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Abstract

Gossiping is the process of information diffusion in which each node of a network holds a
packet that must be communicated to all other nodes in the network. We consider the problem
of gossiping in communication networks under the restriction that communicating nodes can
exchange up to a fixed number p of packets at each round. In the first part of the paper we study
the extremal case p = 1 and we exactly determine the optimal number of communication rounds
to perform gossiping for several classes of graphs, including Hamiltonian graphs and complete
k-ary trees. For arbitrary graphs we give asymptotically matching upper and lower bounds. We
also study the case of arbitrary p and we exactly determine the optimal number of communication
rounds to perform gossiping under this hypothesis for complete graphs, hypercubes, cycles, and
paths.
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1 Introduction

Gossiping (also called total exchange or all-to—all communication) in distributed systems is the
process of distribution of information known to each processor to every other processor of the
system. This process of information dissemination is carried out by means of a sequence of message
transmissions between adjacent nodes in the network.

The gossiping problem was originally introduced by the community of discrete mathematicians,
to which it owes most of its terminology, as a combinatorial problem in graphs. Nonetheless, it was
soon realized that, once cast in more realistic models of communication, gossiping is a fundamental
primitive in distributed memory multiprocessor system. There are a number of situations in multi-
processor computation, such as global processor synchronization, where gossiping occurs. Moreover,
the gossip problem is implicit in a large class of parallel computation problems, such as linear system
solving, Discrete Fourier Transform, and sorting, where both input and output data are required to
be distributed across the network [8]. Due to the interesting theoretical questions it poses and its
numerous practical applications, gossiping has been widely studied under various communication
models. Hedetniemi, Hedetniemi and Liestman [23] provide a survey of the area. Two more recent
surveys paper collecting the latest results are [17, 27]. The reader can also profitably see the book
[39]. The problem of coping with malfunctionings during the execution of gossiping protocols is
addressed in [10, 12, 13, 6, 19, 20, 22].

The great majority of the previous work on gossiping has considered the case in which the
packets initially held by each node can be freely combined and the resulting messages transmitted
in a constant amount of time, that is, that the time required to transmit a message is independent
from its length. While this assumption is reasonable for short messages, it is clearly unrealistic in
case the size of the messages becomes large. Notice that most of the gossiping protocols proposed in
the literature require the transmission, in the last rounds of the execution of the protocol, of messages
of size ©(n), where n is the number of nodes in the network. Therefore, it would be interesting
to have gossiping protocols that require only the transmission of bounded length messages between
processors. In this paper we consider the problem of gossiping in communication networks under
the restriction that communicating nodes can exchange up to a fixed number p of packets at each
round.

1.1 The Model

Consider a communication network modeled by a graph G' = (V, ') where the node set V' represents
the set of processors of the network and F represents the set of the communication lines between
processors.

Initially each node holds a packet that must be transmitted to any other node in the network
by a sequence of calls between adjacent processors. During each call, communicating nodes can
exchange up to p packets, where p is an a priori fixed integer. We assume that each processor can
participate in at most one call at time. Therefore, we can see the gossiping process as a sequence of
rounds: During each round a disjoint set of edges (matching) is selected and the nodes that are end
vertices of these edges make a call. This communication model is usually referred to as telephone
model [23] or Full-Duplex 1-Port (Fy) [33]. We denote by gp,(p, &) the minimum possible number
of rounds to complete the gossiping process in the graph G subject to the above conditions. Another
popular communication model is the mail model [23] or Half-Duplex 1-Port (Hy) [33], in which in
each round any node can send a message to one of its neighbors or receive a message from it but



not simultaneously. The problem of estimating gg,(p, ) has been considered in [5]. Analogous
problems in bus networks have been considered in [18, 24]. Optimal bounds on gg,(1,G) when
the edges of G are subject to random failures are given in [10]. Packet routing in interconnection
networks in the F; model has been considered in [1].

1.2 Results

We first study the extremal case in which gossiping is to be performed under the restriction that
communicating nodes can exchange ezactly one packet at each round. We provide several lower
bound on the gossip time gp, (1, ) and we provide matching upper bounds for Hamiltonian graphs,
complete trees, and complete bipartite graphs. For general graphs we provide asymptotically tight
upper and lower bounds. Subsequently, we study the case of p fixed arbitrary constant and we com-
pute exactly gp, (p, ) for complete graphs, hypercubes, cycles and paths. Our result for hypercubes
allow us to improve the corresponding result in the H; model given in [5].

2 Gossiping by exchanging one packet at time

In this section we study g (1,G), that is the minimum possible number of rounds to complete
gossip in a graph G under the condition that at each round communicating nodes can exchange
exactly one packet.

In order to avoid overburdening the notation, in all this section we will simply write g(G') to
denote gp,(1,G).

2.1 Lower bounds on ¢(G)

In this section we give some lower bounds on the time needed to complete the gossiping process.

Lemma 2.1 For any graph G = (V, E), with |V| = n, let p(G) be the size of a maxzimum matching

in G, then
n(n — 1)"
2u(G) |

Proof. For any node v € V the packet initially resident in v must reach each of the remaining n—1
nodes in the graph. Therefore, during the gossiping process, at least n(n — 1) packet transmissions
must be executed over the edges of G. Since in each communication round at most p(G') calls can
be performed and each call allows the transmission of 2 packets (one in each direction) the bound
follows. O

oG | (1)

Lemma 2.2 Let X C V be a vertex cutset of the graph G = (V, ) whose removal disconnects G
into the connected components Vi, ..., Vy, then

gty > |y el @)

i=1

where |Mx| is the size of a mazimum matching Mx in G such that any edge in it has an endpoint
in X and the other in V — X.



