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1 IntroductionIn a recent article, Prohazka [21] considered the problem of designing packetradio networks which use time division multiplexing and have a diameterconstraint. In particular, he investigated the maximum possible number ofusers of such a network, with diameter D and with f time slots per frame.Since a user cannot transmit and/or receive more than one packet at a time,this amounts to assigning time slots to channels (one channel for each or-dered pair of communicating users) in such a way that the channels involvinga particular user in either transmission or reception are all assigned di�erenttime slots. (Frequency division multiplexing was also used to prevent inter-ference between users, but the number of bands was assumed su�cientlylarge to assign di�erent frequency bands to all channels operating in thesame time slot.) Other work on packet radio networks may be found in [3],[19], [25].The above problem can be modeled by directed graphs: the users corre-spond to vertices, the channels to arcs, and assigning time slots correspondsto coloring the arcs so that incident arcs have di�erent colors. Thus theproblem is to determine the maximum number of vertices of a digraph withdiameter D whose arcs can be colored with f colors.Prohazka o�ered some general constructions of such digraphs. The num-ber of vertices of his digraphs grows asymptotically as, roughly, (f=2)D=2.He also compiled a table of such digraphs with values of D up to ten and fup to twenty.Prohazka's constructions all have an additional property. Namely, the2



digraphs constructed are all symmetric, i.e., all channels are bidirectional.This can be stated as a separate problem: Find the maximum number ofvertices of a graph with diameter D whose edges can be colored with q colorsin such a way that any two adjacent edges have di�erent colors.Our purpose in this paper is to point out the similarity of these problemswith those of constructing large digraphs with diameter D and maximum in-and out-degree d, and large graphs with diameter D and maximum degree�. Since there is an extensive literature on these subjects, we can exploitthis similarity to derive substantial improvements of the results of [21].Indeed according to a well known theorem of Vizing, (see [10]), the edgesof a graph of maximum degree � can be colored with at most � + 1 colors(and clearly � colors are needed). Thus we can use any of the knownconstructions, e.g., from [2], [4], to considerably improve the bounds in [21].Furthermore, it turns out that in many cases the edges of the largest knowngraphs with degree � and diameter D can be colored with � colors. This isa further improvement of the constructions, and one which, we shall argue,will be very di�cult to better.We shall point out that while the graph constructions are more natural,and the bidirectional networks perhaps more desirable, substantially largernumbers of users can be achieved with digraphs. A particularly useful classof digraphs in this context turns out to be the class of balanced digraphs {namely those in which neither the indegree nor the outdegree of any vertexexceeds half of the number of available colors. We shall use a variant ofVizing's theorem to conclude that a digraph with maximum in- and out-3



degree d admits an arc-coloring with 2d + 2 colors. This allows us to useknown constructions of digraphs with maximum in- and -out- degree d anddiameter D. Also in this case it is often true that for the largest knownconstructions of digraphs with maximum in- and out- degree d and diameterD, there is an arc-coloring with 2d colors (and clearly no fewer colors cansu�ce). For instance, 2d colors are su�cient for the de Bruijn and Kautznetworks, which have the distinction of being the largest known generalfamily of digraphs with maximum in- and out- degree d and diameter D.As a consequence we shall obtain digraphs with (f=2)D + (f=2)D�1 verticesand diameter D, whose arcs can be colored with f colors.2 De�nitionsThe packet radio network is modeled by a digraph G = (V;E) in whichthe vertices (elements of the set V ) represent the users, and there is anarc (or directed edge, i.e., an element of the set E) xy from vertex x tovertex y to indicate that user x can transmit to user y. Thus the arcsrepresent unidirectional channels; a bidirectional channel joining x and ymay be represented by two arcs xy and yx. If all channels are bidirectional,the resulting digraph is symmetric, i.e., it has with each arc xy also the arcyx. In this case we may consider instead an undirected graph with an edgefx; yg replacing the two arcs xy and yx.We are only interested in digraphs which are strongly connected, i.e.,digraphs in which there exists a directed path from any vertex x to anyvertex y. The length (number of arcs) of a shortest directed path from x to4



