For any 0 < h < D,



Proof: The proof is analogous to the first part of the proof of Lemma 3.3, and is thus omitted. W

Proposition 3.7 For any fixed d > 2, and D > 2,

)

-1

ST en(X) > 6(d) — 2247, (3.35)
h=1
where
2d + 1 2d — 1 1 2 — S 42t — B+ 2 +d-1
o) =g+ B—(d—12 B+1  d—2d5+3d° —2d" —d®+3d> —3d+ 1 (3.36)

Proof: For 1 <h < D/2and 0 <k < (D —2h)/4, let
P (X)) = {Z=a1--axxp_p_p1®p—htt2 2DVl op o -bibr_1 b1 |

V1<i<k: ai# ep_p—it2, V1<j<k—1:b;#apjo1, Ohyop_o---0p # 21 Tpgh1}
Sz7k(X) = {Z=a-- 'aka§c+1 .. -a’h+2ka1x2 s xpagbrbr_1 - by |

. ! !
VI<i<k: a;#¥p_hit2, bi # Thoic1, Gy Qhyop # TD—h—kt1 """ TD}

It is clear that Py (X)) C Py p(X), 5} x(X) € Spx(X). Therefore, it follows from Lemma 3.8
that
Ex)2 U BaX)2 U (PD)US ).

0<k< [ B 0<k< | 252
Let
o Uogigiozan) (P U 81,(0)]
It then follows that
D-1 | 2]
> en(X) = > e (X). (3.37)
h=1 h=1

For any fixed 1 < h < D/2, the sets Py ,(X) and 5} ,(X), 0 <k < (D — 2h)/4, are disjoint:

P (X)(\P(X) = 0,  j<k, (3.38)
Sp(X))Sh(X) = 0, <k, (3.39)
PL(X))5(X) = 0, <k (3.40)
SN X) = 0, j<k (3.41)



Indeed, (3.38) comes from the constraint on P} ,(X) that for a;41 # @p-p—j41, so that for all
Z € Py (X), Z ¢ P ;(X). Relation (3.39) comes from the constraint on S , (X) that for b1y #
Thtj, 8o that for all Z € 5 ((X), Z ¢ 5}, .(X). Last, concerning relation (3.40),if j < k — 1, then
forall Z € P 1 (X), bjy1 # @pyj, so that Z ¢ P (X). If j =k — 1, then for all Z € P] (X)),
Vipok—o bk # 217 2ptr—1, so that Z ¢ P/, (X). Finally, if j = k, then for all Z € 5] ,(X),
Why1 " @hyop # 2D—h—k+1 " 2D, so that Z & P, (X). Relation (3.41) can be proved exactly in

the same manner.

Let apx = [P (X)I/N, Bux = |5, ((X)|/N. It is now clear that

| 272

en(X)= D (ang+Bur) (3.42)

k=0

It is also simple to see from the definitions of P/ ,(X) and S ,(X) that

apo = d—h (343)
d—1\F d—1\""!
. —(h+k) _ g~ (htk=1)
ah,k—('d)d (d)(ld )
_ d—(h—|—3k—1)(d _ 1)2k—1 (1 _ d—(h+k_1)) , (344)
Bro = q—" (1 B d—h) (3.45)
Bup = <—d — 1)k (1 - d—(h+k)) d= (k) (d __1)k
h.k d d
=30 (g _ 1)2k (1 _ d—(h+k)) ‘ (3.46)
Thus,
12] L5 1232
elh(X) = Z Z (Oéhjg + ﬁh,k)
h=1 h=1 k=0

LS (-]

L3) 12522
1 Z Z {d—(h-|—3k—1)(d _ 1)2k—1 (1 _ d—(h-|—k—1)) 1 d—(h-|—3k)(d _ 1)2k (1 _ d—(h-|—k))}
h=1 k=1

15
— Z {Qd_h _ d—?h}
h=1
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151 12522

h-|—3k 2k d )
L n e (e

5] 1272 2
_Z kZ::l 2h-|—4k)(d_1)2k (d_1+1)
L R Ry 28 (3.47)
where
g i {Qd‘h - d‘%}

151 1552

def d
I Y Z ~(h3R) (g — 1) (—d_1+1)
]’L:l :

151 1552

def 2h-|—4k 2k d2
= =) Z d= —1) — t 1
h=1 =

Some simple algebra yields

9 _94-l51 1 _ g-2l%]
d—1 d2-1

o=

2 1 2d- 151 g2l%!
i_1 #-1 d-1 Ta1

Hence,

2d+1 24-L7)
Fi > dz—l_ 11 (348)

We can also obtain a lower bound for F5:

gJI_D —2h

2d — 1 (d—1)
A )

S -1 E-d-1p > A7 - Zd_h( )

h=1
2012 Dok,
(2d-1)(d—-1) = -h  N= g-h ((d - 1)2) !
> B A Y-y
d3—(d—1)? = = d3
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(2d-1)(d-1) [1-d7l5] ((d