Proof. Consider a component V;, for some 1 <7 < d. Nodes in V; can receive the packets of nodes
in V. — V; only by means of calls between a node in X and one in V;; moreover, at least n — |V;]
calls are needed between nodes in X and nodes in V; to bring all packets in V' — V; to nodes in V;.
Analogously, packets of nodes in V; can reach nodes in V' —V; only by means of calls between a node
in X and one in V; and at least |V;| such calls are needed. Therefore, for each ¢ = 1,...,d, at least
max{|V;|,n — |V;|} calls must take place between nodes in X and nodes in V;. We then get that at
least Y0, max{|V;|,n — |V;|} calls are needed between nodes in X and nodes in V — X = UL, V.
Since at most |Mx| such calls can take place during each round, we get the desired lower bound of

S max{|Vi|,n — |[V[}
| Mx|

on the time necessary to gossip in G. a

Remark 2.1 The bound in the above Lemma 2.2 can sometimes be improved by observing that
after the last call has been done between a node in some V; and a node in X, the last exchanged
message has still to reach all the other nodes of V; (or of V —V;). Therefore, we can add to the lower
bound (2) the minimum of the eccentricities of the subgraphs induced by the V;’s and the V — V;’s.

Corollary 2.1 Let a(G) be the independence number of G, then

()2 [0 ®)

Proof. Let Y denote an independent set of G. Applying Lemma 2.2 with cutset X =V — Y and

connected components Vi,...,V}y|, each consisting of just one element of ¥, we get
Y] Y] Y]
n — |V n — |V n—1 Y|(n—1)
9(G) > > - - [ .
s
Choosing an independent set of maximum size |Y| = a(G) we get (3). O

Let T be a tree and » one of its nodes, we indicate the connected components into which the
node set of T is splitted by the removal of v by Vi(v), ..., Viegv)(v), ordered so that |Vi(v)| > ... >

|Vdeg(v)(”)|-

Corollary 2.2 Let T be a tree on n nodes of mazimum degree A = max,cy deg(v), then

g(T)> max L(v),

T videg(v)=A
where )
(deg(v)—1)n+1 if [Vi(v)] <n/2;
Lv) =
(deg(v) —2)n+ 1+ 2|Vi(v)| if |Vi(v)| > n/2.
Proof Given a node v, Lemma 2.2 gives
deg(v)
g(T) > > max{|Vi(v)|,n—[Vi(v)[}
i=1
deg(v) |V1(?J)| if |V1(?J)| > n/2,
= > n—[Viv)l+
i=2 n— |Vi(v)] if [Vi(v)] < n/2,
= L(v).



Direct computation shows that if deg(v) > deg(w) then L(v) > L(w) thus proving that the maxi-
mum is always attained at a node of maximum degree. a

2.2 Upper bounds

In this section we will determine exactly ¢g((G') for several classes of graphs, including Hamiltonian
graphs and complete k-ary trees. Moreover, we will provide good upper bounds on ¢(G') for general

graphs G.

2.2.1 Hamiltonian Graphs

We first note that in any graph G' = (V, F) the size of a maximum matching p(G') is at most [|V']/2].
Therefore, from Lemma 2.1 we get that the gossiping time ¢(G') of any graph with n nodes is always
lower bounded by

n—1 if nis even;

(4)

n if n is odd.

g(G) > {

We will show that this lower bound is attained by Hamiltonian graphs.

Let C,, = (V, F) denote the cycle of length n; we assume the vertex set be V.= {0,...,n — 1}
and the edge set be £ = {(v,w) : 1= |v— w|(mod n)}'.

Lemma 2.3 o
n—1 ifn iseven;

9(Cn) < {n if n is odd.

Proof. We distinguish two cases according to the parity of the number n of nodes.
Case n even. We shall give a gossiping protocol on the ring €, that requires n — 1 rounds. First,
split the edge set of (), into two disjoint perfect matchings Meven and M 44, where

Meven = {(v,w) : viseven and w=0v+ 1}
Myqq = {(v,w) : visodd and w = v+ 1(mod n)}

and for each integer ¢ let
Meven if tis even,

M, = {Modd otherwise. (5)
The gossiping algorithm is shown in Figure 1.

It is mmediate to see that each node receives a new packet at each round (this can be formally
proved by induction on t). Therefore, at the end of round n — 1 of algorithm Gossiping-even(C,)

each node has received all the packets of the other n — 1 nodes.

Case n odd. Define the following maximum matchings M, in C,, for each t =0,...,n — 1
M, ={(v,w) : v—t(modn)is odd, w=v+ 1(mod n), and v # t # w}. (6)

We give in Figure 2 a gossiping protocol on the ring C,, that requires n rounds. It is easy to see
that at each round t = 1,...,n each node different from ¢ — 1 receives a new packet. Therefore, at
the end of round n of algorithm Gossiping-odd(C),) each node has received all the packets of the
other n — 1 nodes. O

Here and in the rest of the paper with ¢ = ¢ (mod b) we denote the unique integer ¢ < b such that ¢ = ¢b + a.



Gossiping-even((),)

Round ¢ = 1: each node v sends its own packet to the node w such that (v, w) € M;;
Round ¢ = 2: each node v sends its own packet to the node w such that (v, w) € Ms;
Round ¢, 3 <t < n— 1: For each node v let w be the node such that (v, w) € M,,

node » sends a new packet to w, namely v sends the oldest packet it knows among those v
has neither received from w nor sent to w in any previous round.

Figure 1: Gossiping Algorithm in ), n even.

