Fault tolerant on-board networks with priorities

J.-C. Bermond* and F. Havet*,
Projet Mascotte, CNRS/INRIA/UNSA,
INRIA Sophia-Antipolis,
2004 route des Lucioles BP 93,
06902 Sophia-Antipolis Cedex, France
bermond,fhavet@sophia.inria.fr

and

C. D. Tóth
Department of Mathematics
MIT, Room 2-336
Cambridge, MA 02139, USA.
toth@math.mit.edu

September 19, 2005

Abstract

We consider on-board networks in satellites interconnecting entering signals (inputs) to amplifiers (outputs). The connections are made via expensive switches, each of which has four available links. The paths connecting inputs to outputs should be link-disjoint. Some of the input signals, called priorities, must be connected to the amplifiers which provide the best quality of service (that is, to some specific outputs). In practice, amplifiers are prone to fail and the faults cannot be repaired. Therefore, extra outputs have to be built into the network to ensure that every input can be routed to operational outputs. Given three integers, n, p, and f, we would like to design a low cost network (where the network cost is proportional to the total number of switches) such that it is possible to route all n inputs to n operational amplifiers, and to route the p priorities to the p best quality amplifiers for any set of f faulty and p best-quality amplifiers. Let $R(n, p, f)$ be the minimum number of switches of such a network. We prove here that $R(n, p, f) \leq \frac{n+f}{2} \lceil \log_2 p \rceil + \frac{5}{2}(n-p) + g(f)$ with g a function depending only on f. We then compute $R(n, p, f)$ exactly for a few small values of p and f.

keywords: network design, on-board network, fault tolerance, vulnerability

1 Introduction

Modern telecommunication satellites are very complex to design. Components are often prone to failure, and so providing robustness at the lowest possible cost is an important issue for the

*The work of these authors was partially supported by the European project FET-CRESCCO
manufacturers. A key component of telecommunication satellites is an interconnection network which allows one to redirect signals received by the satellite to a set of amplifiers where the signals will be retransmitted. The network is made of expensive switches; so we want to minimize their number subject to the following conditions: each input (respectively output) is adjacent to exactly one link; each switch is adjacent to at most four links; there are \(n \) inputs (signals) and \(n + f \) outputs (amplifiers); among the \(n + f \) outputs, \(f \) are allowed to fail (all failures are irreversible). All the input signals should be sent to operational outputs via link-disjoint paths. Designing such networks is a complex problem that was proposed by Alcatel Space Industries and partial solutions are given in [4] and [6]. Alcatel Space Industries proposed also to consider the case where each signal needs a specific amplifier; that leads to design a network realizing any permutation from the inputs to the outputs (see [2, 3]). Recently it posed the following new problem. Out of the total of \(n \) inputs, \(p \) are called priorities and must be connected to the amplifiers providing the best quality of service (that is, to some specific outputs) and the other signals should be sent to other amplifiers. Note that the priority signals are given, but the amplifiers providing the best quality service change with the position of the satellite and so for any set of \(f \) failed outputs, the network should be able to route the signals to operational outputs such that it routes the \(p \) priorities to any given subset of \(p \) operational outputs.

This problem can be restated more formally as follows:

Definition 1 An \((n, p, f)\)-network \(G \) is a graph \((V, E)\) where the vertex set \(V \) is partitioned into four subsets \(P, I, O \) and \(S \) called respectively the *priorities*, the *ordinary inputs*, the *outputs* and the *switches*, satisfying the following constraints:

- there are \(p \) priorities, \(n - p \) ordinary inputs and \(n + f \) outputs;
- each priority, each ordinary input and each output is connected to exactly one switch;
- switches have degree at most 4.

An \((n, p, f)\)-network is a *repartitor* if for any disjoint subsets \(F \) and \(Q \) of \(O \) with \(|F| = f\) and \(|Q| = p\), there exist \(n \) edge-disjoint paths in \(G \) such that \(p \) of them connect \(P \) to \(Q \) and the \(n - p \) others connects \(I \) to \(O \setminus (Q \cup F) \). The set \(F \) corresponds to the set of failures and \(Q \) to the set of amplifiers providing the best quality of service. We denote by \(R(n, p, f) \) the minimum number of switches (i.e., the cardinality of \(S \)) of a \((n, p, f)\)-repartitor. An \((n, p, f)\)-repartitor with \(R(n, p, f) \) switches will be called a *minimum repartitor*.

Problem 2 Determine \(R(n, p, f) \) and construct minimum (or almost minimum) repartitors.

The problem is interesting for every integer \(n \) and \(f \) and for every \(p \), \(0 \leq p \leq n \). In this paper, we focus on fixed values of \(p \) and \(f \); we give asymptotic bounds on \(R(n, p, f) \) if \(n \) goes to infinity. In current application networks, the number of input signals \(n \) is around 15 and the numbers of priorities \(p \) and extra amplifiers \(f \) range from 0 to \(n/2 \). As technology progresses, satellite parts are getting smaller and more reliable, and so the number of inputs is expected to increase in the future followed by a modest increase in the number of priorities and tolerable amplifier failures.

As indicated above, the problem with no priority (that is, \(p = 0 \)) has been considered in [4] and partially solved in [6]. In [4], it is shown that \(R(n, 0, 1) = R(n, 0, 2) = n \). In [6], it is proved that \(\frac{2n}{f} - O\left(\frac{n}{f}\right) \leq R(n, 0, f) \leq \frac{2n}{f} + g(f) \) with \(g \) a function depending only on \(f \). The minimum repartitor size is also bounded for small values of \(f \): \(R(n, 0, 4) = n + \left\lceil \frac{n}{4} \right\rceil \),
\(R(n, 0, 6) = n + \frac{n}{2} + \sqrt{\frac{n}{3}} + O(1), \ R(n, 0, 8) = n + \frac{n}{3} + \frac{\sqrt{n}}{3} + O(\sqrt{n}), \ R(n, 0, 10) = n + \frac{3n}{8} + \Theta(\sqrt{n}) \)

and \(R(n, 0, 12) = n + \frac{3n}{8} + O(\sqrt{n}) \).

Repartitors with no priorities, also called selectors, are somewhat similar to concentrators [7].

An \((n,m)\)-concentrator, \(m \leq n\), is a directed acyclic graph with maximal degree 4 that has \(n\) distinguished input vertices and a disjoint set of \(m\) distinguished output vertices such that for any subset \(A\) of \(m\) inputs there exists a set of \(m\) vertex-disjoint paths connecting \(A\) to the outputs. Researchers have studied the minimum number of edges of an \((n,m)\)-concentrator. In our problem, we minimize the number of switches of selectors, which is similar to minimizing the number of edges since every switch has degree at most 4, and so the number of edges of a minimum \((p,n)\)-selector is at most twice the number of its switches. Havet [8] constructed reparitors based on techniques used for designing concentrators [1, 9]. However, these reparitors are far from optimal, especially when the number of inputs or priority inputs is small, because one step of this method emulates high degree vertices by small subnetworks with switches of degree 4.

In this paper, we study \((n,p,f)\)-reparitors when \(p\) is not zero. We first give a general upper bound for \(R\):

\[
R(n, p, f) \leq n + \frac{f}{2} \left\lfloor \log_2 p \right\rfloor + \frac{5}{2}(n - p) + g(f),
\]

where \(g\) is a function of \(f\). We then give optimal or near optimal bounds on \(R(n, p, f)\) for small values of \(p\) and \(f\):

<table>
<thead>
<tr>
<th>(R(n, p, f))</th>
<th>(p = 1)</th>
<th>(p = 2)</th>
<th>(p = 3)</th>
<th>(p = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f = 0)</td>
<td>(n - 1)</td>
<td>(\left\lfloor \frac{3n}{2} - 3 \right\rfloor)</td>
<td>(\frac{3n}{2} + \sqrt{n} + \Theta(1))</td>
<td>(\frac{7n}{4} + \Theta(1))</td>
</tr>
<tr>
<td>(f = 1)</td>
<td>(\left\lfloor \frac{3n-1}{2} \right\rfloor)</td>
<td>(\frac{3n}{2} + \sqrt{n} + \Theta(1))</td>
<td>(\frac{7n}{4} + \Theta(1))</td>
<td></td>
</tr>
<tr>
<td>(f = 2)</td>
<td>(\left\lfloor \frac{3n-1}{2} \right\rfloor)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We present our general bounds in Section 2. Our lower bounds in Section 3 are based on a minimum cut maximum flow type criterion, a sensible classification of connected subgraphs, and elementary graph theory. In Section 4, we present a few explicit constructions and prove that they are indeed reparitors.

2 General upper bounds

In this section, we give an upper bound on \(R(n, p, f)\). We first give an inductive construction of \((n,p,0)\)-networks and then construct an \((n,p,f)\)-reparator from an \((n - p, 0, f)\)-reparator and an \((n + f, p, 0)\)-reparator.

Clearly, \(R(n, p, f)\) grows as a function of \(f\) since an \((n,p,f)\)-reparator may be obtained from an \((n,p,f')\)-reparator (with \(f' \geq f\)) by deleting any set of \(f' - f\) outputs. Moreover, priority signals and ordinary signals play symmetric roles: Swapping the ordinary inputs and the priorities is a one-to-one mapping between \((n,p,f)\)-reparitors and \((n,n-p,f)\)-reparitors.
Proposition 3 (i) If \(f \leq f' \) then \(R(n, p, f) \leq R(n, p, f') \);
(ii) \(R(n, p, f) = R(n, n - p, f) \).

Proposition 4
\[R(n, 1, 0) \leq n - 1. \]

Proof. Let \(G \) be the graph with one priority \(p_1 \), ordinary input set \(\{i_1, i_2, \ldots, i_{n-1}\} \), output set \(\{o_1, o_2, \ldots, o_n\} \) and switch set \(\{s_1, s_2, \ldots, s_{n-1}\} \) such that \((p_1, s_1, s_2, \ldots, s_{n-1}, o_n) \) is a path and for \(l, 1 \leq l \leq n - 1 \), \(i_l \) and \(o_l \) are adjacent to \(s_l \). (See Figure 1.) We claim that \(G \) is an \((n, 1, 0)\)-repartitor. Indeed, suppose that \(o_j \) is the priority output. Since \(o_{n-1} \) and \(o_n \) are equivalent, we may suppose that \(j \neq n \). The desired paths are \(P_0 = (p_1, s_1, s_2, \ldots, s_j, o_j), P_j = (i_j, s_j, s_{j+1}, \ldots, s_{n-1}, o_n) \) and \(P_l = (i_l, s_l, o_l) \), for \(l \neq j, 1 \leq l \leq n - 1 \).

Lemma 5 For \(n \geq p \geq 1 \),
\[(i) \quad R(2n, 2p, 0) \leq 2R(n, p, 0) + n - 1, \]
\[(ii) \quad R(2n + 1, 2p, 0) \leq R(n + 1, p, 0) + R(n, p, 0) + n, \]
\[(iii) \quad R(2n, 2p + 1, 0) \leq R(n, p + 1, 0) + R(n, p, 0) + n, \]
\[(iv) \quad R(2n + 1, 2p + 1, 0) \leq R(n + 1, p + 1, 0) + R(n, p, 0) + n. \]

Proof. (i) Let \(G^1 \) and \(G^2 \) be two \((n, p, 0)\)-repartitors. For \(i = 1, 2 \), let \(I^i, P^i, O^i = \{o_1^i, o_2^i, \ldots, o_n^i\} \) and \(S^i \) be the ordinary input set, priority set, output set and switch set of \(G^i \). Let \(H \) be a graph defined as follows: its ordinary input set is \(I = I^1 \cup I^2 \), its priority set is \(P = P^1 \cup P^2 \), its switch set is \(S^1 \cup S^2 \cup S \) with \(S = \{s_1, s_2, \ldots, s_{n-1}\} \) and its output set is \(O = \{o_1, o_2, \ldots, o_{n-1}\} \cup \{o_1^1, o_2^1, \ldots, o_n^1\} \cup \{o_1^2, o_2^2, \ldots, o_n^2\} \); \(H \) contains the edges of \(G^1 \) and \(G^2 \) except the edges incident to \(o_j^1 \) and \(o_j^2 \) for \(1 \leq j \leq n - 1 \). Furthermore, for every \(1 \leq j \leq n - 1 \), \(s_j \) is linked to \(o_j \), \(o_j^j \), the switch adjacent to \(o_j^j \) in \(G_1 \) and the switch adjacent to \(o_j^j \) in \(G_2 \). See Figure 2 (i) for an illustration.