y is called the distance >from x to y and denoted by d(x; y). The diameter ofa digraph G is the maximum distance d(x; y) over all vertices x and y of G.The outdegree of a vertex x in the digraph G is the number of arcs xy in G,and is denoted by d+(x). The indegree d�(x) is de�ned analogously. Thusd+(x) is the number of channels x can transmit to and d�(x) the number ofchannels x can receive from. An arc-coloring of a digraph G is a mappingassigning colors (labels) to the arcs of G in such a way that two arcs havinga common vertex obtain di�erent colors. The arc-chromatic index of G isthe minimum number of colors which make an arc-coloring of G possible.An (f;D)C{digraph is a digraph with diameter at most D and arc-chromatic index at most f . We denote, by nC(f;D), the maximum numberof vertices of an (f;D)C{digraph. The problem mentioned in the introduc-tion is to evaluate nC(f;D). (Our notation would be more consistent withthe rest of the paper if we denoted nC(f;D) by ntC(f;D); we shall not dothis to remain consistent with the notation of [21], but it may be helpful tobe aware of this.)As mentioned above, all of the networks constructed in [21] are bidirec-tional, i.e., correspond to symmetric digraphs. The construction of sym-metric (f;D)C{digraphs may be considered as a separate problem. It issomewhat more convenient to discuss this problem in the context of undi-rected graphs, as explained above. All the above de�nitions have obviousanalogues for undirected graphs: For a connected graph G, the distanced(x; y) is the length of a shortest path from x to y, and the diameter of G isthe greatest d(x; y) for all pair of vertices x, y of G. The maximum degree5



of G is the largest number of edges incident with any vertex of G, and theedge-chromatic index of G is the minimum number of colors which can beassigned to the edges of G so that two edges having a common vertex obtaindi�erent colors.A (q;D)C{graph is a graph with diameter at mostD and edge-chromaticindex at most q. We denote by n?C(q;D) the maximum number of verticesin a (q;D)C{graph.3 GraphsA (�; D){graph is a graph with diameter at most D and maximum degreeat most �. We denote by n?(�; D) the maximum number of vertices ina (�; D){graph. We begin by exploring the relationship between (�; D){graphs and (q;D)C{graphs. Indeed, the construction of large (�; D){graphsand the evaluation of n?(�; D) is a challenging problem that has been widelyconsidered in recent years, see, for example, the survey [4], or the specialissue [26]. It is clear that in any edge-coloring of a graphG, a vertex of degree� needs at least � colors for its incident edges. Thus the edge-chromaticnumber q of G is at least the maximum degree �. On the other hand, atheorem of Vizing (see [10], Chapter 6), ensures that the edge-chromaticindex q is a most �+1 (in other words, any graph G with maximum degreeq � 1 admits an edge-coloring with q colors). Thus we have the followingobservations:Proposition 1. n?(q � 1; D) � n?C(q;D) � n?(q;D). 26



Proposition 1 is useful, on the one hand, to obtain an upper bound onn?C(q;D) by using the upper bound on n?(�; D) known as the Moore bound[8]. The Moore bound is obtained by noting that there are, in a (�; D){graph, at most �(� � 1)k�1 vertices at distance k >from any �xed vertex.Thus, n?(�; D) � 1 + �+�(�� 1) + :::+ �(�� 1)D�1:We conclude thatn?C(q;D) � 1 + q + q(q � 1) + :::+ q(q � 1)D�1:On the other hand, we also use Proposition 1 by appealing to any knownconstruction of large (q�1; D){graphs to obtain a lower bound on n?C(q;D).This improves practically all the lower bounds of [21]. For instance, the valuen?C(10; 10), bounded below by 206 660 in [21], is at least n?(9; 10) accordingto Proposition 1. Thus we may use a construction due to Campbell [12],showing this value to be bounded below by 19 845 936.Further improvement will occur with many constructions of large (�; D){graphs in which we can show an edge-coloring with � (rather than � + 1)colors. An example of a (�; D){graph that is colorable with � colors ap-pears in Figure 1, where a largest possible (3; 3){graph on 20 vertices isedge-colored with 3 colors. (Cf. [4]).) Thus n?C(3; 3) = n?(3; 3) = 20 (to becompared with the bound of 14 in [21], Figure 4).(Figure 1 somewhere here)A �{coloring always exists for a bipartite (�; D){graph. It is well knownthat the maximum degree and the edge-chromatic index of a bipartite graph7



