Resolvable Decomposition of K_n^*

J. C. BERMOND,* A. GERMA,† AND D. SOTTEAU*

 $*Informatique, b \^{a}t. 490, ^{\dagger} Math\'{e}matiques, b \^{a}t. 425, Universit\'{e} Paris-Sud, 91405-Orsay, France and Fran$

Communicated by the Managing Editors

Received August 3, 1977

In this paper, we prove that K_n^* admits a resolvable decomposition into TT_3 or \mathbb{C}_3 if and only if $n \equiv 0 \pmod{3}$, $n \neq 6$.

I. INTRODUCTION

Let G and H be two given graphs (directed or not). We shall say that H can be decomposed into graphs G and we shall denote this by $H \to G$ if there exists a partition of the edges (or arcs) of H into partial subgraphs isomorphic to G. Furthermore, if we can arrange these subgraphs into classes, called parallel classes, where each class consists of a partition of the vertices of H, we shall say that we have a resolvable decomposition and we shall denote this by $H \xrightarrow{r} G$.

For previous results on the existence of such decompositions with different graphs G see [1].

Here we are interested to know for what values of n there exist resolvable decompositions of $H = K_n^*$ (the complete symmetric directed graph) into $G = TT_3$ or into C_3 , where TT_3 is the translative tournament on 3 vertices and C_3 the directed cycle of length 3.

Notations. In what follows we shall denote by (a, b, c) either the TT_3 with arcs (a, b), (a, c), and (b, c) or the C_3 with arcs (a, b), (b, c), and (c, a).

1.1. Example. $K_{12}^* \stackrel{r}{\to} TT_3$. Let the vertices of K_{12}^* be $Z_{11} \cup \{\infty\}$ (Z_n denotes the additive group of residues modulo n). The 11 classes of a resolvable decomposition are the following $\{(i, i+2, i+10)(i+7, i+1, i+5)(i+8, i+9, i+4)(i+3, \infty, i+6)\}, i \in Z_{11}$. It is well known that $K_n \stackrel{r}{\to} C_3$ if and only if $n \equiv 3 \pmod{6}$ (solution of

It is well known that $K_n \to C_3$ if and only if $n \equiv 3 \pmod{6}$ (solution of Kirkman's school girl problem by Ray-Chaudhuri and Wilson [5]). Thus, by associating two opposite TT_3 (or C_3) to each C_3 we have

1.2. THEOREM. If $n \equiv 3 \pmod{.6} K_n^* \stackrel{r}{\to} \mathbb{C}_3$ and $K_n^* \stackrel{r}{\to} TT_3$.

179

0097-3165/79/020179-07\$02.00/0 Copyright © 1979 by Academic Press, Inc.

All rights of reproduction in any form reserved.

RESOLVABLE DECOMPOSITION OF K_n^*

181

It has also been proved for not necessarily resolvable decompositions:

- THEOREM [4]. $K_n^* \to TT_3$ if and only if $n(n-1) \equiv 0 \pmod{3}$
- (see [1] for the references) 1.4. Theorem. $K_n^* \to \mathbb{C}_3$ if and only if $n(n-1) \equiv 0 \pmod{3}$, $n \neq 6$
- 1.5. Theorem (Hanani [3]). $2K_n \stackrel{r}{\rightarrow} C_3$ if and only if $n \equiv 0 \pmod{3}$

have the following: For the existence of resolvable decompositions of K_n^* into TT_3 or C_3 we

- $n \equiv 0 \pmod{3}, n \neq 6$ 1.6. Proposition. Necessary conditions for $K_n^* \xrightarrow{\tau} TT_3$ or $K_n^* \xrightarrow{\tau} \mathbb{C}_3$ are
- multiple of 3. Furthermore, for n=6 if $K_n^* \stackrel{r}{\rightarrow} TT_3$ or $K_n^* \stackrel{r}{\rightarrow} \mathbb{C}_3$ then $2K_n \rightarrow$ C_3 (by deleting the orientation) and that is impossible by Theorem 1.5. being a partition of the vertices) and then the number of arcs of K_n^* is a *Proof.* The number of vertices of K_n^* must be a multiple of 3 (each class

We shall prove that these conditions are sufficient:

1.7. Theorem. $K_n^* \xrightarrow{r} TT_3$ and $K_n^* \xrightarrow{r} C_3$ if and only if $n \equiv 0 \pmod{3}$,

here will use some of the ideas of that paper As corollary we will obtain Theorem 1.5. of Hanani [3]. The proof given