Gossiping-odd(C,,)

Round ¢, 1 < ¢t < n: For each node v # t — 1 let w be the neighbor of v such that
(?], w) € Mt—lv

node v sends to w the oldest packet it knows that v has neither received from w nor sent to
w in a previous round (v own packet is considered to be older than any other packet).

Figure 2: Gossiping Algorithm in €, n odd.

Example 2.1 For n = 6 we have M,qq = M, = M3 = Ms = {(1,2),(3,4),(50)} and M.,e,, =
My = M, ={(0,1),(2,3),(4,5)}. The sets Ig(v,t), for 0 < v <5 and 1 <t <5, are given in the
following Table.

t\v 0 1 2 3 4 5

1 {5,0} {1,2} {1,2} {3,4} {3,4} {5,0}

2 {5,0,1} {0,1,2} {1,2,3} {2,3,4} {3,4,5} {4,5,0}

3 {4,5,0,1} {0,1,2,3} {0,1,2,3} {2,3,4,5} {2,3,4,5} {4,5,0,1}
4 {4,5,0,1,2} {5,0,1,2,3} {0,1,2,3,4} {1,2,3,4,5} {2,3,4,5,0} {3,4,5,0,1}
5 {3,4,5,0,1,2} | {5,0,1,2,3,4} | {5,0,1,2,3,4} | {1,2,3,4,5,0} | {1,2,3,4,5,0} | {3,4,5,0,1,2}

Forn =5 we have My = {(1,2),(3,4)}, M, = {(2,3),(4,0)}, My ={(3,4),(0,1)} M5 = {(4,0),(1,2)},
and My = {(0,1),(2,3)}. The sets Ks(v,t), for 0 <v <4 and 1 <t <5, are given in the following

Table.
t 0 1 2 3 4
1 {0} 1,2} 1,2} 13,4} 13,4}
2 {4,0} {1,2} {1,2,3} {2,3,4} {3,4,0}
3 {4,0,1} {0,1,2} {1,2,3} {2,3,4,0} {2,3,4,0}
4 {3,4,0,1} {0,1,2,3} {0,1,2,3} {2,3,4,0} {2,3,4,0,1}
5 {3,4,0,1,2} | {0,1,2,3,4} | {0,1,2,3,4} | {1,2,3,4,0} | {2,3,4,0,1}




Theorem 2.1 For any Hamiltonian graph G on n vertices we have

_[n—=1 ifniseven;
9(G) = {n if n is odd.
Proof. If (¢ has n vertices the lower bound (4) tells us that ¢(G) > { n—1 %f n1s even,
n if n is odd.
If ¢ is Hamiltonian, from Lemma 2.3 we get that gossiping along the edges of the Hamiltonian cycle
gives a protocol with gossiping time matching the lower bound and the theorem holds. a

2.3 Trees

In this section we investigate the gossiping time in trees. We first give an upper bound on the
gossiping time in any tree and afterwards we exactly compute the gossiping time of complete k—ary
trees.

Given a tree T' = (V, F), let us denote by é the minimum degree of an internal node and by A
the maximum number of leaves connected to a same node.

Theorem 2.2 For any tree T' = (V, V) on n nodes
g(T)<(n—08A+(6—1)A
where A = max,cy deg(v).

Proof. Since A = max, ¢y deg(v) we can color the edges of T' with A colors, say 0,...,A — 1, so
that no two edges sharing a vertex are assigned the same color. Denote by ¢(u,v) = ¢(v,u) the
color assigned to the edge (u,v). Moreover, give to each edge (u, f), where f is a leaf of T', a second
color ¢'(u, f) € {0,...,A — 1} so that ¢/(u, f) # ¢/(u, f'). Consider the gossiping algorithm in the
tree T given in Figure 3.

Gossiping-tree(7")

Phase 1
Round ¢, for t = 1,...,A(n — §): For each node wu, if there is an edge (u,v) such
that ¢(u,v) =t — 1(mod A) then u sends a new packet to v, namely u sends to v the

oldest packet among those that u has neither sent to » nor received from v in a previous
round, if such a packet exists, otherwise u sends nothing.

Phase 2

Round A(n—é)+ 7, for 7 =1,...,(6 — 1)A: For each leaf f, if (u, f) is the edge on
fand ¢(u, f) =7 —1(mod A) then u sends to f any packet f does not know.

Figure 3: Gossiping Algorithm in a tree T.



In order to prove the theorem, we shall now prove the correctness of algorithm Gossiping-
tree(7"). Let us say that the edge (u,v) of T is saturated from u to v at time ¢t of Gossiping-
tree(7') if no packet is sent from w to v at any time ¢ > ¢, that is, if by time ¢ — 1 node v has
received the packet of each node w connected to v through u. We need the following property of
Gossiping-tree(7').

Property 2.1 In any round t < A(n — §) of gossiping algorithm Gossiping-tree(1'), if the edge
(u,v) has color c(u,v) =1t — 1(mod A) and it is not saturated from u to v at time t, then u sends
a new packet to v at round t.

Proof. The proof is by induction on the time unit ¢. Let ¢ < A: At time unit ¢, for each edge (u,v)
of color ¢(u,v)=t—1€{0,...,A— 1} node u and v exchange a call for the first time and have at
least their own packet to send each other.

Let now t > A and suppose that the hypothesis holds for each ¢’ < t.

Consider an edge (u,v) such that ¢(u,v) =1t — 1(mod A). Suppose by contradiction that at time ¢
the edge (u,v) is not saturated from u to v but u has no packets to send to v among those « has not
received through v, that is, all packets known to w and not received through » have been already
sent from u to v.