_ 1)2 %_1 1 - (%
3 S

3_(d—1)2 _
& (d—1) d—1 =
D_
241 (2d — 1)d~15] (24— 1)(d - 1) ((d—1)2)4 |
3 _(d—_112 B —(d—12  B_(d_112 3 Td-1
d3—(d-1) d3—(d-1) d3—(d-1) d 771
p_y (yaylz)
L Rd-nd-1) ((d— 1)2) e (m)
5 (d—1)2 3 1 _
& —(d—1) d B
It is easy to see that if d = 2, then,
D L]
poo 21 (2d - 1)d~1Z) (24— 1)(d - 1) ((d—1)2)4 L (E)
2 3 _(d_ 132 B _(d—_1\2 B _(d_1\2 3 Ty d=1
d3—(d-1) d3—(d—-1) d3—(d-1) d 1- 7
_ 21 3py 3 iaynyn, V2
- (d-1)? 7 7 V2 -1
N Uk SRR
d3®—(d—1)2 '
If, however, d > 3,
D_
hoL 24— (2d — 1)d~15] (24— 1)(d - 1) ((d—1)2)4 |
2 3 _(d—_112 B —(d—12  B_(d_112 3 Td-1
d3—(d-1) d3—(d-1) d3—(d-1) d 71
o 2d-1 (2d-1)d~l5)  (2d-1)d-1) & [
T OB (d_ 12 B _(d_12 B _(d—_12 (d_1y2 d=t _4°
d3—(d-1) d3—(d-1) d—(d-1)2 (d-1) 1
2d — 1 2d o d? 2d — 1 1 _D
s i Ly e s E R = R R
—(d-1) - —ld=1P d=1 T
2d — 1 1 D 27 3 1 D
3 _(d_ 1)2 2 _
& —(d— 12 3 232 Z 1
N Uk SNV
d®—(d—1)2
Therefore, for any d > 2,
2d — 1 _D

In a similar way, we obtain a lower bound for Fj3:

|51 1552

P = _Z Z d—(2h+4k)(d_1)2k( d

h=1 k=1
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d2—|—d 1ZZd 2h-|—4k )2k

h=1k=1

__d4d-1 (d-1) id_%
d—1  d*—(d-1)7? =

B d*>+d—-1 (d—1)? 1
B d—1 d*—(d-1)2 d?2-1
B 1
B d®+1
Hence,
1
F - — .
3 > Pl (3.50)
Combining relations (3.37), (3.47), (3.48), (3.49) and (3.50) readily entails (3.35). [
As a corollary of Lemma 3.2 and Proposition 3.7, we obtain
Corollary 3.2 Foranyd>2, D> 2, and any X € UB(d, D),
_ _D 1 _D
&(X)< D —6(d)+ 22d7 s +—1 (D—1-6(d)+22477), (3.51)
where 0(d) is defined in (3.36).
Proof: It follows from (3.15) and (3.35) that
D-1 1 D-1
e(X) D= en(X)+ ——- (D —1-> eh(X))
N -1
h=1 h=1
_D 1 _D
< D= 6(d) 422477 + (D—1-6(d)+22d77)
|
As a consequence of Proposition 3.4 and the above corollary, we obtain
Proposition 3.8 For any fired d > 2,
limsup (e(X)—é(a---a)) < (Z > eh,k) —0(d), (3.52)
D—eo h=1 k=0

where 0(d) is defined in (3.36).
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Proof: It follows from Proposition 3.4 that

limsup(e(X)—ée(a---a))

D—oo

= lim A(a---a) - liDmian(X)

D—oo
> (Z > €h,k) —0(d),
h=1 k=0
where the inequality comes from (3.51). [

Numerical results for small d are given below:

Proposition 3.9

0.2155
0.0393
0.0117
0.0045
0.0021
0.0011

limsup (e(X)—é(a---a)) <

D—oo

QAU K/ R AR

ll
O U WD

4 Conclusions

In this paper, we have provided upper and lower bounds of the mean eccentricities of the de Bruijn
networks. For the directed de Bruijn network, we have presented tight bounds as well as the ex-
tremal vertices which reach these bounds. For the undirected de Bruijn network, we have provided
lower and upper bounds which differ from the diameter by some small constants. We conjecture
that the vertices of the form «a---a have the largest mean eccentricity. This conjecture has been
verified by numerical computations for binary de Bruijn networks with diameters up to 18. We
have shown that the asymptotic difference, when the diameter goes to infinity, between the mean
eccentricities of an arbitrary vertex and that of @ ---a is a small constant tending to zero with the
degree. We have also provided a simple recursive scheme for the computation of the asymptotic
mean eccentricity of the vertices a---a.

We have proved that in both directed and undirected de Bruijn networks, all the mean eccen-
tricities tend to the diameter when the degree goes to infinity. This implies that when the degree is
large, the simple routing algorithm which consists of doing left shifts all the time or right shifts all
the time is more efficient than optimal routing algorithms. In general, the gain of applying optimal
routing algorithms is quite limited, even without considering their overheads.
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