PROOF OF THE THEOREM

vertex set A. Notations. $K_{[A]}^*$ shall denote the complete symmetric directed graph with

disjoint sets of cardinality n. $K_{r\times n}$ shall denote the complete r-partite graph with vertex set the union of r

2.1. Lemma. $K_4^* \rightarrow TT_3$, $K_4^* \rightarrow C_3$

with $x^2 = x + 1$; the four TT_3 (or C_3) of a decomposition are the following $\{(\alpha, 1+\alpha, x+\alpha), \alpha \in GF_4\}$ (that is, $\{(0, 1, x)(1, 0, x^2)(x, x^2, 0)(x^2, x, 1)\}$. *Proof.* Let the vertices of K_n^* be the four elements of GF(4): 0, 1, x, x^2

2.2. LEMMA. If $K_n^* \xrightarrow{r} TT_3$ (or C_3) then $K_{4n}^* \xrightarrow{r} TT_3$ (or C_3)

we shall give it here in the case TT_3 (it is exactly the same for C_3). *Proof.* It is similar to that of [3, Lemma 7, p. 281] but to be complete

> The vertices of A_i will be denoted a_i^{α} , $\alpha \in GF(4)$. Let the vertices of K_{4n}^* be partitioned into n sets $A_1 \cdots A_n$ with $|A_i| = 4$.

 K_n^* into TT_3 . Let $\mathscr{C}_1 \cdots \mathscr{C}_{n-1}$ be the parallel classes of a resolvable decomposition of

associating to each TT_3 (i, j, k) of \mathcal{C}_1 the seven following families: From \mathscr{C}_1 we construct seven parallel classes of a decomposition of K_{4n}^* by

$$\{(a_i^{\ \alpha},\ a_j^{\ \alpha},\ a_k^{\ \alpha})(a_i^{\alpha+1},\ a_i^{\alpha+x},\ a_i^{\alpha+x^2})(a_j^{\alpha+1},\ a_j^{\alpha+x},\ a_j^{\alpha+x^2})(a_k^{\alpha+1},\ a_k^{\alpha+x},\ a_k^{\alpha+x^2})\},$$

where $\alpha \in GF(4)$ and

$$\{(a_i^{x^p},\,a_j^{x^{p+1}},\,a_k^{x^{p+2}})(a_i^{x^{p+1}},\,a_j^{x^{p+1}+1},\,a_k^{x^{p+2}+1})(a_i^{x^{p}+x},\,a_j^{x^{p+1}+x},\,a_k^{x^{p+2}+x})$$

$$(a_i^{x^p+x^2}, a_j^{x^{p+1}+x^2}, a_k^{x^{p+2}+x^2})\},$$

following families decomposition of K_{4n}^* by associating to each TT_3 (i,j,k) of \mathscr{C}_l the four From each \mathscr{C}_l , $2 \le l \le n-1$, we construct four parallel classes of a

$$\{(a_i^{\alpha}, a_j^{\alpha}, a_k^{\alpha})(a_i^{1+\alpha}, a_j^{x+\alpha}, a_k^{x^2+\alpha})(a_i^{x+\alpha}, a_j^{x^2+\alpha}, a_k^{1+\alpha})(a_i^{x^2+\alpha}, a_j^{1+\alpha}, a_k^{x+\alpha})\},$$

where $\alpha \in GF(4)$.

As wanted we obtain 7 + 4(n-2) = 4n - 1 parallel classes.

$$K_{18}^* \stackrel{r}{\longrightarrow} TT_3$$
, $K_{18}^* \stackrel{r}{\longrightarrow} C_3$,
 $K_{24}^* \stackrel{r}{\longrightarrow} TT_3$, $K_{24}^* \stackrel{r}{\longrightarrow} C_3$,
 $K_{30}^* \stackrel{r}{\longrightarrow} TT_3$, $K_{30}^* \stackrel{r}{\longrightarrow} C_3$,
 $K_{42}^* \stackrel{r}{\longrightarrow} TT_3$, $K_{42}^* \stackrel{r}{\longrightarrow} C_3$.

Proofs will be given in the Appendix.

into 17 classes of TT₃ (or C₃) such that 2.4. Lemma. $K_{[A \cup B]}^* - K_{[B]}^*$ with |A| = 12, |B| = 6, can be decomposed

— 12 classes D_j (j=1,...,12) partition the vertices of $A \cup B$. — 5 classes E_j (j=13,...,17) partition only the vertices of A.

The proof will be given in the Appendix.

2.5. Theorem (Brouwer, Hanani, and Schrijver [2]). For $r \geqslant 4$

$$r_{\times 12} \to K_4$$
.

(In fact in [2], they give all the values of r, n for which $K_{r\times n} \to K_4$.)