In particular, node u has already sent to v all the packets it has received from its other neighbors,
call them w;,..., w;. Notice that the last call from » to v has taken place at time t — A. Let 7; be
the only integer such that both t —d < 7; < t and ¢(u, w;) = 7, —1(mod A) hold. If the edge (u, w;)
is not saturated at time 7;, by inductive hypothesis we know that u has received a packet by w, at
time 7;,. We can have now two cases: The first case is that all the edges (u, w;) are saturated at time
7; < t, this immediately implies that (u,v)is saturated at time ¢, contradicting our assumption that
(u,v) not saturated from u to v at time ¢. The second case is that at least one edge (u,w;) is not
saturated at time 7;; in such a situation we know by the inductive hypothesis that u has received a
new packet by w; at time 7; that can be now forwarded to v, again getting a contradiction. a

We can now complete the proof of the theorem by showing that at the end of Gossiping—k—
tree(7} ,) each node knows all the other n — 1 packets. Above Property 2.1 shows that a new
packet is sent from u to v at each round ¢ such that ¢(u,v)+ 1 =t (mod A), until the edge (u,v)
is saturated and no more packets will be sent from u to ». Therefore, for any internal node u and
for any A consecutive rounds, either u has already received all packets or it will receive a new
packet from one of its neighors during one of these A consecutive rounds. Moreover, it is obvious
that u receives a new packet from each of its neighbors during the first A > deg(v) initial rounds.
Therefore, being deg(u)+ (n— 6 —1) > n — 1, by time unit A(n — ¢) node u gets all the necessary
n — 1 packets.
Analogously, by round A(n — §), any leaf f knows n — A packets. During the A(6 — 1) rounds of
Phase 2 any leaf f will receive a new packet during one out of A consecutive rounds, thus getting
the remaining 6 — 1 packets that f needs to complete the gossip.

O

The following corollary is immediate.

Corollary 2.3 For any connected graph G = (V, F) with n vertices and mazimum degree A we
have

g(G) < (n—1)AT272272272227722 (7)



From Corollary 2.2 and Theorem 2.2 we have that for any tree with n nodes and maximum degree
At holds nA —n+1 < ¢g(T) < nA — A. Let us consider now the tree 5, o of Figure 4. If
A =mn —1 then S, ,_; is the star on n nodes and from Corollary 2.2 and Theorem 2.2 we have
9(Snn_1) = (n—1)% If Ais constant with respect to n > 2A then from Corollary 2.2 and Theorem
22 weget Aln—1)—(A—-1) < g(5,a) <A(n—1)— 1. It is not difficult to obtain a specific
gossiping algorithm attaining the lower bound. Therefore, we have that for any n and A there
exists a graph G/, o with n vertices and maximum degree A such that g(G, o) = Q((n —1)A), thus
showing that the bound (7) is asymptotically tight.

Figure 4: Tree 5, A
We shall now exactly compute the gossiping time of k-ary trees, that is, rooted trees in which
each internal node has exactly k sons.
Corollary 2.4 For any k-ary tree on n nodes Ty ,, it holds
g(Tp )= (k+1)(n—-1)—k.
Proof Let u be a node of T} , whose sons are all leaves, applying Corollary 2.2 to T} , we get
9(Ty ) > mj,LXL(v) >Luw)=(k-Un+14+2n—-k-1)=(k+1)n-1)—k.

On the other hand from Theorem 2.2, since for any k-ary tree A = 6 = k+ 1 and A = k, we get
g(Tp ) < (k+1)(n—1)—k. O

The above Corollary 2.4 holds for any value of &, in particular it holds for £ = 1, that is, in case
Ty » is the path on n nodes P,.

Corollary 2.5 Let P, be the path on n nodes, for each n > 4

g(P,) =2n— 3.



2.4 Complete bipartite graphs

Let K, , = (V(K,,), E(K,,)) be the complete bipartite graph on the node set V(X, ;) = {ao, ..., a,_1 }U
{bo, ..., bs_1}, with{ay,...,a,_1}N{bg,....bs_1} = 0,7 > s,and edge set E(K, ;) ={ag,...,a,_1}X
{bo,...,bs_1}. In the next theorem we determine the gossiping time of K, .

Theorem 2.3 For each r and s withr > s> 1
g(K,. ;) =T[(r+s—1)r/s].

Proof. The lower bound g(K, ) > [(r+ s —1)r/s] is an immediate consequence of Corollary 2.1
since the complete bipartite graph has a(K, ;) = r.

In order to give a gossiping algorithm in K, ; requiring [(r + s — 1)r/s| communication rounds,
we define the matchings
M; = {(bi, @iyj (moa ) : 0< i< s =1},

for j =0,...,7 — 1. The algorithm is shown in Figure 777.

According to the protocol, at the end of Phase 1 of Gossiping—bipartite( X, ;) each node «;
(resp. b;) knows the message of each b; (resp. ;). Consider now Phase 2. It is immediate to see
that during the first s — 1 rounds of Phase 2 each of the b,’s receives the packet of each b; for j # 7,
thus completing its knowledge. Moreover, after the [r(r + s —1)/s] —r = [r(r — 1)/s] rounds of
Phase 2 each node ¢; has been involved in a call at least » — 1 times and has then received the
packet of each of the a;, for j # ¢, thus completing its knowledge. a

Gossiping—bipartite( X, ;)
Phase 1

round ¢, for ¢ = 1,...,7: For each edge (b;, @j11—1 (mod r)) € Mi_y
nodes b; and @;4¢—1 (moda r) €xchange their own packets;

Phase 2

round ¢, for t =7+ 1,...,[r(r +s—1)/s]: For each edge (b;,a;) € My_1_ )5 (mod r)

node b; sends to a; any packet that a; has not received in a previous round;
if t <r+s—1 then b; receives from a; the packet of b; ;1 r(moa «)-

