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In this paper, we prove that K% admits a resolvable decomposition into
TTsor Cyif and only if 7 =0 (mod. 3), n £ 6.

1. INTRODUCTION

Let G and H be two given graphs (directed or not). We shall say that H can
be decomposed into graphs & and we shall denote this by H — G if there
exists a partition of the edges (or arcs) of H into partial subgraphs isomorphic
to G. Furthermore, if we can arrange these subgraphs into classes, called
parallel classes, where each class consists of a partition of the vertices of H,
we shall say that we have a resolvable decomposition and we shall denote this
by H> G.

For previous results on the existence of such decompositions with different
graphs G see [1]. A 7

Here we are interested to know for what values of 7 there exist resolvable
decompositions of H = K% (the complete symmetric directed graph) into
G = TT; or into C;, where 77 is the translative tournament on 3 vertices
and C; the directed cycle of length 3.

Notations. In what follows we shall denote by (a, b, c) either the T7,
with arcs (g, b), (a, ¢), and (b, ¢)-or the C, with arcs (g, b), (b, ¢), and (¢, a).

1.1. ExAMPLE. K3 > TT,. Let the vertices of K% be Z,, U {0} (Z,
denotes the additive group of residues modulo #). The 11 classes of a resol-
vable decomposition are the following {(5, i -+ 2,/ + 10 + 7,i + 1,i 4+ 5)
(+8i+9i+Hi+300,it+6)},icZ,.

It is well known that K, 5> C, if and only if n = 3 (mod. 6) (solution of
Kirkman’s school girl problem by Ray-Chaudhuri and Wilson [5]). Thus,
by associating two opposite T77 (or C,) to each C; we have

1.2. THEOREM. [fn = 3 (mod. 6) K¥ 5 Cyand KX 5> TT, .

179
0097-3165/79/020179-07$02.00/0
Copyright © 1979 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



180 : BERMOND, GERMA, AND SOTTEAU
It has also been proved for not necessarily resolvable decompositions:
1.3. TaeoreMm [4]. K% — TT, if and eiw\ if nn — 1) == 0 (mod. 3)

1.4, THEOREM. K% — Cy if and only if n(n — 1) =0 (mod. 3), n %6
(see [1] for the references).

1.5. Taporem (Hanani [3]). 2K,-> Cs if and only if n=0 (mod. 3)
n # 6.

For the existence of resolvable decompositions of K into 77T or Cy we
have the following:

1.6. PROPOSITION. . Necessary conditions for KE-> TTy or K% > Cy are
n = 0 {mod. 3}, n 5% 6.

"Proof. The number of vertices of K must be a multiple of 3 (each class
being a partition of the vertices) and then Em number om arcs of Kf is a
multiple of 3. Furthermore, for n = 6 if K3, I TT, or K% > C, then 2K, ~>
C, (by deleting the orientation) and that is impossible by Theorem 1.5. |

We shall prove that these conditions are sufficient:
1.7. Tusorem. K% TT, and K% -5 C, if and only if 7= 0 (mod. 3),
n % 6.

As corollary we will obtain Theorem 1.5. of Hanani [3]. The proof given
here will use some of the ideas of that paper.

II. PrOOF OF THE THEOREM

Notations. K{; shall denote the complete symmetric directed graph with
vertex set A.

Ko shall denote the complete r-partite graph with vertex set the union of r
disjoint sets of cardinality »

N.M.. ng. h“i%ﬂﬁwwww}*a&.

Proof. Let the vertices of K be the four elements of GF(4): 0, 1, x, x*
with x* = x - 1; the four T'T, (or Cs) of a decomposition are the following
{(o, 1+ o, x + o), @ € GF} (that is, {(0, 1, x)(1, 0, ¥*)(x, x%, O)(x%, x, )}.” §

2.2. LemMaA. If KX -5 TT, (or Cy) then Kf, — TTy (or Cs).

Proof. Tt is similar to that of [3, Lemma 7, p. 281] but to be complete
we shall give it here in the case 77T} (it is exactly the same for C,).
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Let the vertices of K}, be partitioned into n sets 4, - A, with | 4;] = 4.
The vertices om. A; will be denoted %, o &€ GF(4).

Let %y - €,., be the b&.m:& classes of a resolvable decomposition of
K% into ﬁﬁu ; ,

From %, we construct seven parallel classes of a decomposition of K,
associating to each TT; (7, j, k) of %, the seven following families:

AAQs \ Qq 8 QwQVAQQ,THv al%v L VAQRTHu R+Ru ,ZnVA olrh ﬁ+su QM;.& vwv
where o € GF(4) and

MAQ.\% Q&a.: Qae.zvm&ﬂs.: Qa.eix..h Rse f.mt,VAQwFTS“ Q%s+w+8v QME.FTSV
Aawa.r.euu Qwei;ému Qﬂif.a»ku

where p {1, 2, 3}.