are equal [10]. Thus n?C(q;D) is at least as large as the number of verticesof any bipartite (q;D){graph. This is often useful to know, as many wellknown network constructions are bipartite { such as the hypercube, or thestar graph [1]. Taking large bipartite (q;D){graphs from [13] or [14], wefurther improve the lower bounds on many n?C(q;D); for instance, we obtainn?C(10; 10)� 47 059 200.It is also shown in [18] that there exist bipartite (q;D){graphs with2(q=2)D�1 + 2(q=2)D�3 vertices. Thus we can conclude that n?C(q;D) �2(q=2)D�1+2(q=2)D�3. This is an improvement over the asymptotic boundsdiscussed in section IV of [21], which are roughly of the order (q=2)D=2 as qtends to in�nity. (Cf. also [13] for a slightly smaller improvement.)It has been our experience that in most examples of the largest known(�; D){graphs, an edge-coloring with � colors is possible. This is the casein particular for the undirected de Bruijn and Kautz graphs. The latterare (2d;D)-graphs with dD + dD�1 vertices, obtained by ignoring the arc-directions of the Kautz digraphs K(d;D) de�ned in the next section. Inparticular, we conclude (cf. Corollary 5):Corollary 2.(q=2)D + (q=2)D�1 � n�C(q;D) � q(q � 1)D�1 + q(q � 1)D�2 + :::+ q + 1: 2The lower bound in the above corollary is a substantial improvementof the constructions in [21]. Even though it appears quite far >from thetheoretical upper bound (derived from the Moore bound), we are con�dentthat, in full generality, further improvements will not be easy. The reason forthis is that any improved constructions would in particular provide better8



bounds for the much studied parameter n�(�; D), via Proposition 1. Thisdoes not mean, of course, that particular values of n�C(q;D), or even in�nitesequences of such values, could not be easily estimated better than the abovelower, or upper, bounds. In all the cases below, the best known (�; D)|graphs have been shown colorable with � colors:� the (2k + 1; 2m){graphs (kgeq2) with km(k + 1)m vertices, known asthe sequence graphs (cf. [15]), [17]� the (p+ 1; 2){graphs with p2+ p+1 vertices, p a prime power, arisingfrom projective planes (cf. [4]), [23]� some of the best known (3; D){graphs, in particular those with D = 4and 38 vertices, D = 5 and 70 vertices, [17], D = 6 and 128 vertices,D = 7 and 184 vertices, and D = 8 and 320 vertices, [22].� the (3; D){graphs, for D = 2k � 2, with 2 � 2D vertices obtained bysubstituting an edge in each vertex of the de Bruijn graph B(2; D), cf.below (and similar (Delta; D){graphs when � is one plus a power oftwo), [7].We conclude this section by noting that it is not always the case that thebest (�; D){graphs are �{edge-colorable. The unique largest (3; 2){graphis the (ten-vertex) Petersen graph, cf. [10]; it is known that it is not 3{edge-colorable. There is no graph on 9 vertices with all degrees equal to 3, andif a nine-vertex graph has a vertex of degree two or less, then counting likein the Moore bound, starting from this vertex, we see that it cannot have9