RESOLVABLE DECOMPOSITION OF K_n^*

2.6. Theorem. For any $u \ge 1$, $K_{12u+6}^* \xrightarrow{\tau} TT_3$ (or \mathbb{C}_3)

partition the set X of vertices of K_n^* as follows: *Proof.* For u = 1, 2, 3 see Lemma 2.3. Let $n = 12u + 6, u \ge 4$ and let us

$$X = \bigcup_{i=1}^{u} A_i \cup B$$
 with $|A_i| = 12$, $1 \le i \le u$ and $|B| = 6$.

By Lemma 2.3, $K_{[A_1 \cup B]}^*$ isomorphic to K_{18}^* can be decomposed into 17 parallel classes C_j^1 , $1 \le j \le 17$.

17 classes of TT_3 (or C_3): By Lemma 2.4, for i=2,...,u, $K_{[A,\cup B]}^*-K_B^*$ can be decomposed into

- 12 classes D_1^i , D_2^i ,..., D_{12}^i which partition the vertices of $A_i \cup B$ 5 classes E_{13}^i , E_{14}^i ,..., E_{17}^i which partition the vertices of A_i .

 $a = x^2$ in Lemma 2.1, we take (0, 1, x)). Then for any $j, 1 \le j \le 12$, the set vertices of the $K_{(r-1)\times 12}^*$ constructed on $\bigcup_{k=1}^u A_k - A_i$. F_i of all these TT_3 (or \mathbb{C}_3) associated to this vertex a_i form a partition of the decomposition of this K_4^* not containing this vertex a_i^j (for example if decomposition of $K_{u\times 12}^*$ containing a_i^j we consider the TT_3 (or C_3) of the into K_4^* , and by Lemma 2.1 each of these K_4^* can be decomposed into TT_3 (or C_3). For any i, let a_i^j be a given vertex of the set A_i ; for each K_4^* of the By Theorem 2.5 the graph $K_{u\times 12}^*$ constructed on $\bigcup_{i=1}^u A_i$ can be decomposed

with the 12u + 5 following parallel classes: Thus we obtain a resolvable decomposition of K_{12u+6}^* into TT_3 (or C_3)

- 12 classes $C_j^1 \cup F_j^1$ for j = 1,..., 12. 5 classes $C_j^1 \cup \bigcup_{i=2}^u E_j^i$ for j = 13,..., 17.
- 12 (u-1) classes $D_i^i \cup F_i^i$ for $j = 1,..., 12, 2 \le i \le u$.

2.7. End of the Proof of Theorem 1.7

If $n \equiv 3 \pmod{6}$ the theorem follows from Theorem 1.2.

If $n \equiv 6 \pmod{12}$ $n \neq 6$ the theorem follows from Theorem 2.6.

If $n \equiv 0 \pmod{12}$; let $n = 4^{\alpha}q$, where $q \equiv 0 \pmod{3}$ but $q \not\equiv 0 \pmod{12}$

from the fact that the theorem is true for q, $q \neq 6$ and for n = 24 (Lemma In this case the theorem follows by repeated applications of Lemma 2.2

III. APPENDIX—Proofs of Lemmas 2.3 and 2.4

class of TT_3 (or C_3), $\mathscr{C} + i$ will mean the class obtained from \mathscr{C} by adding ito each vertex of the TT_3 (or C_3) of $\mathscr C$, with the convention that $\infty + i = \infty$ In the following we shall denote by X the set of vertices of K_n^* and if $\mathscr E$ is a

3.1. Proof of Lemma 2.3

 $K_{18}^* \stackrel{r}{\longrightarrow} TT_3$

of K_{18}^* into TT_3 are the $\mathscr{C}+i$, $0 \le i \le 16$ with $\mathscr{C}=\{(0, \infty, 11) \ (1, 9, 14)\}$ (7, 2, 5) (4, 3, 10) (6, 15, 8) (12, 16, 13)Let $X = Z_{17} \cup \{\infty\}$. The 17 parallel classes of a resolvable decomposition

 $K_{24}^* \xrightarrow{r} TT_3$

Let $X = Z_{23} \cup \{\infty\}$. The 23 parallel classes are the $\mathscr{C} + i$, $0 \le i \le 22$ with $\mathscr{C} = \{(6, 18, 19) (13, 1, 22) (2, 5, 12) (20, 11, 16) (7, 9, 15) (4, 3, 21)$ $(17, 10, 14) (8, \infty, 0)$