From each %, 2 <<I<<n — 1, we construct four parallel classes of a
decomposition of K¥ by associating to each IT, (i, j, k) of %, the four
following families

{(a", a, a")ai™, Sﬁz 4, af e, akYal Y a7 apt),
where « € GF(4).
As wanted we obtain 7 4 4(n — 2) = 4n — 1 parallel classes. §

2.3, LeMMa.
K~ TTy, K -5 Cy,
K -2 TTy, Koy~ Cs,
Kt TTy,  Kgy—2> Cs,
Kh-T>TTy,  Kf-1>C;.
Proofs will be given in the Appendix.

2.4. LemMA.  Kfyop — Ky with | A| = 12, | B| = 6, can be decomposed
into 17 classes of TT, (or Cy) such that

— 12 classes D; (j = 1,..., 12) partition the vertices of A U B.
— 5 classes E; (j = 13,..., 17) partition only the vertices of A.

The proof will be given in the Appendix.

2.5. Taeorem (Brouwer, Hanani, and Schrijver [2]). Forr =>4
Koz — Ky .
(In fact in [2], they give all the values of r, n for which K, — Ky .)
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2.6. THEOREM. Forany u =1, K%, . 5 TTy (or Cy).

Proof. Foru=1,2,3see Lemma 2.3. Letn = 12u -+ 6, w > 4 and let us
partition the set X of vertices of K% as follows:

-Q\h B with |4, =12, 1 <i<wu and |B| =
d=1
By Lemma 2.3, K ch isomorphic to Kf can be decomposed into 17
parallel classes €, 1 <<j <17, .
By Lemma w,mr for i = me.; u, Ky sy — K3 can be decomposed into
17 classes of T'Ty (or ﬁwﬁ : 4

— 12 classes D, D¢ ) ., Di, which partition the vertices of 4, U B.
5 classes £y, EX, ..., ;m: which partition the vertices of 4,

-By Theorem 2.5 the graph K, ;, constructed on (Ji_, 4, can be decomposed
into K¥, and by Lemma 2.1 each of these X can be decomposed into 77T,
(or C3). For any 1, let a/ be a given vertex of the set 4, ; for each K} of the
decomposition of K%, containing a,/ we consider the 7T, (or C,) of the
decomposition of this KF not containing this vertex g/ (for example if
a = x*in Lemma 2.1, we take (0, 1, x)). Then for any j, 1 </ < 12, the set
Fit of all these TT, (or C,) associated to this vertex g,/ form a Umnﬁscn of the
vertices of the K% _;,,4, constructed on Uber 4x — A; .

Thus we obtain a resolvable decomposition of K, ¢ into T'Ty (or Cy)
with the 12u4 4 5 following parallel classes:

— 12 classes CA U Fit for j = 1,..., 12,
5 classes Cf U iy Ejf for j = 13,..., 17.
— 12{u — classes Df U Ffforj=1,.,12,2 <i<<u §

2.7. End of the Proof of Theorem 1.7

If n = 3 (mod 6) the theorem follows from Theorem 1.2.
If # = 6 (mod 12} n 5= 6 the theorem follows from Theorem 2.6.
If n = 0 (mod 12); let n = 4%¢, where g = 0 (mod 3) but g == 0 (mod 12).

In this case the theorem follows by repeated applications of Lemma 2.2
from the fact that the theorem is true for ¢, ¢ ¢ 6 and for n = 24 (Lemma
23). B

II. APPENDIX—Proors OF LEMMAS 2.3 AND 2.4
In the following we shall denote by X the set of vertices of K% and if ¥ is a

class of TT, (or Cy), € + i will mean the class obtained from € by adding i
to each vertex of the 7T, (or C;) of %, with the convention that co 4 i = co.

P—

iy
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3.1. Proof of Lemma 2.3
— KA TT,.

Let X == Z,, U {oo}. The 17 @m:m:& classes of a resolvable decomposition
of Kf; into T7T, are the ¥ -+, 0 < i < 16 with € = {{0, o0, 11) (1,9, 14)
(7,2, 5 @4, 3, 10) (6, 15, 8) (12, 16, 1 13)}.

— K} =T TT,. A -

Let X = Z,3 U {co}. The 23 parallel classes are the ¥ + i, 0 <</ <22
with € = {(6, 18, 19) (13, 1,22) (2, 5, 12) (20, 11, 16) (7,9, 15) (4, 3, 21)
(17, 10, 14) (8, o0, O)}.

— KX I TT,.

et X = Z,, U {c0}. The 29 parallel classes are the mm + i, 0P <28
with: € = {(0,4, 15) (28, 1, 2) (22, 7, 14) (20, o0, 11}} U {(28, 28=+1 20342/ =
1,2,3,%5,6,7.

*
— Ky~ TTy.