diameter 2, and hence n?(3; 2) is at most eight. In fact, there is a (3; 2)C{graph with eight vertices, obtained from the cycle 0,1, ...,7,0 by adding theedges f0,4g, f1,5g, f2,6g, f3,7g. Therefore n?C(3; 2) = 8.4 DigraphsLet us now consider the construction of (f;D)C{digraphs, i.e., digraphs withdiameter at most D and arc-chromatic number at most f .Since graphs correspond to symmetric digraphs, we have already con-structed large (f;D)C{digraphs. Let nsC(f;D) denote the maximum num-ber of vertices in a symmetric (f;D)C{digraph. Any (q;D)C{graph yieldsa symmetric (2q;D)C{digraph by replacing each edge fx; yg by the arcs xyand yx. Moreover, an edge-coloring of the graph gives rise to an arc-coloringof the digraph with twice as many colors. Hence,nC(2f;D) � nsC(2f;D) = n?C(f;D).Moreover, we expect to be able to construct even larger (f;D)C{digraphswhen the symmetry condition is removed. Note that we know from Corollary2, that, roughly, nsC(2f;D) � fD. It is our objective to construct (non-symmteric) (f;D)C{digraphs larger than this upper bound for symmetricdigraphs.Consider �rst another special class of (f;D)C{digraphs. We shall saythat an (f;D)C{digraph is balanced if both d+(x) � f=2 and d�(x) � f=2for every vertex x. Let nbC(f;D) be the maximum number of vertices in abalanced (f;D)C{digraph. A (d;D){digraph is a digraph G with diameter Dand maximum in- and out- degree d. Note that while this notion is analogous10



with the notion of a (�; D){graph, we don't have here the close analogy wehad between (�; D){graphs and (�; D)C{graphs. Speci�cally, the readershould be aware that a (2d;D){digraph has maximum in- and out- degree2d, while an (2d;D)C{digraph has, in particular, each vertex with d+ + d�bounded by 2d. Thus, in some sense, a (d;D){digraph is automaticallybalanced, and we recognize this by writing, contrary to the usual notation,[4], nb(d;D) for the maximum number of vertices of a (d;D){digraph.We then have the following very close relationship of nbC(f;D) and nb(d;D).Proposition 3. nb(f � 1; D) � nbC(2f;D) � nb(f;D).Proof. The �rst inequality follows, as before, from a version of Vizing's the-orem [10]. In fact, any (f �1; D){digraph with edge-directions ignored is anundirected multigraph with edge multiplicities at most two. The maximumdegree in this multigraph is at most 2f � 2 and Vizing's theorem impliesthat the edges of the multigraph, and hence also the arcs of the digraph, canbe colored with 2f colors. Thus any (f � 1; D){digraph is also a balanced(2f;D)C{digraph. The second inequality is trivial. It simply says that in abalanced (2f;D)C{digraph both in- and out- degrees are at most f . 2In view of Proposition 3, we can again use the known constructions oflarge (d;D){digraphs. The best general construction among these is thefollowing (we assume d � 2): The de Bruijn digraph B(d;D) has as itsvertices all strings of length D over the alphabet f0; 1; :::; d� 1g; there is anarc from a vertex a1a2a3:::aD to all vertices a2a3:::aDa with a in f0; 1; :::; d�1g. The Kautz digraph K(d;D) has as its vertices all those strings of lengthD over the alphabet f0; 1; :::; dg in which consecutive characters are distinct;11



there is an arc from a vertex a1a2a3:::aD to all vertices a2a3:::aDa with afrom f0; 1; :::; dg and distinct from aD. It is easy to see (cf. [5], [16], [24])that both B(d;D) and K(d;D) are (d;D){digraphs. Moreover, the digraphB(d;D) has dD vertices and the digraph K(d;D) has dD + dD�1 vertices.We immediately obtain, via the proof of Proposition 3, large (balanced)(2d+2; D)C{digraphs. However, we were able to prove (see [6]) that B(d;D)and K(d;D) are in fact (2d;D)C{digraphs:Proposition 4. Both B(d;D) and K(d;D) (for D � 2) have arc-chromaticindex 2d. 2>From this we �nd a good estimation of the maximum number of verticesin a balanced (f;D)C{digraph: Consider the Moore bound for nb(d;D),obtained by noting that in a (d;D){digraph there are at most dk verticesof distance k from a �xed vertex. (It is known here that the Moore boundcannot be attained, and thus the upper bound given below is strict, unlessd or D is equal to one, [11], [20]).Corollary 5. fD + fD�1 � nbC(2f;D) � fD + fD�1 + :::+ 1. 2It follows, e.g., that the Kautz digraph K(3; 3) on 36 vertices (cf. Figure2) yields nC(6; 3) � 36. This improves on the value 14 obtained by Prohazkaand on the value 20 obtained for n�C(3; 3) in the preceding section.(Figure 2 somewhere here)Proposition 4 is a special case of a more general result on line digraphs.Using this general result and the family constructed in [16], J. Bond [9] hasrecently obtained a slight improvement of Corollary 5 in the case of 2d =12