2.5 Generalized Petersen Graphs

In Section 2.2.1 we have seen that Hamiltonian graphs have the minimum possible gossiping time
among all graphs with n nodes. A natural question to ask is to see if there are non—Hamiltonian
graphs on n vertices with gossiping time equal to n if n is odd and n — 1 if n is even. A quick check



shows that this is not the case for rectangular grids G, ; with both ¢ and s odd 2. In fact, we know
that a(Gy,) = [%t] and from Corollary 2.1 we get ¢(G,,) > s -t + 1. Moreover, it is also easy to
check that the gossiping time of the Petersen graph on 10 vertices is at least 10. Therefore, one
could be tempted to conjecture that the gossiping time ¢g(G') of a graph G is equal to the minimum
possible only if (G is Hamiltonian. This conjecture, although nice sounding, would be wrong as the

following classes of graphs, including the Generalized Petersen Graphs, shows.

Let P, . be the graph consisting of two cycles of size n connected by a perfect matching in the
following way: given a permutation 7 of {0,...,n — 1} the graph P, , = (V(P, ), E(P, )) has
vertex set V(P, ) = {ao,...,an_1} U{bg,...,b,_1} and edge set

E(Pn,ﬂ') = {(aivai+1(mod n)) : 0 S i S n_l}u{(bivbi+1(mod n)) : 0 S i S n_l}u{(azvbﬂ'(z)) : 0 S i S n_l}

The Petersen Graph has n = 5 and 7(¢) = 3i¢(mod 5), for i = 0,1,2,3,4; Generalized Petersen
Graphs (GPG) have n odd and 7(s-7(mod n)) =4, ¢ =0,...,n — 1, for a fixed integer s.

From Lemma 2.1 we know that g(P, ) > 2n — 1. We will show that for any n and 7 such that
P, . is 3-edge—colorable, we have the equality

g(P, ;) =2n—1.

Notice that each cubic GPG, other than the Petersen graph itself, is 3—edge—colorable; this class
include the family of non Hamiltonian GPGs with n = 5(mod 6) and s = 2 (see [2] and references

Tt is well known that all rectangular grids G . are Hamiltonian but for values of ¢ and s both odd.

10



Gossiping—3—color(P, ,)

Phase ¢ (1 < ¢ < (n—1)/2) [it consists of 3 communication rounds]:
round ¢ (¢t = 1,2,3): make a call between the endpoints of each edge of color t.
Calls are made so that:

when an edge (aiaai+1(mod n)) is used, then a; receives the packet of a;ip(moa n), and
Uit1(mod n) Teceives the packet of @it1_p(mod n);

when an edge (b;, bit1(mod n)) is used then b; receives the packet of b;y,(mod n), and bit1(mod n)
receives the packet of b;1_p(mod n);

when the edge (ai,bﬂ(i)) is used then a; receives the packet of some b;, 0 < 7 <n —1 and
bx(;) receives the packet of some a;, 0 < j < n— 1.
Phase 3(n—1)/24+ ¢ (1 < ¢ < (n+1)/2) [it consists of 1 communication round]:

node a; (resp. by(;)),for i = 0,...,n—1, sends to by (resp. a;) the packet of some a; (resp.
b;) it has not already sent to it.

The gossiping algorithm is described in Figure 777; it assumes that the edges of the graph are
colored with the three colors 1,2, and 3. It is easy to prove by induction on ¢ that all the calls
of Phase ¢, for ¢ < (n — 1)/2, can actually be done. Therefore, after the first (n — 1)/2 phases
each node a; has the packet of @;4j(moq ny for j = 0,...,(n — 1)/2, that is, it knows the packet of
each other node in its own cycle; moreover it knows the packet of (n — 1)/2 nodes in the cycle on
{bg,...,b,_1}. Analogously, each b; knows the packet of each other node in its own cycle and of
(n —1)/2 nodes in {ag,...,an_1}.

Therefore, the calls between nodes in {ag,...,a,_1} and in {bg,...,b,_1} of the last (n + 1)/2
communication rounds allow to complete the knowledge of each node in the graph.

3 Gossiping by exchanging more than one packet at time

In this section we shall study the minimum number of time units gr, (p, G') necessary to perform
gossiping in a graph G, under the restriction that at each time instant communicating nodes can
exchange up to p packets, p fixed but arbitrary otherwise. Again, for ease of notation, we shall
write g(p, G) to denote gp, (p, G).

3.1 Lower Bounds

First of all we shall present a simple lower bound on ¢(p, () based on elementary counting arguments.
Nonetheless, we shall prove in the sequel that the obtained lower bound is tight for complete graphs
with an even number of nodes and for hypercubes. In order to derive the lower bound, let us define
I(p,t) as the maximum number of packets a vertex can have possibly received after { communication
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rounds in any graph. Since at each round 2z, with 1 < ¢ < ¢, any vertex can receive at most
min{p,2°~'} packets, it follows that

3
I(p1) =1+ min{p, 27"}, (8)
i=1
or, equivalently
Mlogp]
I(p,t) = 1+ > 27"+ p(t—[logp])
i=1
= 20871 4 p(t — [log p]) (9)

for any t > [log p]. Therefore, for any graph G = (V, F), the gossiping time g(p, &) is always lower
bounded by the smallest integer t* for which I(p,#*) > |V|. Since t* is obviously greater or equal
to [log|V]] > [logp], we can use (9) and obtain

4(p,G) > [logp] + E(N —gfesn)].