We claim that \(H \) is a \((2n, 2p, 0)\)-repartitor. Indeed, let \(Q \) be a \(2p \)-subset of \(O \). Clearly, one can partition \(O \) into two \(n \)-sets \(O_1 \) and \(O_2 \) such that for \(i = 1, 2 \), \(o_j^i \in O_i \), \(|Q \cap O_i| = p \) and \(\forall 1 \leq j \leq n - 1, |O_i \cap \{o_j^i, o_j^j\}| = 1 \). For \(i = 1, 2 \), let \(Q_i = Q \cap O_i \). Since \(G^1 \) and \(G^2 \) are \((n, p, 0)\)-repartitors, there are edge-disjoint paths joining \(P^i \) to \(Q_i \) and \(I^i \) to \(O_i \setminus Q_i \). Hence, there are edge-disjoint paths joining \(P \) to \(Q \) and \(I \) to \(O \setminus Q \).

The proofs of (ii), (iii) and (iv) are analogous and are omitted. Figure 2 (ii)—(iv) shows the schematic construction of \(H \) in these three cases.
Theorem 6

\[R(n, p, 0) \leq \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \log_2 p \right\rceil + n - p. \]

Proof. We proceed by induction on \(p \). The inequality holds for \(p = 1 \) by Proposition 4.

Suppose that the inequality holds for every \(p' < p \). Assume first that \(p \) and \(n \) are even. By Lemma 5 (i),

\[R(n, p, 0) \leq 2R(n/2, p/2, 0) + n/2 - 1. \]

By the induction hypothesis,

\[R(n, p, 0) \leq 2 \left\lfloor \frac{n}{4} \right\rfloor \left\lceil \log_2(p/2) \right\rceil + n/2 - p/2 + n/2 - 1. \]

Since \(2 \left\lfloor \frac{n}{4} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor \), we obtain

\[R(n, p, 0) \leq \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \log_2(p/2) \right\rceil + n - p + n/2 - 1. \]

Because \(\left\lceil \log_2(p/2) \right\rceil + 1 = \left\lceil \log_2(p) \right\rceil \), we obtain

\[R(n, p, 0) \leq \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \log_2 p \right\rceil + n - p - 1. \]

If \(p \) or \(n \) is odd, we obtain the result analogously by Lemma 5 (ii), (iii) and (iv).
Lemma 7 For $p \leq n$,

$$R(n, p, f) \leq R(n - p, 0, f) + R(n + f, p, 0).$$

Proof. Let G_1 be an $(n - p, 0, f)$-repartitor with output set $O^1 = \{o^1, o^2, \ldots, o^{1}_{n+f-p}\}$ and let G_2 be an $(n + f, p, 0)$-repartitor with ordinary input set $I^2 = \{i^2_1, i^2_2, \ldots, i^2_{n+f-p}\}$. Let G be the network obtained from the union of G_1 and G_2 by replacing each pair $\{o^1_j, i^2_j\}$ by an edge between their neighboring switches. (See Figure 3.) We show that G is an (n, p, f)-repartitor.

Let $P = \{m_1, m_2, \ldots, m_p\}$ the set of priorities of G_2 be that of G, $I = \{i_1, i_2, \ldots, i_{n-p}\}$ the input set of G_1 be the ordinary input set of G, and $O = \{o_1, o_2, \ldots, o_{n+f}\}$ the output set of G_2 be that of G. Let Q and F be two disjoint subsets of O with cardinalities p and f respectively. Since G_2 is a repartitor there exists a set of edge-disjoint paths $\{P_1, P_2, \ldots, P_p\} \cup \{Q_1, Q_2, \ldots, Q_{n+f-p}\}$ such that for $1 \leq j \leq p$, P_j links m_j to an element of Q and for $1 \leq j \leq n + f - p$, Q_j links i^2_j to an element of $O \setminus Q$. Let J be the set of indices j such that Q_j ends in a vertex of F. Set $F^1 = \{o^1_j, j \in J\}$. Since G_1 is an $(n - p, 0, f)$-repartitor, there are edge-disjoint paths R_l in G_1 $1 \leq l \leq n - p$ such that R_l links i_l to a vertex $o^1_{\phi(l)}$ that is not in F^1 for some function ϕ. Now the union of the paths R_l and $Q_{\phi(l)}$ induces a path P'_l in G which joins i_l to $o_{\phi(l)} \in O \setminus (Q \cup F)$. The paths P'_l, $1 \leq l \leq n - p$, and the paths P_j, $1 \leq j \leq p$, are obviously edge-disjoint. \blacksquare

Theorem 8

$$R(n, p, f) \leq \frac{n + f}{2} \lfloor \log_2 p \rfloor + \frac{5}{2}(n - p) + g(f),$$

where $g(f)$ is a function depending on f only.

Proof. By Lemma 7, $R(n, p, f) \leq R(n - p, 0, f) + R(n + f, p, 0)$. By Theorem 6, $R(n + f, p, 0) \leq n + f - p + \frac{n + f}{2} \lfloor \log_2 p \rfloor$ and it is proved in [6] that $R(n - p, 0, f) \leq \frac{3}{2}(n - p) + g(f)$. \blacksquare

3 Lower bounds

Before we proceed with the lower bounds on $R(n, p, f)$, we make two observations on the structure of minimum repartitors. We first show that we can assume without loss of generality that
in a minimum repartitor all switches, with the exception of at most one, have degree 4. Let
\(\epsilon(f) = 1 \) if \(f \) is odd and 0 otherwise.

Proposition 9 There is a minimum \((n, p, f)\)-repartitor with \(\epsilon(f)\) switches of degree 3 and all the others with degree 4.

Proof. Let \(R \) be a minimum \((n, p, f)\)-repartitor with the minimum number of switches with degree less than 4.

Obviously, \(R \) has no switches of degree 0 or 1 otherwise the network obtained by removing them is also a repartitor, which contradicts the minimality of \(R \). Similarly, \(R \) has no switch of degree two. If a switch \(S \) had degree two, then we obtain a smaller valid repartitor by removing \(S \) and connecting its neighbours by an edge.

\(R \) has at most one switch of degree 3, otherwise the network obtained from \(R \) by adding an edge between two switches of degree 3 is an \((n, p, f)\)-repartitor with fewer switches of degree less than 4. Since there is an even number of odd degree vertices in every graph, \(R \) has \(\epsilon(f)\) switches of degree 3. \(\square\)

In the remainder of Section 3, we assume that every \((n, p, f)\)-repartitor has exactly \(\epsilon(f)\) switches of degree 3. Next, we show that every switch is connected to at most one input.

Proposition 10 In a minimum \((n, p, f)\)-repartitor, a switch is connected to at most one ordinary input and at most one priority.

Proof. Let \(R \) be an \((n, p, f)\)-repartitor containing a switch \(s \) connected to at least two ordinary inputs \(i_1 \) and \(i_2 \). Let \(v_1 \) and \(v_2 \) be the two neighbours of \(s \) distinct from \(i_1 \) and \(i_2 \). Then the \((n, p, f)\)-network obtained from \(R \) by removing \(s \) and adding the two edges \((i_1, v_1)\) and \((i_2, v_2)\) is also a repartitor and \(R \) is not minimum, a contradiction. The same proof works if both \(i_1 \) and \(i_2 \) are priority inputs. \(\square\)

It follows that there are more switches than ordinary inputs.

Corollary 11

\[
R(n, p, f) \geq n - p.
\]

3.1 Cut criterion

One main tool to obtain lower bounds is to use the following cut criterion which gives necessary conditions for a network to be a repartitor. Let \(W \) be a set of vertices in a graph \(G \). We denote by \(in(W) \) (resp. \(out(W), pr(W) \)) the cardinality of the set \(In(W) \) (resp. \(Out(W), Pr(W) \)) of ordinary inputs (resp. outputs, priorities) of \(W \). We denote by \(deg(W) \) the number of edges incident to exactly one vertex in \(W \).

Proposition 12 (Cut criterion) Let \(G \) be an \((n, p, f)\)-repartitor and \(W \) be a set of vertices of \(G \).

(i) If \(p + f \leq out(W) \) then \(deg(W) \geq in(W) - out(W) + 2p + f - pr(W) \).

7
(ii) If \(p \leq \text{out}(W) \leq p + f \) then \(\text{deg}(W) \geq \text{in}(W) + p - \text{pr}(W) \).

(iii) If \(\text{out}(W) \leq p \) then \(\text{deg}(W) \geq \text{in}(W) + |\text{out}(W) - \text{pr}(W)| \).

(iv) \(\text{deg}(W) \geq \text{in}(W) + \text{pr}(W) - \max(0, \text{out}(W) - f) \).

Proof.

(i) Suppose that \(p \) outputs of \(\text{Out}(W) \) are in \(Q \) and \(f \) others are faulty. Then \(\text{in}(W) - \text{out}(W) + p + f \) paths from an ordinary input to an output of \(O \setminus Q \) leave \(W \), and \(p - \text{pr}(W) \) paths from priorities enter \(W \). Since all these paths are edge-disjoint they go through different edges with an end in \(W \) and the other not in \(W \). Thus, \(\text{deg}(W) \geq \text{in}(W) - \text{out}(W) + 2p + f - \text{pr}(W) \).

(ii) Suppose that \(p \) outputs of \(\text{Out}(W) \) are in \(Q \) and \(\text{out}(W) - p \) others are faulty. Then \(\text{in}(W) \) paths from an ordinary input to an output leave \(W \) and \(p - \text{pr}(W) \) paths from priorities enter \(W \). Thus, \(\text{deg}(W) \geq \text{in}(W) + p - \text{pr}(W) \).

(iii) Suppose that \(\text{out}(W) \) outputs of \(\text{Out}(W) \) are in \(Q \). Then \(\text{in}(W) \) paths from an ordinary input to an output leave \(W \). If \(\text{out}(W) \geq \text{pr}(W) \) then \(\text{out}(W) - \text{pr}(W) \) paths from priorities enter \(W \) and if \(\text{out}(W) \leq \text{pr}(W) \) then \(\text{pr}(W) - \text{out}(W) \) paths from priorities leave \(W \). Thus, \(\text{deg}(W) \geq \text{in}(W) + |\text{out}(W) - \text{pr}(W)| \).

(iv) Suppose that \(\min(\text{out}(W), f) \) outputs of \(\text{Out}(W) \) are faulty. Then \(\text{in}(W) + \text{pr}(W) - \max(0, \text{out}(W) - f) \) paths leave \(W \).

3.2 A bipartite graph on blocks and switches

We express the size of a minimum repartitor in terms of the number of switches with no inputs. By Proposition 10, we can distinguish two kinds of switches in a minimum \((n, p, f)\)-repartitor: An *ordinary switch* is a switch adjacent to an ordinary input. A *usual switch* is a switch that is not an ordinary switch. Let \(S_o \) (resp. \(S_u \)) denote the set of ordinary (resp. usual) switches and \(s_o \) (resp. \(s_u \)) their cardinality. Counting the ordinary inputs, we have \(s_o = n - p \). Hence the total number of switches is

\[
N = n - p + s_u.
\]

Thus, a minimum \((n, p, f)\)-repartitor is a repartitor with the fewest possible *usual switches*.