4. (As always, this was done by �nding a 4-arc-coloring of a large (2; D)-digraph.). In fact he has shown that if D � 6, then nC(4; D) � 25 � 2D�4,rather that � 24 � 2D�4 implied by Corollary 5.We now return to the general problem of large (not necessarily balanced)(f;D)C{digraphs. This problem also has an analogous problem concernedwith the degree; however, that problem does not seem to have been pre-viously studied. Let nt(d;D) denote the maximum number of vertices ofa digraph of diameter D such that the total degree d+(x) + d�(x) of eachvertex x is at most d.Note that any (d;D){digraph has maximum total degree bounded by 2d.Moreover, as the digraph is strongly connected, if d+(x) + d�(x) � 2d then1 � d+(x) � 2d� 1 and 1 � d�(x) � 2d� 1. Thereforenb(d;D) � nt(2d;D) � nb(2d� 1; D):The close relationship between nt(d;D) and nC(f;D) is made explicit in thefollowing proposition, proved along the lines of the proof of Proposition 3.Proposition 6. nt(f � 2; D) � nC(f;D) � nt(f;D). 2One can argue in a spirit similar to proving the Moore bound, thatnt(2f; 2) � f2 + f . Thus combining Propositions 3 and 6, and Corollary 5we obtain the precise value of the parameter nC(2f; 2):Corollary 7. nC(2f; 2) = f2 + f: 213



5 ConclusionWe described several constructions (and referred to many others) of largegraphs with given diameter and maximum degree � which can be edge-colored with � colors. As a consequence we obtained the following lowerbounds on n�C(�; D):� n�C(3; 2) = 8� n�C(3; 3) = 20, n�C(3; 4) � 32, n�C(3; 5) � 56, n�C(3; 6) � 128, n�C(3; 7)�184 and n�C(3; 8)� 320.� n�C(10; 10)� 47 059 200� n�C(3; 2k � 2) � 2 � 2(2k � 2)� n�C(2f;D) � fD + fD�1� n�C(2f + 1; 2m) � fm(f + 1)m� n�C(p+ 1; 2) � p2 + p+ 1For the corresponding problem on digraphs we have nC(2f;D) � n�C(f;D),and in addition:� nC(6; 3) � 36� nC(2f;D) � fD + fD�1� nC(4; D) � 25 � 2D�4� nC(2f; 2) = f2 + f 14



In both cases we have also described upper bounds and general lowerbounds relating these problems to those of �nding large graphs (digraphs)with given maximum (in- and out-) degree and diameter.>From a practical perspective, we suggest the following technique toconstruct large (q;D)C{graphs for given values of q and D. Consider �rstthe largest known (q;D){graphs. If any such a graph can be shown to admitan edge-coloring with q colors, one should use it. No larger graph is likelyto be easily found, as it would also be an improvement on the extensivelystudied value n?(q;D). Otherwise consider (q;D){graphs for which a q{edge-coloring is known and which still have a relatively large number ofvertices. In any case, we can use, for instance, the largest known bipartite(q;D){graph. Similar comments apply in the case of (f;D)C{digraphs.Finally, we note that the best constructions we obtained for the case ofgeneral digraphs are better than the theoretical upper bounds for symmetricdigraphs { compare the lower bound in Corollary 5 with the rough upperbound nsC(2f;D) � fD mentioned at the beginning of section 4. Thus thereis a heavy penalty for requiring radio packet networks to be symmetric. Onthe other hand, it appears that requiring them to be balanced is not anobstacle, and in fact all of the best constructions happen to be balanced.We thank J. Bond, M.A. Fiol, C. Delorme, and P. Sole for their interestin, and contributions to, this paper. 15
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Figure captions Figure 1.A largest (3; 3)C{graph, with a 3-coloring of its edges.Figure 2.The (6; 3)C{digraph K(3; 3), with a 6-coloring of the arcs
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