Moreover, notice that if the number of nodes in the graph is odd then at each round there is a node
that does not receive any message. This implies that after any round ¢ there exists a node who can
have possibly received at most I(p,t — 1) packets. Therefore, we get

1
9. G) = logp] + | (N = 205 4 1.
P
The above arguments give the following lemma.
Lemma 3.1 For any graph G = (V, E), |V| = N, and integer p such that 28?1 < N we have

[log p] + H)(N - Q[Ing])w if N is even,
9(p, G) =
[log p] + H)(N - Q[Ing])w +1 if N is odd.
Using similar arguments, we can also generalize the lower bound (1) that we extablished in
Section 2.1 for p = 1 to general values of p.

Lemma 3.2 Let G = (V, V) be a graph with N wvertices and let p(G') be the size of a mazimum
matching in G. For any integer p < N we have

(0. C) > Tlogp] + E (% _ ofiogr 1)} .

Proof. The proof is similar to that of Lemma 2.1 but now one has to take into account that at
each communication round ¢, 1 <t < g(p, @), at most min{p, 2"~ }u(G) packets out of N(N — 1)
can be exchanged in the graph. a
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3.2 Rings and Paths

Let g(o0, ') denote the gossiping time of the graph G in absence of any restriction on the size of
the messages. We show that ¢g(p,G) = g(00, (), for each p > 2, when G is either the ring C,, or the
path P, on n nodes.

n/2 if n is even,

Theorem 3.1 For each p > 2 it holds g(p,C,) = g(2,C,) = {(n +3)/2 ifn is odd

Proof. The lower bound is immediate by noting that for any p > 2 one has g(p,C,) > g(o0,C,)

and that [27]
n/2 if n is even,

g(00,Ch) = {(n +3)/2 if nis odd.

We give now a gossiping algorithm ), that uses ¢g(oo, C),) rounds and in which nodes exchange
2 packets at the time, thus showing that ¢(2,C,) = g(c0,C,). Consider the matchings M; be as
defined in (5) if n is even, and as defined in (6) if n is odd. Moreover define the sets

{n—1,0} ifniseven

W;={2t—1,2i}, fori=1,...,[n/2] — 1 and WO:{{O} s odd

The gossiping algorithm is shown in Figure 6. O

Gossiping(p,C,,)

Round ¢ = 1: each node v sends its packet to its neighbor in My, but 0 if n is odd;
[Now each node knows the packet of the other node in the same W;]

Round ¢, 2 <t < #(n): Along each edge (v, w) € M,, v sends to w the oldest message
consisting of the packets of the set W; that » knows and that » has neither sent to w nor
received from w in a previous round (if any).

Figure 6: Gossiping Algorithm in C),, n even, and p > 2.
Let us consider now the path P, on the n nodes 0,...,n — 1.
Theorem 3.2 For each n > 2 and p > 2 it holds g(p, P,) = g(2,P,) = 2[5] — L.
Proof. The lower bound follows from g(p, P,) > g(o0, P,) and by g(oo, P,) = 2[5] — 1 [27].

We give in Figure 7?7 a gossiping algorithm showing that ¢(2, P,) = ¢g(F,). In the algorithm
we use the mathchings M, and the sets V; defined as

Mt:{{(v,v—l—l) cviseven, 0 <v<n-2} iftisodd, fort=1,....n

{(v,ov+1) : visodd, 1 <v<n-—2} iftiseven,

({2,204 1) if0<i< /2] -1,
Vi= {{n—l} if nis odd and ¢ = |n/2]. (10)
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Gossiping—path(p, P,)
Round 1: Each node v sends its packet to its neighbor in M.

Round ¢, 2 <t < 2[%] — 1: Along each edge (v,v+ 1) € M,

node v sends to v + 1 a message containing the packets of the nodes in a new set V; with
21+ 1 < v, if any;

node v + 1 sends to v a message containing the packets of the nodes in a new set V; with
21 > v+ 1, if any.

Figure 8: Gossiping Algorithm in F,, p > 2.

3.3 Complete graphs

In this section we study the gossiping time of the complete graph K, on n nodes. We shall denote
by {0,1,...,n — 1} the vertex set of K,. We recall that g(co, I,,) is equal to [logn]| if n is even,
and [logn] 4+ 1if n is odd.

Theorem 3.3 For each even integer n and integer p such that 219671 < pn it holds

9(p, K,) = [log p| + E(n — 2fcer] )w :

Proof. The lower bound follows from Lemma 3.1. We give now a gossiping algorithm in K, that
uses the optimal number of rounds. For each node v, with v even and 0 < v < n — 1, define the
sequence of nodes v; as

v+ 2" =1 (modn) if 1 <t < [logp],
vy = v4 20T — 1 4 (7 — 1)p + 2[2] (modn) if t = [logp] + 7, with 7 > 1 even, (11)

v 4 2Meerl _ 1 ¢ 7p (mod n) otherwise.

Note that for each ¢t M, = {(v,v;) : veven,0 < v < n} is a perfect matching between even and
odd nodes.

Finally, for each integer 7 > 1, for each even node v, with 0 < v < n — 1, define

{v+i(modn):1<i<p} if pand 7 are odd,
Poyen(v,7) = (12)
{v+i(modn):0<i<p—1} otherwise,

and for each odd node v, with 0 <v <mn -1

{v—i(modn):1<i<p} if p and 7 are odd,

Podd(?J,T) = (13)
{v—i(modn):0<i<p-—1} otherwise.
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Gossiping—even(p, K,,)

Phase 1
Round ¢, 1 <t < [logp| : For each even node v
nodes v and v; exchange all the packets they knows;

Phase 2
Round ¢t = [logp] + 7,1 <7< H}(n — QrIOgmﬂ : For each even node v
node v sends to v, the packets of nodes in Puye,(v,7) and
node v, sends to v the packets of nodes in Poqq(vs, 7).