In order to obtain lower bounds for \(s_u \), we consider the total number \(\Sigma \) of all edges incident to usual switches such that we count twice the edges between two vertices of \(S_u \). To avoid this weight problem, we insert a *link vertex* \(b_e \) in the middle of every edge \(e \) incident to two vertices of \(S_u \). Let \(\tilde{G} \) be the graph obtained from \(G \) by replacing each edge \(e = (s, s') \) between two usual switches by the path \((s, b_e, s') \). After this transformation, \(\Sigma \) is the number of edges of \(\tilde{G} \) between \(S_u \) and \(G - S_u \). Note that our *cut criterion* (Proposition 12) holds for \(\tilde{G} \), too.

Following a definition of [6], let us call the connected components of \(\tilde{G} - S_u \) *blocks*. A crucial observation in our argument is that \(\Sigma \) is the number of edges of a bipartite graph between \(S_u \) and the blocks. We distinguish two kinds of blocks, the *principal blocks* correspond to connected components of \(G - S_u \) and *link blocks* correspond to a link vertex. Note that by the definition of block, every input or output incident to a switch in a block is also part of the block. We can deduce the following easy bound on the number of edges between a block \(B \) and \(S_u \).

Proposition 13 For every block \(B \), \(\text{deg}(B) \leq \text{in}(B) + 2 - \text{out}(B) - \text{pr}(B) \).
Proof. The statement holds trivially for link blocks, since all of them are of degree 2. By definition, a principal block B has $\text{in}(B)$ switches. Let $e(B)$ be the number of edges connecting two switches of B. There are $\text{in}(B)$ (resp. $\text{out}(B)$, $\text{pr}(B)$) edges linking inputs (resp. outputs, priorities) to switches. Thus, $\deg(B) = \lceil \sum_{v \text{ switch}} \deg(v) \rceil - 2e(B) - \text{in}(B) - \text{out}(B) - \text{pr}(B)$. Since B is connected then $e(B) \geq \text{in}(B) - 1$. Since the degree of every switch is at most 4, we obtain $\deg(B) \leq 4\text{in}(B) - 2e(B) - \text{in}(B) - \text{out}(B) - \text{pr}(B) \leq \text{in}(B) + 2 - \text{out}(B) - \text{pr}(B)$. \hfill \blacksquare

Remark 14 Note that if equality holds in Proposition 13, then every switch has degree four.

We list a few immediate consequences of the cut criterion (Proposition 12) for a block B.

Proposition 15 Let B be a block of \tilde{G}.

(i) $\text{pr}(B) \leq 1$.

(ii) If $p \geq 2$ then $\text{out}(B) \leq 1$.

(iii) If $f \geq 1$, then $\text{out}(B) + \text{pr}(B) \leq 1$.

Proof. (i) If B has two or more priorities, then by Proposition 13, $\deg(B) \leq \text{in}(B) - \text{out}(B)$. This contradicts Proposition 12 (iv).

(ii) Suppose that B contains two or more outputs. We distinguish three cases: If $\text{out}(B) \geq p + f$, then $\deg(B) \geq \text{in}(B) + 1 - \text{out}(B) - \text{pr}(B)$ by Proposition 12 (i) contradicting Proposition 13. If $p \leq \text{out}(B) \leq p + f$, then $\deg(B) \geq \text{in}(B) + 2 - \text{pr}(B)$ by Proposition 12 (ii) contradicting Proposition 13. Finally, if $p \geq \text{out}(B)$, then $\deg(B) \geq \text{in}(B) + \text{out}(B) - \text{pr}(B)$ by Proposition 12 (iii) contradicting Proposition 13.

(iii) If B has one priority and one output then by Proposition 13, $\deg(B) \leq \text{in}(B)$. This contradicts Proposition 12 (iv) if $f \geq 1$. \hfill \blacksquare

In the remainder of this section, we assume that either $p \geq 2$ or $p = 1$ and $f \geq 1$. Indeed the case $p = 1$, $f = 0$ is already solved by Proposition 4 and Corollary 11.

We partition the blocks into the following four sets:

- B'_p, the set of blocks having one priority and one output;
- B_p, the set of blocks having one priority and no output;
- B_1, the set the blocks having no priority and one output;
- B_0, the set of blocks having no priority and no output (including the link blocks).

Remark 16 Note that if $f \geq 1$, then B'_p is empty.

Proposition 17 Every block $B \in B'_p$ satisfies $\deg(B) = \text{in}(B)$. Every block $B \in B_1 \cup B_p$ satisfies $\deg(B) = \text{in}(B) + 1$.

9
Proof. It follows directly from Propositions 12 (iii) and 13.

Remark 18 Note that in a block of $B_p' \cup B_p \cup B_1$ every switch has degree four by Remark 14.

Proposition 19 A block $B \in B_0$ of a minimum (n, p, f)-repartitor satisfies $\deg(B) = \text{in}(B) + 2$ unless it contains the only vertex switch of degree 3 in which case $\deg(B) = \text{in}(B) + 1$.

Proof. If B is a link block, then $\deg(B) = 2 = \text{in}(B) + 2$. Assume now that B contains switches. Let $e(B)$ be the number of edges between pairs of switches of B. By Proposition 12:

\[\deg(B) \geq \text{in}(B). \quad (a) \]

In the proof of Proposition 13, we had $\deg(B) = \sum_v \text{deg}(v) - 2e(B) - \text{in}(B)$. Thus, if one switch has degree 3 then

\[\deg(B) = 3\text{in}(B) - 2e(B) - 1. \quad (b) \]

Since $e(B) \geq \text{in}(B) - 1$, Equations (a) and (b) yield $\deg(B) = \text{in}(B) + 1$.

If every switch has degree four we obtain

\[\deg(B) = 3\text{in}(B) - 2e(B). \quad (c) \]

Because $e(B) \geq \text{in}(B) - 1$, Equations (a) and (c) yield $\deg(B) = \text{in}(B) + 2$ or $\deg(B) = \text{in}(B)$. Now if $\deg(B) = \text{in}(B)$, then the graph obtained by removing the switches of B and linking one to one the ordinary inputs of B to the neighbours of B is also an (n, p, f)-repartitor. This contradicts the minimality of G. So $\deg(B) = \text{in}(B) + 2$.

Let b_0, b_1, b_p and b_p' be the cardinalities of B_0, B_1, B_p and B_p' respectively. We denote the number of ordinary inputs which are in a block of B_0 (resp., B_1, B_p, and B_p') by n_0 (resp., n_1, n_p, and n_p').

Let $\epsilon(f) = 0$ if f is even, let $\epsilon'(f) = 1$ if f is odd and the switch of degree 3 is usual, and let $\epsilon'(f) = -1$ otherwise.

We summarize a few equations for further reference.

Proposition 20 We have the following equalities:

\[b_1 + b_p' = n + f. \quad (1) \]
\[b_p' = 0 \quad \text{if} \quad f \geq 1. \quad (2) \]
\[b_p + b_p' = p. \quad (3) \]
\[n_1 + n_0 + n_p + n_p' = n - p. \quad (4) \]
\[4s_u = 2n + f + 2b_0 - 2b_p' + \epsilon'(f). \quad (5) \]
Proof. (1) there is a one-to-one correspondence between blocks of $B_1 \cup B_1'$ and the outputs they contain.
(2) is Remark 16.
(3) there is a one-to-one correspondence between blocks of $B_p \cup B_p'$ and the priorities they contain.
(4) is obtained by noting that the $n - p$ ordinary inputs are in blocks.
(5) double counts the edges between usual switches and blocks. On one side, there are $4s_u$ edges (minus $\epsilon'(f)$ if the switch of degree 3 is a usual one). On the other side, we have by Proposition 17, n'_p edges incident to blocks of B_p', $n_p + b_p$ edges incident to blocks of B_p and $n_1 + b_1$ edges incident to blocks of B_1 and by Proposition 19, $n_0 + 2b_0$ edges incident to blocks of B_0 (or $n_0 + 2b_0 - 1$ if the switch of degree 3 is in a block of B_0). Thus $4s_u = n'_p + n_p + b_p + n_1 + b_1 + n_0 + 2b_0 + \epsilon'(f)$. Then by (1), (3) and (4), we obtain the result. ■

3.3 The lower bounds

Theorem 21 If $f \geq 1$, then

$$R(n, p, f) \geq \frac{3n}{2} - p + \frac{f + \epsilon(f)}{4}.$$

Proof. By (5) and (2), $s_u = n/2 + (f + 2b_0 + \epsilon'(f))/4$. Now if $\epsilon'(f) = -1$, by Remark 18, the switch of degree 3 is in a block of B_0; hence $b_0 \geq 1$. Therefore $s_u \geq n/2 + (f + \epsilon(f))/4$. As $N = n - p + s_u$, we obtain $R(n, p, f) \geq \frac{3n}{2} - p + \frac{f + \epsilon(f)}{4}$. ■

Theorem 22

$$R(n, 2, 0) \geq \frac{3n}{2} - 3.$$

Proof. By (5), $s_u \geq n/2 - b'_p/2 \geq n/2 - 1$. Then $R(n, 2, 0) \geq \frac{3n}{2} - 3$. ■

In the remainder of this section, we will suppose $p \geq 3$ or $(p = 2$ and $f \geq 1$).

Lemma 23 For $p \geq 3$ or $(p = 2$ and $f \geq 1$), a usual switch is adjacent to at most two elements of B_1.

Proof. Suppose to the contrary that a usual switch S is adjacent to three blocks B_1, B_1' of B_1. Then $W = S \cup B_1 \cup B_1' \cup B_1''$ satisfies $out(W) = 3$ and contradicts Proposition 12 (ii) if $p = 2$ and $f \geq 1$, or Proposition 12 (iii) if $p \geq 3$, as $deg(W) = in(W) + 1$ and $pr(W) = 0$. ■

For $0 \leq i \leq 2$, let S_i be the set of usual switches adjacent to exactly i elements of B_1 and s_i its cardinality. By Lemma 23, (S_0, S_1, S_2) is a partition of S_u. Moreover, from Proposition 20, one obtains the following corollary:

Corollary 24 For $p \geq 3$ or $(p = 2$ and $f \geq 1$),

$$\sum_{B \in B_1} deg(B) = n_1 + b_1 = n_1 + n + f - b'_p = 2s_2 + s_1 \leq s_u + s_2.$$ (6)
Lemma 25 If \(p \geq 3 \), then a block of \(B'_p \) and a switch of \(S_2 \) cannot be adjacent.

Proof. Suppose that a block \(B' \) of \(B'_p \) and a switch \(S_2 \) of \(S_2 \) are adjacent. Let \(B_1 \) and \(B'_1 \) be the blocks of \(B_1 \) adjacent to \(S_2 \). Then \(W = B' \cup S_2 \cup B_1 \cup B'_1 \) contradicts Proposition 12 (iii) as \(\text{deg}(W) = \text{in}(W), \text{out}(W) = 3 \) and \(\text{pr}(W) = 1 \). ■

It follows from Remark 16 and Lemma 25 that a switch of \(S_2 \) is adjacent to two blocks of \(B_1 \) and two blocks of \(B_0 \cup B_p \). Let \(H \) be the multigraph whose vertices correspond to the blocks of \(B_0 \cup B_p \) and where two vertices are joined by \(\mu \) edges if the corresponding blocks share \(\mu \) neighbours in \(S_2 \).

Lemma 26 If \(p \geq 2 \) and \(f \geq 1 \), then \(H \) has no cycle of length at most \(\left\lfloor \frac{f+3}{2} \right\rfloor \). If \(p \geq 3 \), then \(H \) is a simple graph (has no cycle of length 2).