 $K_{30}^* \stackrel{r}{\longrightarrow} TT_3$

1, 2, 3, 5, 6, 7}. with: $\mathscr{C} = \{(0, 4, 15) (28, 1, 2) (22, 7, 14) (20, \infty, 11)\} \cup \{(2^{3\alpha}, 2^{3\alpha+1}, 2^{\alpha^3+2})/\alpha = (2^{\alpha^3+2}, 2^{\alpha^3+2}, 2^{\alpha^3+2})/\alpha = (2^{\alpha^3+2}, 2^{\alpha^3+2})/\alpha = (2^{\alpha^$ Let $X = Z_{29} \cup {\infty}$. The 29 parallel classes are the $\mathscr{C} + i$, $0 \le i \le 28$

 $K_{42}^* \xrightarrow{r} TT_3$

with: $\mathscr{C} = \{(15, 8, 0) \ (7, 4, 24) \ (21, 12, 31) \ (23, \infty, 22)\} \cup \{(6^{3\alpha}, 6^{3\alpha+1}, 6^{3\alpha+2})/(23, \infty, 22)\}$ $\alpha = 0, 1, 2, 3, 5, 6, 7, 8, 10, 11$. Let $X = Z_{41} \cup \{\infty\}$. The 41 parallel classes are the $\mathscr{C} + i$, $0 \le i \le 40$

in these decompositions. tions $2K_n \xrightarrow{r} C_3$ given by Hanani [3] by suitably assigning directions to the C_3 Remark. The four decompositions above are derived from the decomposi-

 $K_{18}^* \stackrel{r}{\longrightarrow} C_3$.

Let $X=Z_{15}\cup\{\infty_1,\,\infty_2,\,\infty_3\}$. The 17 parallel classes are the \mathscr{C}_1+i , $0\leqslant i\leqslant 14,\,\mathscr{C}_{16}$ and \mathscr{C}_{17} with

 $\mathscr{C}_1 = \{(0, 11, 12) (1, 3, 9) (2, 6, 5) (\infty_1, 10, 8) (\infty_2, 4, 13) (\infty_3, 14, 7)\},\$

 $\mathscr{C}_{16} = \{(\infty_1, \infty_2, \infty_3)\} \cup \{(i, i+5, i+10)/i = 0, 1, 2, 3, 4\},\$

 $\mathscr{C}_{17} = \{(\infty_1, \infty_3, \infty_2)\} \cup \{(i, i+10, i+5)/i = 0, 1, 2, 3, 4\}$

 $K_{24}^* \xrightarrow{r} \mathbb{C}_3$

 $0 \leqslant i \leqslant 20, \mathscr{C}_{22}, \mathscr{C}_{23}$ with Let $X = Z_{21} \cup {\{\infty_1, \infty_2, \infty_3\}}$. The 23 parallel classes are the $\mathscr{C}_1 + i$,

RESOLVABLE DECOMPOSITION OF K_n^*

 $\mathscr{C}_1 = \{(0, 1, 4) (3, 5, 9) (12, 17, 2) (8, 7, 16) (11, 19, 14) (\infty_1, 15, 13) (\infty_2, 6, 18) (\infty_3, 20, 10)\},$

 $\mathscr{C}_{22} = \{(\infty_1, \infty_2, \infty_3)\} \cup \{(i, i+7, i+14)/i = 0, 1, 2, 3, 4, 5, 6\}$

 $\mathscr{C}_{23} = \{(\infty_1, \infty_3, \infty_2)\} \cup \{(i, i+14, i+7)/i = 0, 1, 2, 3, 4, 5, 6\}$

 $-K_{30}^{*} \xrightarrow{r} C_{3}$

Let $X=Z_{27}\cup\{\infty_1,\,\infty_2,\,\infty_3\}$. The 29 parallel classes are the \mathscr{C}_1+i , $0\leqslant i\leqslant 26,\,\mathscr{C}_{28},\,\mathscr{C}_{29}$ with

 $\mathscr{C}_1 = \{(0, 1, 3) (4, 7,11) (12, 17, 23) (6, 13, 21) (16, 14, 24) (10, 9, 22) (15, 26, 20) (<math>\infty_1$, 2, 25) (∞_2 , 18, 8) (∞_3 , 5, 19)},

 $\mathscr{C}_{28} = \{(\infty_1, \infty_2, \infty_3)\} \cup \{(i, i+9, i+18)/0 \le i \le 8\},$

 $\mathscr{C}_{29} = \{(\infty_1, \infty_3, \infty_2)\} \cup \{(i, i+18, i+9)/0 \leqslant i \leqslant 8\}.$

 $K_{42} \xrightarrow{r} C_3$ (the decomposition is due to A.E. Brouwer)

Let $X = Z_{30} \cup \{\infty_i, 1 \le i \le 12\}$.