Figure 7777

Consider the gossiping algorithm given in Figure 77?7 and let [,,(v,t) denote the set of nodes whose
packets are known by v by the end of round ¢. For each node v the size of I,,(v,t) doubles at each
round of Phase 1 and increases of p in every round of Phase 2. Indeed, it is immediate to see
that for each t = 1,..., [log p]

{v+i(modn):0<7i<2"—1} if vis even,
I(v,t) = (14)
{v—i(modn):0<:i<2" -1} if visodd,

and for each 7 = 1,..., Ll)(n — 2[10817])-‘

{v+4i(modn):0<i< 2MoerT 4 7p — 1} if v is even,

I (v, Tlogp] 4 7) = 15)
{v —i(modn) : 0 < i < 2Merl 4 7p -1} if v is odd.

Hence, at the end of round [logp| + H}(n — 2flog?] )w we have [, (v, [log p] + H}(n — 2[ogr] )D =
{0,...,n— 1} =V for each node v. O
Remark 3.1 A close look to the algorithm Gossiping-even(p, K,,) reveals that the calls are always

made between even and odd nodes. Therefore, the same protocol works in the complete bipartite
graphs K, , from which we get that for any p and r

1
9(p, K, ) = g(p, Ks,) = [logp] + [5(27‘ _ 9[logp] )-‘ )

We consider now the case of complete graphs with odd number of nodes.

Theorem 3.4 For each odd integer N and integer p such that 28?1 < N + 1 it holds

+ 2

N — 2floerl . N + 1 — 2tosr]
[log p| + {Tw +1<yg(p,Ky) < [logp] + {—w
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Gossiping—odd(p, Ky)
Phase 1

Round ¢, 1 <t < [logp] : For each even node v, with v # N + 1 — 2%, nodes v and v,
exchange all the packets they know;

Round ¢ = [logp| + 1 : each node v with

veE{3+4i : 0< i< 2MoBrI=2 9V UIN —3—47 : 0 <4< 2M8r1=2 1} receives from
v+ 2 a message containing the packets of all the nodes in {N — 2Mleerl=1t 11 . N —1}.

Phase 2

Round ¢ = [logp] +1+7,1 <7 < [(N 41— 2M8r1)/p] : For each even v with v,_; # N
node v sends to v,_; the packets of nodes in Puyen(v,7) and v;_; sends to v the packets of
nodes in Poga(vi—1, 7).

Round ¢ = [logp] + [(N + 1 — 2M°e?1)/p] + 2: Each node v such that v,_; = n — 1 for
some t = [logp] + 14+ 7 with 1 < 7 < [(N 4+ 1 —2M871)/p] 4+ 1 receives from v + 1 a
message containing the packets of the nodes in Pqa(N, 7).

FIGURE 7777

Proof. The lower bound follows from Lemma 3.1.

To prove the upper bound, we show that the algorithm Gossiping—odd(p, Ky ) given in Figure
N41_2ee ]
P
odd(p, Ky) is described in terms of the algorithm Gossiping—even(p, Ky ), where n = N + 1.

Let Vi, Peyen(v,7), and Pogq(v,7) be defined as in (11), (12), and (13), respectively. In order
to show the correctness of Gossiping—odd(p, K,,), let us first consider Phase 1. At round ¢, for
1 <t < [logp], node N + 1 — 2% does not receive the information of the nodes in I,,(N,t) — {N}
It is easy to see that the set of nodes that have not the packet of all the nodes in I,,(v,t) are the
nodes in the set X, defined by X; = @) and

7777 completes gossiping in Ky in [logp] + [ w + 2 rounds. The algorithm Gossiping—

X, =X, U{v+2'=1 (mod n) : v € X;_; even JU{v—2'+1(mod n) : v € X;_; odd JU{N+1-2},
for 2 <t < [logp], that gives
Xo={3+4i : 0<i<2"? -2} U{N-3—4i : 0<i<2"7? -1}, fort=2,...,[logp].

Moreover, each node in X; has at least the packets of all nodes in I(v,t)—I(N,t—1). Therefore, at the
end of round [log p| each node in X0, misses at most the packets of the nodes in I(NV, [logp|—1) =
{N —2feerl=1 4 | N _2Meerl=1 49 N —1} and the calls of Round [log p] + 1 between each node
v € Xfiogp and v 42 ¢ Xyiop) assure that each node knows the packets of all nodes in I(v, [logp]).
Consider now Phase 2. It is immediate that at round ¢ each node receives p new packets, but for
the even node v such that v,_; = n — 1. Hence after the calls of round [log p] + H}(n — Q[Ing])w +2
each node knows the packet of each of the other N — 1 nodes. a
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3.4 Hypercube

In the next theorem we shall determine g(p,G') for any p when the graph ¢ is the n-dimensional
hypercube H,.

Theorem 3.5 For each integer p < 27,
Lon [log p]
9(p M) = [logp] + | (2" =207

Proof. The lower bound follows from Lemma 3.1. We prove now the matching upper bound.
Let p be fixed. Denote by ¢, the minimum integer such that I(p,t,) > 27, where I(p,t,) is given
in (8). We shall show that there exists a gossiping protocol that requires ¢, rounds. Notice that
t, = [log p] + H}(zn . zﬂogfﬂﬂ .

The proof is by induction on n. The assertion is trivially true for n = 1; suppose now that
there exists a gossiping protocol in H,, that takes t,, rounds to be completed and that satisfies the
additional property that after any round ¢ < ¢, — 1 each vertex knows exactly I(p,t) packets. We
shall exhibit a gossiping protocol in H,,; that takes ¢,,; rounds to be completed and that also
satisfies the aforesaid additional property.