Proof. Suppose that in \(H \) there is a cycle \(C \) of length at most \(\left\lfloor \frac{f+3}{2} \right\rfloor \) or a cycle of length 2 if \(p \geq 3 \). Let \(W \) be the union of the blocks \(B_0 \cup B_p \) corresponding to the vertices of \(C \), plus the switches of \(S_2 \) corresponding to edges of \(C \) and the blocks of \(B_1 \) adjacent to these switches. Then \(W \) contradicts Proposition 12 (i), (ii) or (iii), as \(\text{deg}(W) = \text{in}(W) - \text{pr}(W) \). ■

Since a simple graph on \(n \) vertices has at most \(n(n-1)/2 \) edges, we have the following:

Corollary 27 If \((p \geq 2 \text{ and } f \geq 1) \) or \(p \geq 3 \),

\[s_2 \leq \frac{(b_0 + b_p)(b_0 + b_p - 1)}{2}. \] (7)

Turán’s theorem asserts that a simple graph on \(n \) vertices without a cycle of length 3 has at most \(n^2/4 \) edges. So we get:

Corollary 28 For \(p \geq 2 \) and \(f \geq 3 \),

\[s_2 \leq (b_0 + b_p)^2/4. \] (8)

Theorem 29

\[R(n,2,2) \geq R(n,2,1) \geq \frac{3n}{2} + \frac{\sqrt{n+3}}{2} - 3. \]

\[R(n,3,0) \geq \frac{3n}{2} + \frac{\sqrt{n-3}}{2} - \frac{9}{2}. \]

Proof. Suppose \(p = 2 \) and \(f = 1 \). From (7) and (6), as \(b'_p = 0 \) thus \(b_p = p = 2 \), we obtain:

\[\frac{(b_0 + 2)(b_0 + 1)}{2} \geq s_2 \geq n_1 + n + 1 - s_u. \]
Replacing s_u by its value in (5),
\[
\frac{b_0^2 + 3b_0 + 2}{2} \geq n_1 + n + 1 - n/2 - 1/4 - b_0/2 - \epsilon'(1)/4,
\]
\[
\frac{b_0^2 + 4b_0 + 4}{2} \geq n + 3,
\]
\[
b_0 + 2 \geq \sqrt{n + 3}.
\]

Using this bound on b_0 in (5), we obtain $s_u \geq \frac{n}{2} + \frac{\sqrt{n+3} - 3}{2}$. Thus
\[
R(n, 2, 1) \geq \frac{3n}{2} + \frac{\sqrt{n+3} - 3}{2} - 3.
\]

The proof is analogous if $p = 3$ and $f = 0$. We obtain $\frac{(b_0 + b_p)(b_0 + b_p - 1)}{2} \geq n_1 + n - b'_p - s_u$ and $(b_0 + b_p)^2 \geq n - b'_p + b_p$. Hence $b_0 \geq \sqrt{n - b'_p + b_p - b_p}$. So $s_u \geq \frac{n}{2} + \frac{\sqrt{n-b'_p+b_p}}{2} - \frac{b'_p+b_p}{2} \geq \frac{n}{2} + \frac{\sqrt{n-3} - 3}{2}.$

Finally $R(n, 3, 0) \geq \frac{3n}{2} + \frac{\sqrt{n-3} - 9}{2}$.

\section*{Theorem 30}

If $f \geq 3$, then $R(n, 2, f) \geq \frac{3n}{2} + \frac{\sqrt{n}}{\sqrt{2}} + \Omega(f)$.

\section*{Proof.}
Suppose that $p = 2$ and $f \geq 3$. In the same way as above, it follows from (5), (6) and (8) that
\[
(b_0 + 2)^2 + 2b_0 \geq 2n + 3f - \epsilon'(f),
\]
\[
b_0 + 3 \geq \sqrt{2n + 3f - \epsilon'(f) + 5}.
\]

Using this bound on b_0 in (5), we obtain
\[
s_u \geq \frac{n}{2} + \frac{1}{2} \sqrt{2n + 3f - \epsilon'(f) + 5} + \frac{f + \epsilon'(f)}{4} - \frac{3}{2}.
\]

Thus
\[
R(n, 2, f) \geq \frac{3n}{2} + \frac{1}{2} \sqrt{2n + 3f - \epsilon'(f) + 5} + \frac{f + \epsilon'(f)}{4} - \frac{7}{2}.
\]

\section*{Lemma 31}
If $p \geq 4$ or $(p = 3$ and $f \geq 1$), then a block of $B_0 \cup B_p$ is adjacent to at most one switch of S_2.

\section*{Proof.}
Suppose that a block $B \in B_0 \cup B_p$ is adjacent to two switches S_2 and S'_2 of S_2. Let B_1 and C_1 and B'_1 and C'_1 be the elements of B_1 adjacent to S_2 and S'_2, respectively. (See Figure 4, left.) Then the set $S_2 \cup S'_2 \cup B \cup B_1 \cup C_1 \cup B'_1 \cup C'_1$ contradicts Proposition 12 (iii) if $p \geq 4$, or Proposition 12 (ii) if $p = 3$ and $f \geq 1$. (deg(W) = in$(W) + 2 - pr(W)$, out$(W) = 4$ and $pr(W) \leq 1$.)

Let B'_0 (resp. B''_0) be the set of elements of B_0 adjacent to exactly one (resp. no) switch in S_2 and let b'_0 (resp. b''_0) be its cardinality.
Corollary 32 For \(p \geq 4 \) or \((p = 3 \text{ and } f \geq 1) \),
\[
b_0 + b_p \geq b'_0 + b_p \geq 2s_0.
\]

Theorem 33 If \(p \geq 4 \) or \((p = 3 \text{ and } f \geq 1) \),
\[
R(n, p, f) \geq \frac{7n}{4} - \frac{7p}{4} + \frac{5f - \epsilon(f)}{8}.
\]

Proof. By (6) and (9), we have \(s_u \geq n + f - b'_p - (b_0 + b_p)/2 \). By (5), \(s_u = n/2 + (f + \epsilon'(f))/4 + (b_0 - b'_p)/2 \). Adding these two inequalities, we obtain:
\[
2s_u \geq \frac{3n}{2} + \frac{5f + \epsilon'(f)}{4} - \frac{b_p + 3b'_p}{2}.
\]
Hence, \(R(n, p, f) \geq \frac{7n}{4} - \frac{7p}{4} + \frac{5f + \epsilon'(f)}{8} \).

Lemma 34 If \(p \geq 5 \) or \((p = 4 \text{ and } f \geq 1) \), every switch of \(S_1 \) is adjacent to at most one block of \(B'_0 \).

Proof. Suppose that \(S_1 \in S_1 \) is a switch adjacent to two blocks \(B_0 \) and \(B'_0 \) in \(B'_0 \). Let \(S_2 \) (resp. \(S'_2 \)) be the switch of \(S_2 \) adjacent to \(B_0 \) (resp. \(B'_0 \)), and \(B_1 \) and \(C_1 \) (resp. \(B'_1 \) and \(C'_1 \)) the two blocks of \(B_1 \) adjacent to \(S_2 \) (resp. \(S'_2 \)). Let \(A_1 \) be the block of \(B_1 \) adjacent to \(S_1 \). (See Figure 4, middle left.) Then \(W = A_1 \cup S_1 \cup S_2 \cup B_0 \cup B_1 \cup C_1 \cup S'_2 \cup B'_0 \cup B'_1 \cup C'_1 \) contradicts Proposition 12 as \(\deg(W) \leq \text{in}(W) + 3 \) and \(\text{out}(W) = 5 \).

Lemma 35 If \(p \geq 6 \) or \((p = 5 \text{ and } f \geq 1) \), every switch of \(S_0 \) is adjacent to at most two blocks of \(B'_0 \).

Proof. Suppose that \(S_0 \) is a switch adjacent to three blocks \(B_0, B'_0 \) and \(B''_0 \) in \(B'_0 \). Let \(S_2 \) (resp. \(S'_2, S''_2 \)) be the switch of \(S_2 \) adjacent to \(B_0 \) (resp. \(B'_0, B''_0 \)) and \(B_1 \) and \(C_1 \) (resp. \(B'_1 \) and \(C'_1 \), \(B''_1 \) and \(C''_1 \)) the two blocks of \(B_1 \) adjacent to \(S_2 \) (resp. \(S'_2, S''_2 \)). (See Figure 4, middle right.) Then \(W = S_0 \cup S_2 \cup B_0 \cup B_1 \cup C_1 \cup S'_2 \cup B'_1 \cup B''_0 \cup B''_1 \cup C''_1 \) contradicts Proposition 12 as \(\deg(W) \leq \text{in}(W) + 4 \) and \(\text{out}(W) = 6 \).
Proposition 36 Let $p \geq 2$. A block $B \in \mathcal{B}_0'$ has no switch of degree 3. Thus \(\deg(B) = \text{in}(B) + 2 \).

Proof. Suppose that B has a switch of degree 3. Let S be the switch of S_2 adjacent to B and B_1 and C_1 be the two blocks of B_1 adjacent to S. Then $W = B \cup S \cup B_1 \cup C_1$ contradicts Proposition 12 (iii), as \(\deg(W) = \text{in}(W) + 1 \).

Let S_1' be the set of elements of S_1 adjacent to exactly one block in \mathcal{B}_0' and let s_1' be its cardinality. Let n_0' denote the number of inputs in blocks of \mathcal{B}_0'.

Corollary 37 If $p \geq 6$ or $(p = 5$ and $f \geq 1)$,

\[
n_0' + b_0' \leq s_1' + 2s_0.
\]

Proof. Let us count the number e of edges between \mathcal{B}_0' and $S_1' \cup S_0$.

On one side, every block B of \mathcal{B}_0' is adjacent to exactly one element of S_2 and no element in $S_1 \setminus S_1'$. Thus, by Proposition 36, there are $\text{in}(B) + 1$ edges from B to $S_1' \cup S_0$. Thus $e = n_0' + b_0'$.

On the other side, there are s_1' (resp. at most $2s_0$) edges joining S_1' (resp. S_0) to \mathcal{B}_0' according to the definition of S_1' and Lemma 34 (resp. Lemma 35). Thus $e \leq s_1' + 2s_0$.

Lemma 38 If $p \geq 4$, a block of \mathcal{B}_p' is not adjacent to a switch of S_1'.

Proof. Suppose B' is a block of \mathcal{B}_p' adjacent to S' in S_1'. Let A_1 (resp. B) be the block of \mathcal{B}_1 (resp. \mathcal{B}_0') adjacent to S'. Let S_2 be the switch of S_2 adjacent to B, and B_1 and C_1 the two blocks of B_1 adjacent to S_2. (See Figure 4, right.) Then $W = B' \cup S' \cup A_1 \cup B \cup S_2 \cup B_1 \cup C_1$ contradicts Proposition 12 (iii), as \(\deg(W) = \text{in}(W) + 1 \), \(\text{out}(W) = 4 \) and \(\text{pr}(W) = 1 \).

Lemma 39 If $p \geq 6$ or $(p = 5$ and $f \geq 1)$, every element of $\mathcal{B}_0'' \cup \mathcal{B}_p$ is adjacent to at most one element of S_1'.

Proof. Let block $B \in \mathcal{B}_0'' \cup \mathcal{B}_p$ be adjacent to two switches S_1 and S_1' of S_1'. Let B_1 and B_0 (resp. B_1' and B_0') be the blocks of \mathcal{B}_1 and \mathcal{B}_0' adjacent to S_1 (resp. S_1'). Let W_0 (resp. W_0') be the union of the switch of S_2 adjacent to B_0 (resp. B_0') and its two adjacent blocks of B_1. Then $W = B \cup B_1 \cup B_0 \cup W_0 \cup B_1' \cup B_0' \cup W_0'$ contradicts Proposition 12 (ii) or (iii), as \(\deg(W) = \text{in}(W) + 4 - \text{pr}(W) \), \(\text{out}(W) = 6 \) and \(\text{pr}(W) \leq 1 \).