Let \mathcal{D}_j ($1 \leq j \leq 11$) be the 11 parallel classes of \mathbb{C}_3 of the K_{12}^* constructed on the vertices $\{\infty_i, 1 \leq i \leq 12\}$.

The 41 parallel classes of the decomposition of K_{42}^* will be $\mathscr{C}_1 + i$, $0 \le i \le 29$, $\mathscr{D}_j \cup (\mathscr{C}_{30} + j)$, $1 \le j \le 10$, $\mathscr{C}_{41} \cup \mathscr{D}_{11}$ with

 $\mathscr{C}_{1} = \{(0, 17, 22) (1, 7, 5) (8, 2, \infty_{1}) (3, 19, \infty_{2}) (4, 26, \infty_{3}) (6, 24, \infty_{4})$ $(9, 13, \infty_{5}) (23, 12, \infty_{6}) (18, 27, \infty_{7}) (29, 20, \infty_{8}) (16, 11, \infty_{9})$ $(28, 21, \infty_{10}) (15, 14, \infty_{11}) (10, 25, \infty_{12})\},$

 $\mathscr{C}_{30} = \{(0, 10, 20)\} \cup \{(i+1, i+2, i+4) \ (i+3, i+16, i+19)$ $\cdot (i+5, i+17, i+28)/i = 0, 10, 20\},$

 $\mathscr{C}_{41} = \{(i, i+20, i+10)/0 \leqslant i \leqslant 9\}.$

3.2. Proof of Lemma 2.4

Let Z_{12} be the set of vertices of A and $B = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6\}$. To obtain the decomposition of $K_{[A \cup B]}^* - K_{[B]}^*$ into TT_3 with the wanted properties it suffices to take $D_j = \mathscr{C} + j$, $1 \le j \le 12$ with $\mathscr{C} = \{(0, \infty_1, 6), \infty_2, 1\}$ (2, ∞_3 , 9) (4, ∞_4 , 7) (5, ∞_5 , 10) (11, ∞_6 , 8)} and

$$E_{13} = \{(1, 0, 2) (4, 3, 5) (7, 6, 8) (10, 9, 11)\},\$$

 $E_{14} = E_{13} + 1,$

 $E_{15} = E_{13} + 2,$ $E_{16} = \{(0, 4, 8) (1, 5, 9) (2, 6, 10) (3, 7, 11)\},$ $E_{17} = \{(8, 4, 0) (9, 5, 1) (10, 6, 2) (11, 7, 3)\}.$

The decomposition of $K_{[A \cup B]}^* - K_{[B]}^*$ into C_3 is given by

$$D_j = \mathscr{C} + j, \quad 1 \leqslant j \leqslant 12$$

with

$$\mathscr{C} = \{ (11, \, \infty_1 \,, \, 0) \,\, (10, \, \infty_2 \,, \, 1) \,\, (2, \, \infty_3 \,, \, 4) \,\, (3, \, \infty_4 \,, \, 8) \,\, (9, \, \infty_5 \,, \, 6) \,\, (7, \, \infty_6 \,, \, 5) \}$$

and

$$E_{13} = \{(0, 1, 6) (4, 5, 10) (8, 9, 2) (3, 7, 11)\},$$

$$E_{14} = E_{13} + 1,$$

$$E_{15} = E_{13} + 2,$$

$$E_{16} = E_{13} + 3,$$

$$E_{17} = \{(10, 6, 2) (11, 7, 3) (0, 8, 4) (1, 9, 5)\}.$$

ACKNOWLEDGMENT

The authors thank the referee for his helpful remarks.

REFERENCES

- 1. J. C. Bermond and D. Sotteau, Graph decompositions and G-designs, in "Proc. 5th British Combinatorial Conference, Aberdeen 1975," Congressus Numerantium 15, Utilitas Math. Publ., 53-72.
- 2. A. E. Brouwer, H. Hanani, and A. Schrijver, Group divisible designs with block size 4, *Discrete Math.* **20** (1977), 1–10.
- H. HANANI, On resolvable balanced incomplete block designs, J. Combinatorial Theory Ser. A 17 (1974), 275–289.
- 4. S. H. Y. HUNG AND N. S. MENDELSOHN, Directed triple systems, J. Combinatorial Theory Ser. A 14 (1973), 310–318.
- D. K. RAY-CHAUDHURI AND R. M. WILSON, Solution of Kirkman's schoolgirl problem, in "Proc. Symp. in Pure Mathematics" Vol. 19, Amer. Math. Soc., Providence, R.I., 1971, 187–203.