Case 1: I(p,t,) = 2". This implies that in the last round of the gossiping protocol in H, —
the t,-th — each vertex must receive exactly min{p,2"~'} packets. Consider now the fol-
lowing protocol in the n 4+ 1-dimensional hypercube H,i: Split H, ., into two hypercubes
of dimension n according to the value of its n 4+ 1-th dimension; during the first ¢, rounds
gossip separately in each n-dimensional subcube according to the protocol whose existence
is guaranteed by the induction hypothesis. After ¢, rounds each vertex has received all the
information of the subcube it belongs to, i.e., according to the hypothesis of this Case each
vertex has received exactly I(p,t,) = 2" packets. Now, exchange in the successive rounds
packets along dimension n 4+ 1 in H,,; by sending either all the 2" packets in one round, if
p > 2", or p packets per round except may be in the last one where one sends 2" — p|2"/p|
(if non zero) packets. It is clear that this protocol requires ¢,,; rounds to be completed.
Moreover, for each ¢, with 0 < ¢ < [2”/p], after round ¢, + ¢ < t,41 — 1 each node in H,,,
knows exactly I(p,t,) + pt = I(p,t, + t) packets. Hence the protocol for H,,, satisfies all
inductive hypothesis.

Case 2: I(p,t,) > 2". This implies that p < 2"7!, otherwise it is easy to check that one would
have t, = n and I(p,t,) = 1+ 3,2'=1 = 2". Consider the protocol in H, whose existence is
implied by the induction hypothesis. By inductive hypothesis at round ¢, — 1 each vertex has
received I(p,t, — 1) packets and in the last round receives a packets, with o < p, otherwise,
we would be again in Case 1.

Let M = Uf;l(wl,yl) be the perfect matching used in the last round, i.e., the round ¢,, of
the protocol on H,, and let A; (resp. B;) be the set of new packets that z; (resp. y;) receives
in this last round. Note that A, N B; = § and |A;| = | B;| = a. For what follows, let C; and D;
be two sets of packets such that |C;| = |D;] = p—aand C;NA; =0, D;NnA; =0, C;nNB; =0,
D;nB; =0, and C; N D; = 0. Such sets exist since |A;| + |B;| + |Ci| + |Di| = 2p < 2™.
Consider now the following gossiping protocol in H,,,. Split H,, according to the value of
the n + 1-th dimension in two subcubes H, and H/ of dimension n; during the first ¢, — 1
rounds gossip in H, and H/ separately. At the end of this phase each vertex knows 2" — «
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packets. Now, for each node « in I, denote by 2’ its neighbour in H/. Next round exchange
p packets along dimension n + 1 in such a way x; (resp. y;, i, y/) sends to 2} (resp. ¥y, z;,
y:) p packets including C; (resp. D;, C!, D}) and not D; (resp. C;, D}, CI).

In the next round exchange p packets along the matching M in such a way z; (resp. y;) sends
to y; (resp. z;) all packets in B; U CY (resp. A; U Dj) and ] (resp. y;) sends to y; (resp. z})
all packets in B} U C; (resp. A U D).

After the above ¢, +1 rounds we are sure that each vertex z; (resp. z}) knows all the packets of
the subcube it belongs to and so we can finish the protocol by sending packets along dimension
n 4+ 1 in such a way p new packets are received during each round (except possibly the last
final round). Therefore, for each ¢, with 1 <t < 1+ |2"/p|, each node in H, ., after round
th +t—1<t,41 — 1 knows exactly I(p,t, — 1)+ pt = I(p,t, + t — 1) packets. Hence this
protocol in I, satisfies all the induction hypothesis. a

Remark 3.2 It is worth pointing out that the obvious inequality ¢gu, (p, G) < 2gp,(p, G) and above
theorem allow us to improve the upper bound on gg,(p, H,) given by Theorem 4 of [5] for all values
of p not power of two. Indeed, the authors of [5] have gy, (p, H,) < 2n 4+ 2"t /p — 2/p while from

Theorem 3.5 we get gy, (p, Hy) < 295, (p, Hy,) = 2[logp] + 2 H?(QH _ 2l—logp-|)—"

4 Conclusions and open problems

We have considered the problem of gossiping in communication networks under the restriction that
communicating nodes can exchange up to a fixed number p of packets at each round. In the extremal
case p = 1 we have exactly determined the optimal number of communication rounds to perform
gossiping for several classes of graphs, including Hamiltonian graphs, paths, complete k-ary trees,
complete bipartite graphs, 3—colorable generalized Petersen graphs. For arbitrary graphs we give
asymptotically matching upper and lower bounds.

In the case of arbitrary p we have determined the optimal number of communication rounds to
perform gossiping under this hypothesis for complete graphs, hypercubes, cycles, and paths.

Several open problems remain in the area. We list the most important of them here.

¢ It would be interesting to determine the computational complexity of computing g, (1, G) for
general graphs, we suspect that it is NP-hard. We can ask the same question for gp, (p, &)
(we know that computing ¢gp, (00, ) is NP-hard, see [33]).

o We have left open the problem of determining the gossiping time gp, (1, G, ;) for non hamil-
tonian rectangular grids G, with both ¢ and s odd. We know that a(G,,) = [%!] and,
therefore, from Corollary 2.1 we have that gp (1,G ) > st + 1. Does equality holds? It can

be shown that gp,(1,G33) = 10.

¢ It would be interesting to determine the exact value of gp (p,G), p > 2, for other classes of
graphs like grids, complete k—ary trees, complete bipartite graphs.
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