Corollary 40 If $p \geq 6$ or $(p = 5$ and $f \geq 1)$,

\[
b_0'' + b_p \geq 2s_1'.
\]

Theorem 41 If $p \geq 6$ or $(p = 5$ and $f \geq 1)$,

\[
R(n,p,f) \geq \frac{15n}{8} - \frac{15p}{8} + \frac{13f - \epsilon(f)}{16}.
\]
Proof. We have \(s_u = s_2 + s_1 + s_0 \), then by (6),
\[
 s_u = n + n_1 + f - b_p' - s_2 - s_0.
\]
By (9) and (10),\(2s_0 \geq n_0' + 2s_2 - s_1' - b_p \), thus
\[
 2s_u \geq 2n + 2f - 2b_p' - 2s_2 + 2s_0.
\]
Then by (11),
\[
 2s_u \geq 2n + 2f + n_0' - s_1' - b_p - 2b_p'.
\]
Since \(b_0 = b_0' + b_0'' \), by (5) and (9), \(2s_u \geq n + (f + e'(f))/2 - b_p' + b_0'' + 2s_2 - b_p \), so by adding the two inequalities one has
\[
 6s_u \geq 5n + 2s_2 + \frac{9f + e'(f)}{2} - 4b_p - 5b_p'.
\]
Therefore, by (6),
\[
 8s_u \geq 7n + \frac{13f + e'(f)}{2} - 4b_p - 7b_p'.
\]

4 Constructions

4.1 Useful constructions

In this subsection, we give general constructions that show how to merge several repartitors into a larger one. The first one is in the same vein as Lemma 7. The second one constructs an \((n - 1, p, f)\)-repartitor from an \((n, p, f)\)-repartitor under certain conditions.

Lemma 42 For \(0 \leq f' \leq f \),
\[
 R(n, p, f) \leq R(n + f', p + f', f - f') + R(p, p, f').
\]

Proof. Let \(G_1 \) be an \((p, p, f')\)-repartitor and \(G_2 \) be a \((n + f', p + f', f - f')\)-repartitor. For \(i = 1, 2 \), let \(I_i \) (resp. \(P_i, O_i, S_i \)) be the sets of ordinary inputs (resp. priorities, outputs, switches) of \(G_i \) (note that \(I_1 \) is empty); and let \(P_2 = \{p_1, p_2, \ldots, p_{p + f'}\} \) and \(O_1 = \{o_1, o_2, \ldots, o_{p + f'}\} \). Let \(G \) be the network defined as follows:
Let \(V(G) = P_1 \cup S_1 \cup I_2 \cup S_2 \cup O_2 \); two vertices of \(V(G) \) are joined by an edge if and only if \((u, v) \in E(G_1) \cup E(G_2) \) or there exists an \(i \in \{0, 1\} \) such that \((u, o_i) \in E(G_1) \) and \((p_i, v) \in E(G_2) \); the ordinary input set of \(G \) is \(I_2 \), its priority set \(P_1 \), its output set \(O_2 \) and its switch set \(S_1 \cup S_2 \).

The proof that \(G \) is an \((n, p, f)\)-repartitor is similar to that of Lemma 7.
Definition 43 Let G be a network. An edge (s,s') is said to be linking if there is an ordinary input i connected to s and an output o connected to s'.

The L-contraction of an edge (s,s') consists of contraction of the edge (s,s') into a vertex t and deletion of the input connected to s and the output connected to s'. (See Figure 5.)

Lemma 44 Let G be an (n,p,f)-repartitor. The network obtained from G by the L-contraction of an edge is an $(n-1,p,f)$-repartitor.

Proof. Let (s,s') be an edge of G and let i and o be the input and output linked to s and s', respectively. Let G' be the network obtained by the L-contraction of (s,s') into t.

Consider two disjoint subsets of outputs Q and F in G' such that $|Q| = p$ and $|F| = k$. Since G is a repartitor, there exists a set P of n edge-disjoint paths in G, connecting the p priorities to Q, and the $n-p$ ordinary inputs to $O \setminus (Q \cup F)$.

Case 1: A path $P \in \mathcal{P}$ connects i to o. Then replacing in the $n-1$ paths of $\mathcal{P} \setminus P$ the vertex s, s', or the succession of these two by t, we obtain the required set of $n-1$ paths in G'.

Case 2: A path P_1 of \mathcal{P} connects an ordinary input $i' \neq i$ to o, and a path P_2 of \mathcal{P} connects i to an output o'. Assume that these paths are $P_1 = (i', s_1', s_2', ..., s_j', s', o)$ and $P_2 = (i, s_1, s_2, ..., s_l, o')$. Let W' be the walk $(i', s_1', s_2', ..., s_j', s', s_1, s_2, ..., s_l, o')$ and let P' be the subpath of W' from i' to o'. We put $\mathcal{P}' = (\mathcal{P} \setminus \{P_1, P_2\}) \cup \{P'\}$. Then replacing in the $n-1$ paths of \mathcal{P}' the vertex s, s', or the succession of these two by t, we obtain the required set of $n-1$ paths in G'.

4.2 Minimum $(n,1,0)$-repartitors

Theorem 45

$$R(n,1,0) = n - 1.$$

Proof. By Proposition 4, $R(n,1,0) \leq n - 1$. By Corollary 11, $R(n,1,0) \geq n - 1$.

We can, in fact, completely describe the set of minimum $(n,1,0)$-repartitors.

Let T be a binary tree with n leaves and $n-1$ internal nodes, one being the root r. Let us define the graph G_T associated with T in the following way: every leaf of T is an output of G_T; the internal nodes of T are the switches of G_T; each internal node of T is adjacent to an ordinary input, and furthermore the root is adjacent to the priority. (See Figure 6.)

Proposition 46 A $(n,1,0)$-repartitor is minimum if and only if it is associated with a binary tree with n leaves.
Figure 6: A binary tree with 8 leaves and the corresponding minimum (8, 1, 0)-repartitor.

Proof. It is easy to see that the graph associated with a binary tree is a minimum \((n, 1, 0)\)-repartitor.

Let \(N\) be a minimum \((n, 1, 0)\)-repartitor. It has \(n-1\) switches and each of them is adjacent to exactly one ordinary input. Moreover \(n\) outputs and one priority are connected to the switches. Thus, there are exactly \((4(n-1) - 2n)/2 = n - 2\) edges connecting a switch to another. Since \(N\) is connected then it is a tree. Let \(T\) be the subtree of \(N\) induced by the switches and the outputs. It is clearly a binary tree. Indeed every output has degree one and every switch has degree 3 except the one that is connected to the priority that has degree 2 (and thus is the root).

\[\]

4.3 Minimum \((n, 2, 0)\)-repartitors

Theorem 47

\[R(n, 2, 0) = \left\lceil \frac{3n}{2} - 3 \right\rceil. \]

Proof. Theorem 22 yields \(R(n, 2, 0) \geq \left\lceil \frac{3n}{2} - 3 \right\rceil\). Since \(R(n, 1, 0) = n - 1\), by the first inequality of Lemma 5, \(R(n, 2, 0) \leq \left\lceil \frac{3n}{2} - 3 \right\rceil\).

Remark 48 Note that minimum \((n, 2, 0)\)-repartitors are not necessarily formed from two minimum \((n/2, 1, 0)\)-repartitors with the construction of Lemma 5. Indeed, let \(R\) be a minimum \((n, 2, 0)\)-repartitor and let \(o\) and \(o'\) be two distinct outputs incident to the switches \(s\) and \(s'\), respectively. Let \(R'\) be the \((n+2, 2, 0)\)-network obtained by removing \(o\) and \(o'\) and adding three switches \(t, t'\) and \(u\) such that \(t\) is adjacent to \(u, s\) and an ordinary input and an output, \(t'\) is adjacent to \(u, s'\) and an ordinary input and an output, and \(u\) is adjacent to two outputs. See Figure 7. It is easy to check that \(R'\) is a minimum \((n, 2, 0)\)-repartitor. Since \(t\) and \(t'\) are adjacent to an input and an output, \(R'\) may not be obtained via the previously mentioned construction.
4.4 Minimum \((n, 1, 1)\)-repartitors and \((n, 1, 2)\)-repartitors

Theorem 49

\[
R(n, 1, 1) = \left\lceil \frac{3n - 1}{2} \right\rceil.
\]

Proof. Theorem 21 yields \(R(n, 1, 1) \geq \left\lceil \frac{3n - 1}{2} \right\rceil\). According to Lemma 42, we can bound \(R(n, 1, 1)\) by a sum: \(R(n, 1, 1) \leq R(n + 1, 2, 0) + R(1, 1, 1)\). By Theorem 47, \(R(n + 1, 2, 0) = \left\lceil \frac{3n + 3}{2} - 3 \right\rceil\), and \(R(1, 1, 1) = R(1, 0, 1) = 1\). Thus \(R(n, 1, 1) \leq \left\lceil \frac{3n - 1}{2} \right\rceil\). \(\blacksquare\)

Theorem 50

\[
R(n, 1, 2) = \left\lceil \frac{3n - 1}{2} \right\rceil.
\]

Proof. Theorem 21 yields \(R(n, 1, 2) \geq \left\lceil \frac{3n - 1}{2} \right\rceil\).

The network depicted in Figure 8 has \(\left\lceil \frac{3n - 1}{2} \right\rceil\) switches. Checking that this network is an \((n, 1, 2)\)-repartitor is not difficult but tedious since we must investigate various configurations and exhibit each time the corresponding edge-disjoint paths. The complete proof is available in [5]. \(\blacksquare\)
4.5 \((n, 3, 0)\)-repartitors

Theorem 51

\[R(n, 3, 0) = \frac{3n}{2} + \frac{\sqrt{n}}{2} + c, \]

where \(-5 \leq c \leq 9/4\).

Let \(G_l\) be the graph with vertex set \(\{a_{i,j} | 1 \leq i \leq 3, 1 \leq j \leq l\}\) whose edge set is the union of the three paths \(P_i = (a_{i,1}, a_{i,2}, \ldots, a_{i,l})\) for \(1 \leq i \leq 3\) and the \(l\) cycles \(C_j = (a_{1,j}, a_{2,j}, a_{3,j}, a_{1,j})\) for \(1 \leq j \leq l\). See Figure 9. So \(G_l\) has \(3l\) vertices and \(6l - 3\) edges.

From \(G_l\), we construct the network \(H_l\) as follows.

To each vertex \(a_{i,j}, 1 \leq i \leq 3, 1 \leq j \leq l\), we associate a switch \(s_{i,j}\). Each switch \(s_{i,1}, 1 \leq i \leq 3\), is connected to a priority input \(p_i\) and each switch \(s_{i,l}, 1 \leq i \leq 3\), is connected to an output \(o_i\). We replace each edge \(e\) of \(G_l\) by a path \(P(e)\) consisting of \(n(e)\) switches with some ordinary input connected to each of them. In the bipartite graph \(\tilde{H}_l\) defined previously, this corresponds to association of each edge \(e\) with a block \(B_0(e)\) of \(B_0\). The size \(n(e)\) of the paths \(P(e)\) is \(\text{in}(B_0(e))\) and will be specified later. For any two non-adjacent edges \(e\) and \(f\) in \(G_l\), we add a switch \(s_{e,f}\) in \(\tilde{H}_l\): it is connected to an ordinary switch of \(P(e)\), to an ordinary switch of \(P(f)\), and two outputs \(o_{e,f}\) and \(o'_{e,f}\). (In \(\tilde{H}_l, s_{e,f}\) is in \(S_2\).)

If \(l \geq 3\), an edge \(e\) of \(G_l\) is adjacent to 6 other edges except the edges of \(E_1 = \{(a_{i,1}, a_{i,2}) | 1 \leq i \leq 3\} \cup \{(a_{i,l-1}, a_{i,l}) | 1 \leq i \leq 3\}\), which are adjacent to 5 other edges and the edges of \(E_2 = \{(a_{i,1}, a_{i+1,1}) | 1 \leq i \leq 3\} \cup \{(a_{i,l}, a_{i+1,l}) | 1 \leq i \leq 3\}\), which are adjacent to 4 edges. Hence the number \(n(e)\) of switches of \(P(e)\) is defined as follows: \(n(e) = 6l - 8\) if \(e \in E_2\), \(n(e) = 6l - 9\) if \(e \in E_1\) and \(n(e) = 6l - 10\) otherwise.