Let X = Z,, U {co}. The 41 parallel classes are the € + 4, 0 <i <40
with: ¥ = {(15, 8, 0) (7, 4, 24) (21, 12, 31) (23, oo, 22)} U {(6%, 63a+1, GB+2)/
a=0,1,2,3,5,6,7,8, 10, 11}.

»xgslﬂ The four decompositions above are derived from the decomposi-
tions 2K,, - Cj given by Hanani [3] by suitably mmw.mzam directions to the C,
in these decompositions.

— Ky -5 C,.
~
Let X = Z,5U{c0;, 0y, 00g}. The 17 parallel classes are the €, -+ i,
0 <i < 14, €5 and ¥,, with
% ={(0, 11, 12) (1, 3, 9) (2, 6, 5) (o0, , 10, 8) (c0,, 4, 13) (0, , 14, )},
m%; = AAOOH s Dgy Ovaw v AQ“ i zT mu i + MOV\N == Ou Hu Nw wq va

Fry = {(001, 03, W)} U{(i, 1 + 10, i + 5)/i = 0, 1, 2, 3, 4}.

I

*
E‘NAMA ﬂY AHN_.

Let X = Z,, w {00, ,‘8m ,» 03} The 23 parallel classes are the €, - i,
0 <i €20, %y, €y with
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= {0, 1,4)¢3,5 9(12, 17, 2) (8, 7, 16) (11, 19, 14) (o0, , 15, 13)
{0y, 6, 18) (coy, 20, 10)},
Gog == {(00y, 0y, OV, i-+7,i+ 14))i = c 1,2, 3,4, 35,6},
Fag == {005, 005, cCON VL, i+ 14,1+ TNi=0,1,23,4,5, 6}

i

® ¥
— Kw& 3 mw -

Let X = Z,, U {coy, c0,, o0z}. The 29 parallel classes are the €, -+ i,
0 <C i< 26, Fog, €op with

%, = {(0, 1, 3) (4, 7511) (12, 17, 23) (6, 13, 21) (16, 14, 24) (10, 9, 22) -
(15, 26, 20) (oo, , 2, 25) (0, 18, 8) (005, 5, 19)},

Ca = {(007, 00y, )} W{{E I+ 9,7+ 18)/0 <i <8}
Epe = {(00y, 00, 0} {5, i+ 18,7+ 90 < i < 8}
— K} -5 C, (the decomposition is due to A.E. Brouwer).

Let X = Zy C?oi <7< 125

Let 2; (1 <j=<<{11)be the : parallel classes of C; of the K35 constructed
on the vertices woom L i< 120

The 41 parallel classes of the decomposition of K} will be €, + 4, 0 <
29, D;0 (€gp + ), 1 <J <10, ¥y U Dy with

#Fo= {0, 17, 22) (1, 7, 5) (8, 2, coy) (3, 19, c0,) (4, 26, c04) (6, 24, o04)
mmﬁ mwu OOmv Awuu MNu OO@W Amm» Nﬁm OO‘b ANOU. NOV OOmv Awaw wmg OOmv
mwmu Nuv OOu.cv mwmu m&u OOHHV AMOw Nm, OOmmvH.?

Gy = 10,10, 2000 Ui + 1, i +2,i+4) G+ 3,i+ 16,7+ 19)
(i 45,117, i+ 28)/i = 0, 10, 20},

Co = {5,714+ 20,1+ 10)/0 <7 < 9. ‘

i

3.2. Proof of Lemma 2.4

Let Z,, be the set of vertices of 4 msm B = {c0,, 00y, 00y, 004, 005, 0Og}. s
To obtain the decomposition of Ky — Ww into 77Ty with the wanted
properties it suffices to take D; =€ 4/, 1 <7 <12 with € = {(0, o0, , @
(3, 0y, 1) (2, 003, 9) (4, 04, da w0y, 10) (11, o4, 8)} and

Ez ={(1,0,2)(4 3, 5 (7, 6, 8 (10, 9, 11)},
Ey = Ep+1,
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@Hm == NNHw nT N
Eye = {(0, 4, 8) (1, 5, 9) (2, 6, 10) (3, 7, 11)},
E;p = {(8,4,0) (9, 5, 1) (10, 6,2) (11, 7, 3)}.

The decomposition of Kz — K into C, is given by

Dj =%+, 1 <j<12,
with

C = .mﬁu_uu @y, Ov Q»OQ Qg 5 wv AN» Q3 Avv Aw, g5 WV Amvw D5 5 mv Aﬂv”oOm E] MVW

and

.Nm.ww == AAO» Mu @v AA.@ mg ._Cv Amu Gu Nv Awu ﬂ“ ﬁﬁqu

m.; m.a + 1, .
Eyy = Eyg + 2,
Eyg = Ey3 + 3,

NWNQ = MAHO» m.w Mv Awu\u .Nu Wv AO» wg h,v Ar Wu .mvw.
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