In summary, \(H_l\) has for \(l \geq 3\):

- 3 priority inputs,
- \(n_l - 3 = 6(6l - 8) + 6(6l - 9) + (6l - 15)(6l - 10) = 36l^2 - 78l + 48\) ordinary inputs,
- \(n_l\) outputs,
- \(n_l - 3\) ordinary switches (those of the \(P(e)\)),
- \((n_l - 3)/2\) switches of \(S_2\) (that is, \(s_{e,f}\)), and

![Figure 9: The graph \(G_l\).](image-url)
- 3l switches of S_0 (that is, $s_{i,j}$, $i = 1, 2, 3$, $j = 1, 2, \ldots, l$).

Hence H_l has $N_l = \frac{3n_l}{2} + 3l - \frac{9}{2}$ switches. As $n_l = 36l^2 - 78l + 51 = (6l - \frac{13}{2})^2 + \frac{25}{4}$, then

$N_l = \frac{3n_l}{2} + \frac{1}{2} \sqrt{\frac{25}{4}} - \frac{5}{4} \leq \frac{3n_l}{2} + \frac{1}{2} \sqrt{n_l} - \frac{5}{4}$.

Note that all the formulae are also valid for $l = 2$. Indeed in that case $n(e) = 4$ for any of the 9 edges and so $n_l - 3 = 36$.

Lemma 52 H_l is a repartitor.

We will reduce the proof of this lemma to the existence of some specific walks in the slightly modified graph G_l.

Definition 53 Let G'_l be the graph obtained from G_l by adding the set $R_3 = \{a_{i,l+1}, a_{2,l+1}, a_{3,l+1}\}$ and the three edges $(a_{i,l}, a_{i,l+1})$, $1 \leq i \leq 3$.

Let $E_3 = \{e_1, e_2, e_3\}$ be a set of distinct edges of G'_l. An E_3-good set of walks is a set of three edge-disjoint walks $\{W_1, W_2, W_3\}$ such that W_i contains e_i, where the set of initial vertices of the W_i’s is $\{a_{1,1}, a_{2,1}, a_{3,1}\}$, and the set of terminal vertices of the W_i’s is R_3.

Lemma 54 If G'_l admits an E_3-good set of walks for any set E_3 of three distinct edges, two of which are non-adjacent, then H_l is a repartitor.

Proof. Let us define an assignment as a mapping ϕ from the output set of H_l into the edges of G'_l such that:

- $\phi(o_i) = (a_{i,l}, a_{i,l+1})$ for $i \in \{1, 2, 3\}$;

- for the two outputs $o_{e,f}$ and $o'_{e,f}$ adjacent to the switch $s_{e,f}$, then $\phi(o_{e,f}) = e$ and $\phi(o'_{e,f}) = f$, or $\phi(o_{e,f}) = f$ and $\phi(o'_{e,f}) = e$.

Let $Q = \{q_1, q_2, q_3\}$ be any set of three outputs of H_l and let us denote $\{o_1, o_2, o_3\}$ by O_3. To prove that H_l is a repartitor, we have to find the desired edge-disjoint paths in H_l.

First let us show that there exists an assignment ϕ such that the three edges $\phi(q_i)$ are distinct and two of them are non-adjacent.

- If $|Q \cap O_3| \geq 2$, assume that $q_1 = o_1$ and $q_2 = o_2$. Then for any assignment ϕ, $\phi(q_1) = e_1 = (a_{i_1,l}, a_{i_1,l+1})$ and $\phi(q_2) = e_2 = (a_{i_2,l}, a_{i_2,l+1})$. Hence e_1 and e_2 are not adjacent and distinct from $\phi(e_3)$ since only q_1 (resp. q_2) may be mapped on e_1 (resp. e_2) by an assignment.

- If $|Q \cap O_3| = 1$, assume that $q_1 = o_1$ and q_2 (resp. q_3) are connected to s_{e_2,f_2} (resp. s_{e_3,f_3}). As all the edges adjacent to $\phi(q_1) = e_1 = (a_{i_1,l}, a_{i_1,l+1})$ are pairwise adjacent, one of $\{e_2, f_2\}$ is not adjacent to e_1. Let $\phi(q_2)$ be this edge and let $\phi(q_3)$ be an edge of $\{e_3, f_3\} \setminus \{e_2\}$. Then ϕ satisfies the requirement.

21
- If \(|Q \cap O_3| = 0\), assume that \(q_i, 1 \leq i \leq 3\), are connected to \(s_{e_i,f_i}\). By definition,
\(|\{e_i, f_i\} \cap \{e_j, f_j\}| \leq 1\) for every \(1 \leq i, j \leq 3\).

Suppose first that there are \(i, j, i \neq j\), such that \(|\{e_i, f_i\} \cap \{e_j, f_j\}| = 1\). Without loss of generality, we may assume that \(e_1 = e_2\). Then let \(\phi(q_1) = e_1\) and \(\phi(q_2) = f_2\). It follows that \(e_1 = e_2\) and \(f_2\) are not adjacent. Let \(\phi(q_3)\) be an edge of \(\{e_3, f_3\} \setminus \{e_2, f_2\}\). (Such an edge exists since \(|\{e_2, f_2\} \cap \{e_3, f_3\}| \leq 1\).

Suppose now that all the six edges \(e_1, f_1, e_2, f_2, e_3, f_3\) are distinct. If one edge of \(\{e_1, f_1\}\) is not adjacent to one edge of \(\{e_2, f_2\}\), say \(e_1\) is not adjacent to \(e_2\), then let \(\phi(q_1) = e_1\).

Otherwise the four edges \(e_1, f_1, e_2, f_2\) form a 4-cycle. Since there is no diagonal of a 4-cycle in \(G'_l\), \(e_3\) is adjacent to at most one edge of \(\{e_1, f_1\}\), say \(e_3\) is not adjacent to \(e_1\). Then setting \(\phi(q_3) = e_3\), we obtain the desired assignment.

Let us now exhibit the \(n = 36l^2 - 78l + 51\) required edge-disjoint paths, 3 of them joining the priorities to \(Q\), and the \(n - 3\) remaining joining the ordinary inputs to outputs.

Consider an assignment \(\phi\) as above and let \(E_3 = \{\phi(q_1), \phi(q_2), \phi(q_3)\}\). By hypothesis, there exists an \(E_3\)-good set of walks \(\{W_1, W_2, W_3\}\) such that \(W_i\) contains \(\phi(q_i)\).

Let \(o\) be an output not in \(O_3\). Let \(e = \phi(o), s_{e,f}(o)\) be the switch adjacent to \(o\), \(s_{e}(o)\) the vertex of \(P(e)\) adjacent to \(s_{e,f}(o)\), and \(i(o)\) the input adjacent to \(s_{e}(o)\). The default path associated with \(o\) is \(P(o) = (i(o), s_{e}(o), s_{e,f}(o), o)\).

If \(o \notin Q \cup O_3\), we choose its default path for joining the ordinary input \(i(o)\) to \(o\).

To each \(W_i\) corresponds a walk \(Q_i\) in \(H(l)\) obtained by replacing an edge of \(G'_l\) by the corresponding path \(P(e)\) and the edge \((a_{i,l}, a_{i,l+1})\) by the output \(o_i\).

If \(q_i \notin O_3\) then choose \(Q_i\) which joins a priority to the priority output \(q_i\).

If \(q_i \notin O_3\), let \(s_i = s_{e(q_i)}\) be the switch that is in both \(Q_i\) and the default path of \(q_i\). Let \(D_i\) (resp. \(F_i\)) be the subpath of \(Q_i\) starting in \(a_{j,0}\) (resp. at \(s_i\)) and ending at \(s_i\) (resp. in \(O_3\)). Then choose \((p_{ji}, D_i, s_{e,f}(q_i), q_i)\) which joins a priority to a priority output, and \((i(q_i), F_i)\) which joins an ordinary input to a non-priority output. All the paths we have constructed are edge-disjoint.

Proof of Lemma 52. By Lemma 54, it suffices to prove that for any set \(E_3\) of three edges of \(G'_l\) with two non-adjacent edges, there is an \(E_3\)-good set of walks.

For \(1 \leq i \leq 3\) and \(1 \leq j \leq k \leq l + 1\), we will denote by \(L_{i,j,k}\) the path \((a_{i,j}, a_{i,j+1}, \ldots, a_{i,k})\).

By symmetry of \(G'_l\), it suffices to prove it for the following ten cases. All these cases and the corresponding covering walks are depicted in Figure 10. The walk \(W_1\) (resp. \(W_2, W_3\)) is drawn as a dotted (resp. black, grey) line. The white (resp. black, grey) ellipses represent the possible positions of \(e_1\) (resp. \(e_2, e_3\).

1. \(e_1 = (a_{1,i_1}, a_{1,i_1+1}), e_2 = (a_{1,i_2}, a_{1,i_2+1})\) and \(e_3 = (a_{1,i_3}, a_{1,i_3+1})\) with \(0 \leq i_1 < i_2 < i_3 \leq l\).

The covering walks are \(W_1 = (L_1[i_1, i_2], a_{3,i_2}, L_2[i_2, l+1]), W_2 = (L_2[1, i_2], L_1[i_2, i_3], L_3[i_3, l+1]),\) and \(W_3 = (L_3[1, i_3], a_{2,i_3}, L_1[i_3, l+1])\).

2. \(e_1 = (a_{1,i_1}, a_{1,i_1+1}), e_2 = (a_{1,i_2}, a_{1,i_2+1})\) and \(e_3 = (a_{3,i_3}, a_{3,i_3+1})\) with \(0 \leq i_1 < i_2 \leq l\).

The covering walks are \(W_1 = (L_1[1, i_2], L_2[i_2, l+1]), W_2 = (L_2[1, i_2], a_{3,i_2}, L_1[i_2, l+1]),\) and \(W_3 = (L_3[1, l+1])\).
(3) $e_1 = (a_{1,i_1}, a_{1,i_1+1})$, $e_2 = (a_{2,i_2}, a_{2,i_2+1})$ and $e_3 = (a_{3,i_3}, a_{3,i_3+1})$. The covering walks are $W_1 = (L_1[1,l+1])$, $W_2 = (L_2[1,l+1])$, and $W_3 = (L_3[1,l+1])$.

(4) $e_1 = (a_{1,i}, a_{2,i})$, $e_2 = (a_{2,i}, a_{3,i})$ and $e_3 = (a_{3,i}, a_{1,i})$. $W_1 = (L_1[1,i], L_2[i,l+1])$, $W_2 = (L_2[1,i], L_3[i,l+1])$, and $W_3 = (L_3[1,i], L_1[i,l+1])$.

(5) $e_1 = (a_{1,i_1}, a_{2,i_1})$, $e_2 = (a_{2,i_2}, a_{3,i_2})$ and $e_3 \in \{(a_{1,i_3},a_{2,i_3}), (a_{2,i_3},a_{3,i_3}), (a_{3,i_3},a_{1,i_3})\}$ with $i_3 \neq i_1$. $W_1 = (L_1[1,i_1], L_2[i_1,l+1])$, $W_2 = (L_2[1,i_1], a_{3,i_1}, L_1[i_1,l+1])$, and $W_3 = (L_3[1,i_3], a_{1,i_3}, a_{2,i_3}, L_3[i_3,l+1])$.

(6) $e_1 \in \{(a_{1,i_1},a_{2,i_1}), (a_{2,i_1},a_{3,i_1}), (a_{3,i_1},a_{1,i_1})\}$, $e_2 \in \{(a_{1,i_2},a_{2,i_2}), (a_{2,i_2},a_{3,i_2}), (a_{3,i_2},a_{1,i_2})\}$ and $e_3 \in \{(a_{1,i_3},a_{2,i_3}), (a_{2,i_3},a_{3,i_3}), (a_{3,i_3},a_{1,i_3})\}$ with $i_1 < i_2 < i_3$. $W_1 = (L_1[1,i_1], a_{2,i_1}, a_{3,i_1}, L_1[i_1,l+1])$, $W_2 = (L_2[1,i_2], a_{3,i_2}, a_{1,i_2}, L_2[i_2,l+1])$, and $W_3 = (L_3[1,i_3], a_{1,i_3}, a_{2,i_3}, L_3[i_3,l+1])$.

(7) $e_1 = (a_{1,i_1}, a_{2,i_2})$, $e_2 = (a_{2,i_2}, a_{3,i_3})$ and $e_3 = (a_{2,i_3}, a_{2,i_3+1})$ with $i_1 < i_3$. $W_1 = (L_1[1,i_1], a_{2,i_2}, L_2[i_1,i_3], a_{1,i_3}, L_3[i_3,l+1])$, $W_2 = (L_2[1,i_1], a_{3,i_2}, L_1[i_1,l+1])$, and $W_3 = (L_3[1,i_3], L_2[i_3,l+1])$.

Figure 10: The covering walks in each case.
(8) \(e_1 = (a_{1,i_1}, a_{2,i_1})\), \(e_2 = (a_{2,i_1}, a_{3,i_1})\) and \(e_3 = (a_{3,i_3}, a_{3,i_3+1})\). \(W_1 = (L_1[1,i_1], L_2[i_1,l+1])\), \(W_2 = (L_2[1,i_1], a_{3,i_1}, L_1[i_1,l+1])\), and \(W_3 = (L_3[1,l+1])\).

(9) \(e_1 = (a_{1,i_1}, a_{1,i_1+1})\), \(e_2 \in \{(a_{1,i_2}, a_{2,i_2}), (a_{2,i_2}, a_{3,i_2}), (a_{3,i_2}, a_{1,i_2})\}\) and \(e_3 \in \{(a_{1,i_3}, a_{2,i_3}), (a_{2,i_3}, a_{3,i_3}), (a_{3,i_3}, a_{1,i_3})\}\) with \(i_2 < i_3\). \(W_1 = (L_1[1,l+1])\), \(W_2 = (L_2[1,i_2], a_{3,i_2}, a_{1,i_2}, L_2[i_2,l+1])\), and \(W_3 = (L_3[1,i_3], a_{1,i_3}, a_{2,i_3}, L_3[i_3,l+1])\).

(10) \(e_1 = (a_{1,i_1}, a_{1,i_1+1})\), \(e_2 = (a_{2,i_2}, a_{2,i_2+1})\) and \(e_3 \in \{(a_{1,i_3}, a_{2,i_3}), (a_{2,i_3}, a_{3,i_3}), (a_{3,i_3}, a_{1,i_3})\}\). \(W_1 = (L_1[1,l+1])\), \(W_2 = (L_2[1,l+1])\), and \(W_3 = (L_3[1,i_3], a_{1,i_3}, a_{2,i_3}, L_3[i_3,l+1])\).

\[\text{Proof of Theorem 51}\]

By Theorem 29, \(R(n, 3, 0) \geq \frac{3n}{2} + \sqrt{n} - 5\).

Let us now define the \((n, 3, 0)\)-network \(G_3(n)\) inductively as follows:

For \(l \geq 2\), let \(n_l = 36l^2 - 78l + 51\). If \(n = n_l\) for some integer \(l\), then \(G_3(n) = H_l\). Otherwise let \(n_{l-1} < n < n_l\). If \(n\) is odd then \(G_3(n)\) is obtained from \(G_3(n+2)\) by removing a switch \(s_{e,f}\) and its two adjacent outputs, and deleting the two switches \(s(e) \in P(e)\) and \(s(f) \in P(f)\) adjacent to \(s_{e,f}\) and their adjacent inputs, and adding an edge joining the two neighbours of \(s(e)\) (resp. \(s(f)\)) in the input path \(P(e)\) (resp. \(P(f)\)).

If \(n\) is even then \(G_3(n)\) is obtained from \(G_3(n+1)\) by an L-contraction of a linking edge \(\{s(e), s_{e,f}\}\).

Since \(H_l\) is a repartitor, then if \(n\) is odd \(G_3(n)\) is obviously an \((n, 3, 0)\)-repartitor and if \(n\) is even, by Lemma 44, \(G_3(n)\) is an \((n, 3, 0)\)-repartitor. \(G_3(n)\) has \(N = N_l - \frac{3}{2}(n - n_l) + \varepsilon/2 = \frac{3n}{2} + \sqrt{n} - 5/4 + \varepsilon/2\) switches where \(\varepsilon = 1\) if \(n\) is even. But as \(n > n_{l-1}\), \(\sqrt{n_l} - \sqrt{n} < \sqrt{n_l} - \sqrt{n_{l-1}} \leq 6\). So \(N \leq \frac{3n}{2} + \sqrt{n} + \frac{9}{4}\).

\[\text{Theorem 55}\]

\[R(n, 2, 1) = \frac{3n}{2} + \frac{\sqrt{n} + 1}{2} + c,\]

where \(-3 \leq c \leq \frac{23}{4}\).

\[\text{Proof.}\] From Lemma 42, we obtain \(R(n, 2, 1) \leq R(n+1, 3, 0) + R(2, 2, 1)\). By Theorem 51, \(R(n+1, 3, 0) \leq \frac{3n}{2} + \frac{\sqrt{n} + 1}{2} + \frac{15}{4}\). And by Proposition 3, \(R(2, 2, 1) = R(2, 0, 1)\) and \(R(2, 0, 1) = 2\) (see [4]). Hence \(R(n, 2, 1) \leq \frac{3n}{2} + \frac{\sqrt{n} + 1}{2} + \frac{23}{4}\). Theorem 29 gives the other inequality.

4.6 \((n, 4, 0)\)-networks

The aim of this subsection is to prove the following theorem:

\[\text{Theorem 56}\]

\[R(n, 4, 0) = \frac{7n}{4} + c\]

where \(-7 \leq c \leq \frac{80}{7}\).
We will construct a network $H(m)$, which is a $(16m + 4, 4, 0)$-repartitor.

We start with a basis brick B (see Figure 11). It contains 12 switches a_l, b_l, c_l for $1 \leq l \leq 4$. Switch a_l is connected to b_l and b_{l+1} (the indices being taken modulo 4), and b_l is connected to c_l. There are 8 inputs: for $1 \leq l \leq 4$, i_l is connected to b_l, and j_l connected to c_l. There are 8 outputs: for $1 \leq l \leq 4$, o_l connected to a_l and w_l connected to c_l.

Let $G(m)$ be the network obtained by concatenating m bricks B^k, $1 \leq k \leq m$, that is, by joining c_l^k to a_l^{k+1} for $1 \leq k \leq m - 1$ and $1 \leq l \leq 4$.

Let $F(m)$ be the network obtained by taking two copies of $G(m)$, $G(m)$ and \overline{G}_m, deleting the 8 outputs w_l^k and \overline{w}_l^k, adding 4m switches s_l^k connected to c_l^k, \overline{c}_l^k and two new outputs r_l^k and \overline{r}_l^k.

Finally let IS be an input selector with 4 inputs p_l, $1 \leq l \leq 4$, and 8 outputs α_l and $\overline{\alpha}_l$, $1 \leq l \leq 4$, such that for any set of four inputs, there are four edge-disjoint paths joining the inputs to these outputs.

Let OS be an output selector with 8 inputs γ_l and $\overline{\gamma}_l$, $1 \leq l \leq 4$, and 4 outputs t_l, $1 \leq l \leq 4$, such that for any set of four inputs of the form $C_1 \cup C_2$ and any partition $T_1 \cup T_2$ of $T = \{t_1, t_2, t_3, t_4\}$ with $|C_1| = |T_1|$, there are four edge-disjoint paths, $|C_1|$ of them joining C_1 to T_1 and $|C_2|$ of them joining C_2 to T_2.

Then $H(m)$ is obtained by concatenating IS, $F(m)$ and OS, that is, by identifying α_l (resp. $\overline{\alpha}_l$) with a_l^1 (resp. \overline{a}_l^1) and c_l^m (resp. \overline{c}_l^m) with γ_l (resp. $\overline{\gamma}_l$). The network $H(m)$ is depicted in Figure 12.

$H(m)$ has 4 priorities p_l, $1 \leq l \leq 4$, $16m$ ordinary inputs i_l^k, \overline{i}_l^k, j_l^k, \overline{j}_l^k for $1 \leq k \leq m$ and $1 \leq l \leq 4$ and $n = 16m + 4$ outputs, o_l^k, \overline{o}_l^k, r_l^k, \overline{r}_l^k for $1 \leq k \leq m$ and $1 \leq l \leq 4$ and t_l, $1 \leq l \leq 4$. It has $28m + N(IS) + N(OS)$ switches where $N(IS)$ (resp. $N(OS)$) is the minimum number of switches of an input (resp. output) selector. An input selector is nothing more than a $(4, 0, 4)$-repartitor and it is proved in [6] that $R(4, 0, 4) = 5$, so $N(IS) = 5$. An optimum
input selector is drawn in Figure 13 left. The network depicted in Figure 13 right is an output selector. Indeed, it is constructed from a Waksman network (see [2, 3]), which is able to realize any permutation of the 8 inputs into 8 outputs, by removing the useless outputs, switches and links (dotted on the figure). Hence $N(OS) \leq 13$.

Figure 13: An optimum input selector and an output selector.

Lemma 57 $H(m)$ is a $(16m + 4, 4, 0)$-repartitor.

Proof. In what follows we will denote $O = \bigcup_{k,l} o^k_{l,1}$, $\bar{O} = \bigcup_{k,l} \bar{o}^k_{l,1}$, $R = \bigcup_{k,l} r^k_{l,1}$, $\bar{R} = \bigcup_{k,l} \bar{r}^k_{l,1}$, $W = \bigcup_{k,l} w^k_{l,1}$, $\bar{W} = \bigcup_{k,l} \bar{w}^k_{l,1}$.

Let Q be any set of four outputs of $H(m)$. Let $Q_1 = Q \cap (O \cup \bar{O} \cup R \cup \bar{R})$ and $Q_2 = Q \cap T$ and $q_i = |Q_i|$, $1 \leq i \leq 2$.

To prove that $H(m)$ is a repartitor it suffices to find in $F(m)$ for any set $Q = Q_1 \cup Q_2$ a set of $16m + 4$ edge-disjoint paths such that:

q_1 of them join a set A_1 of q_1 elements of $\bigcup_{l} \{a^1_l, \bar{a}^1_l\}$ to Q_1,

q_2 of them join a set A_2 of q_2 elements of $\bigcup_{l} \{a^1_l, \bar{a}^1_l\} \setminus A_1$ to a set C_2 of q_2 elements of $\bigcup_{l} \{c^m_l, \bar{c}^m_l\}$,
and the $16m$ other paths join the ordinary inputs to the set of outputs $(O \cup \bar{O} \cup R \cup \bar{R}) \setminus Q_1$ and a set C_l of q_1 elements of $\bigcup_i \{c_i^m, c_i^m\} \setminus C_2$.

Indeed IS being an input selector, we can connect the 4 priorities of $H(m)$ to the 4 outputs assigned to $A_1 \cup A_2$ with edge-disjoint paths; then one can link A_1 to Q_1 and A_2 to C_2, and the ordinary inputs either to outputs of $(O \cup \bar{O} \cup R \cup \bar{R}) \setminus Q_1$ or vertices of C_1; at last, OS being an output selector, we can find edge-disjoint paths from C_2 to Q_2, and from C_1 to $T \setminus Q_2$. Hence we have the $16m + 4$ required edge-disjoint paths of $H(m)$, 4 of them joining the p_j to Q and the remaining $16m$ joining the ordinary inputs to the outputs not in Q.

In fact, we can reduce the problem of finding the required set of paths in $F(m)$ to that of finding in $G(m)$ a Q_0-good path set defined as follows:

Let Q_0 be any set of at most 4 outputs of $G(m)$, $Q_0 \subseteq O \cup W$ and $|Q_0| = q_0 \leq 4$. A Q_0-good path set consists of $8m + 4$ edge-disjoint paths such that

- 4 of them link the vertices of $\bigcup_{1 \leq i \leq 4} a_i^1$ to Q_0 and a set D_1 of $4 - q_0$ vertices of $\bigcup_{1 \leq i \leq 4} c_i^m$, and

- the remaining $8m$ link the $8m$ ordinary inputs of $G(m)$ to $(O \cup W) \setminus Q_0$ and $D_2 = \bigcup_{1 \leq i \leq 4} c_i^m \setminus D_1$.

Let us define an assignment as a one-to-one mapping from $R \cup \bar{R}$ to $W \cup \bar{W}$ by associating to r_i^k one of w_i^k and \bar{w}_i^k, and to \bar{r}_i^k the other one.

Let $Q_r = Q \cap (R \cup \bar{R})$. For any assignment ϕ, let $Q_{\phi} = (Q \cap O) \cup (\phi(Q_r) \cap W)$ and $Q_{\bar{\phi}} = (Q \cap \bar{O}) \cup (\phi(Q_r) \cap \bar{W})$.

If $G(m)$ contains a Q_0-good path set and $\bar{G}(m)$ a Q_0-good path set, then we obtain the required set of edge-disjoint paths of $F(m)$ by taking the paths in $G(m)$ and $\bar{G}(m)$ and replacing for $1 \leq k \leq m$ and $1 \leq l \leq 4$, the last edge (c_i^k, w_i^l) (resp. $(\bar{c}_i^k, \bar{w}_i^l)$) of the path ending in w_i^k (resp. \bar{w}_i^k) by the subpath $(c_i^k, s_i^k, \phi^{-1}(w_i^k))$ (resp. $(\bar{c}_i^k, s_i^k, \phi^{-1}(\bar{w}_i^k))$). Note that we actually get more paths than required; some of them joining some a_i^1 or \bar{a}_i^1 to some c_i^m or \bar{c}_i^m are not needed.

Finally note that we have many choices of possible assignments and we can always choose an assignment ϕ such that Q_{ϕ} (resp. $Q_{\bar{\phi}}$) contains:

- either 2 outputs of W (resp. \bar{W}) and none of O (resp. \bar{O}),
- or 1 output of W (resp. \bar{W}) and at most 2 of O (resp. \bar{O}),
- or no outputs of W (resp. \bar{W}).

Indeed choose ϕ such that:

- if $|Q_r| = 4$, then $|\phi(Q_r) \cap W| = |\phi(Q_r) \cap \bar{W}| = 2$;
- if $|Q_r| = 3$ and $|Q \cap O| = 1$, then $|\phi(Q_r) \cap W| = 1$ and $|\phi(Q_r) \cap \bar{W}| = 2$;
- if $|Q_r| = 3$ and $|Q \cap \bar{O}| = 1$, then $|\phi(Q_r) \cap W| = 2$ and $|\phi(Q_r) \cap \bar{W}| = 1$;
- if $|Q_r| = 2$, then $|\phi(Q_r) \cap W| = |\phi(Q_r) \cap \bar{W}| = 1$;
- if $|Q_r| = 1$ and $|Q \cap O| > |Q \cap \bar{O}|$, then $|\phi(Q_r) \cap W| = 0$ and $|\phi(Q_r) \cap \bar{W}| = 1$.

27
- if $|Q_r| = 1$ and $|Q \cap O| < |Q \cap \bar{O}|$, then $|\phi(Q_r) \cap W| = 1$ and $|\phi(Q_r) \cap \bar{W}| = 0$.

In summary, to prove that $H(m)$ is a repartitor it suffices to prove the following lemma.

Lemma 58 For any set Q_0 of outputs of $G(m)$ such that either $|Q_0 \cap W| = 2$ and $|Q_0 \cap O| = 0$, or $|Q_0 \cap W| = 1$ and $|Q_0 \cap O| \leq 2$, or $|Q_0 \cap W| = 0$, there exists a Q_0-good path set in $G(m)$.

Proof. We call a default path for w^k_i (resp. o^k_j) the path (j^k_i, c^k_i, w^k_i) (resp. $(i^k_{l+1}, b^k_{l+1}, a^k_i, o^k_j)$).

Let L_l be the path $(a^1_t, b^1_t, c^1_t, a^2_t, b^2_t, c^2_t, \ldots, a^m_t, b^m_t, c^m_t)$ and let us denote by $L_l[x, y]$ the subpath of L_l with end vertices x and y. Let $O_l = \{o^k_j | 1 \leq k \leq m\}$ and $W_l = \{w^k_i | 1 \leq k \leq m\}$.

By symmetry of $G(m)$, we only need to prove the lemma for the following cases:

(i) $|Q_0 \cap (O_l \cup W_l)| \leq 1$ for $1 \leq l \leq 4$;
(ii) $Q_0 \cap (O \cup W) = \{w^k_{i_1}, w^k_{i_2}\}$ with $k_1 < k_2$;
(iii) $Q_0 \cap W = \{o^k_i\}$ and $Q_0 \cap O = \{o^k_i\}$;
(iv) $Q_0 \cap W = \{w^k_{i_1}\}$ and $Q_0 \cap O = \{o^k_{i_1}, o^k_{i_2}\}$ with $l_1 = 1$ or $l_1 = l_2$;
(v) $Q_0 \cap (W \cup O) = \{o^k_{i_1}, o^k_{i_2}, o^k_{i_3}, o^k_{i_4}\}$.

We only give here the proof in cases (i), (ii), (iii) and (v) with $l_3 = l_4 = 1$, the other cases being very similar.

(i) - if $|Q_0 \cap (O_l \cup W_l)| = 0$, take the path L_l;
- if $Q_0 \cap (O_l \cup W_l) = w^k_{i_0}$, take the paths $(L_l[a^1_i, c^k_i], w^k_{i_0})$ and $(j^k_{i_0}, L_l[c^k_i, c^m_i])$.
- if $Q_0 \cap (O_l \cup W_l) = o^k_{i_0}$, take the paths $(L_l[a^1_i, o^k_i], o^k_{i_0})$ and $(i^k_{l+1}, L_l[a^k_i, c^m_i])$.

These paths plus the default paths associated with the outputs not in Q_0 form a Q_0-good path set.

(ii) Consider the paths $(L_1[a^1_i, c^k_1], w^k_{i_1})$, $(j^k_{i_1}, L_1[c^k_1, c^m_1])$, $(L_2[a^k_2, b^k_2], a^k_1, o^k_4)$, $(i^k_2, L_2[b^k_2, c^m_2])$, $(j^k_{i_2}, L_1[c^k_1, c^m_1])$, L_3 and L_4. These paths plus the default paths associated with the outputs not in Q_0 form a Q_0-good path set.

(iii) Consider the paths $(L_1[a^1_i, c^k_1], w^k_{i_1})$, $(j^k_{i_1}, L_1[c^k_1, c^m_1])$, $(L_2[a^k_2, b^k_2], a^k_1, o^k_4)$, $(i^k_2, L_2[b^k_2, c^m_2])$, L_3 and L_4. These paths plus the default paths associated with the outputs not in Q_0 form a Q_0-good path set.

(v) Suppose that $l_3 = l_4 = 1$. Without loss of generality, we may assume that $k_1 < k_2 < k_3 < k_4$. Consider the paths $(L_1[a^1_i, c^k_1], o^k_1)$, $(L_2[a^1_i, b^k_2], a^k_1, o^k_4)$, $(L_3[a^k_3, b^k_3], a^k_2, b^k_2, a^k_1, o^k_4)$, $(L_4[a^k_4, b^k_4], a^k_3, b^k_3, a^k_2, b^k_2, a^k_1, o^k_4)$, $(i^k_{l+1}, b^k_{l+1}, L_1[a^k_1, c^m_1])$, $(i^k_{l+1}, L_2[b^k_1, a^k_2], o^k_4)$, $(i^k_{l+1}, L_3[b^k_1, a^k_2], c^m_1)$, $(i^k_{l+1}, L_4[b^k_1, c^m_1])$, and $(i^k_{l+1}, L_4[b^k_1, c^m_1])$. See Figure 14.

These paths plus the default paths associated with the outputs not in $Q_0 \cup \{o^k_{i_2}, o^k_{i_3}, o^k_{i_4}\}$ form a Q_0-good path set.
Proof of Theorem 56. By Theorem 33, $R(n, 4, 0) \geq \frac{7n}{4} - 7$. For $n = 16m + 4$, we have constructed an $(n, 4, 0)$-repartitor $H(m)$ with $28m + 18 = \frac{7n}{4} + 11$ switches. If n is not of the form $16m + 4$, let $n = 16m + 4 - h$ with $1 \leq h \leq 15$. Let $K(n)$ be the network obtained from $H(m)$ by the L-contraction of h linking edges. That is always possible as the edges (k_i^h, a_{i+1}^h) or (c_i^h, s_{i+1}^h) are linking. By Lemma 44, $K(n)$ is an $(n, 4, 0)$-repartitor. And $K(n)$ has $28m + 18 - h = \frac{7n}{4} + 11 + \frac{3h}{4} \leq \frac{7n}{4} + \frac{89}{4}$ switches.

Theorem 59

$$R(n, 3, 1) = \frac{7n}{4} + c,$$

where $-\frac{19}{4} \leq c \leq 27$.

Proof. From Lemma 42, we obtain $R(n, 3, 1) \leq R(n + 1, 4, 0) + R(3, 3, 1)$. By Theorem 56, $R(n + 1, 4, 0) \leq \frac{7n}{4} + 24$. And $R(3, 3, 1) = R(3, 0, 1) = 3$. Hence $R(n, 3, 1) \leq \frac{7n}{4} + 27$. Theorem 33 gives the other inequality.

5 Conclusion

In this paper, we studied the minimum size $R(n, p, f)$ of an (n, p, f)-repartitor with n inputs, p of which are priorities, and $n + f$ outputs. We have obtained general upper bounds, lower bounds, and tight bounds for small values of p and f. It would be interesting to see if our lower bound for $p = 6$ and $f = 0$ is attained and to study the cases of $p = 1, 2, 3, 4$ and arbitrary f.

It would also be interesting to further explore the behaviour of the function $R(n, p, f)$. For example, we expect that $R(n, p, f)$ is monotone in p.

Conjecture 60 If $p \leq p' \leq \frac{n}{2}$ then $R(n, p, f) \leq R(n, p', f)$.

29
Our results confirm that this holds for small values of \(n, p \) and \(f \). In view of this conjecture, the case \(p = n/2 \) seems particularly interesting. Very recently, Havet [8] discovered an asymptotically better upper bound than our Theorem 8: He proved that \(R(n, p, f) \leq \frac{69}{n} n + \frac{35}{2} f - 33p + O(\log(n + f)) \) if \(p \leq \frac{n - f}{2} \), \(R(n, p, f) \leq 18n + 34f + O(\log(n + f)) \), if \(\frac{n - f}{2} \leq p \leq \frac{n + f}{2} \), and \(R(n, p, f) \leq \frac{3}{2} n + \frac{35}{2} f + 33p + O(\log(n + f)) \) if \(p \geq \frac{n + f}{2} \).

Acknowledgment

We are grateful to the referees for their valuable suggestions that helped to improve the presentation of this paper.

References

