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1 IntroductionGossiping (also called total exchange or all{to{all communication) in distributed systems is theprocess of distribution of information known to each processor to every other processor of thesystem. This process of information dissemination is carried out by means of a sequence of messagetransmissions between adjacent nodes in the network.The gossiping problem was originally introduced by the community of discrete mathematicians,to which it owes most of its terminology, as a combinatorial problem in graphs. Nonetheless, it wassoon realized that, once cast in more realistic models of communication, gossiping is a fundamentalprimitive in distributed memory multiprocessor system. There are a number of situations in multi-processor computation, such as global processor synchronization, where gossiping occurs. Moreover,the gossip problem is implicit in a large class of parallel computation problems, such as linear systemsolving, Discrete Fourier Transform, and sorting, where both input and output data are required tobe distributed across the network [8]. Due to the interesting theoretical questions it poses and itsnumerous practical applications, gossiping has been widely studied under various communicationmodels. Hedetniemi, Hedetniemi and Liestman [23] provide a survey of the area. Two more recentsurveys paper collecting the latest results are [17, 27]. The reader can also pro�tably see the book[39]. The problem of coping with malfunctionings during the execution of gossiping protocols isaddressed in [10, 12, 13, 6, 19, 20, 22].The great majority of the previous work on gossiping has considered the case in which thepackets initially held by each node can be freely combined and the resulting messages transmittedin a constant amount of time, that is, that the time required to transmit a message is independentfrom its length. While this assumption is reasonable for short messages, it is clearly unrealistic incase the size of the messages becomes large. Notice that most of the gossiping protocols proposed inthe literature require the transmission, in the last rounds of the execution of the protocol, of messagesof size �(n), where n is the number of nodes in the network. Therefore, it would be interestingto have gossiping protocols that require only the transmission of bounded length messages betweenprocessors. In this paper we consider the problem of gossiping in communication networks underthe restriction that communicating nodes can exchange up to a �xed number p of packets at eachround.1.1 The ModelConsider a communication network modeled by a graph G = (V;E) where the node set V representsthe set of processors of the network and E represents the set of the communication lines betweenprocessors.Initially each node holds a packet that must be transmitted to any other node in the networkby a sequence of calls between adjacent processors. During each call, communicating nodes canexchange up to p packets, where p is an a priori �xed integer. We assume that each processor canparticipate in at most one call at time. Therefore, we can see the gossiping process as a sequence ofrounds: During each round a disjoint set of edges (matching) is selected and the nodes that are endvertices of these edges make a call. This communication model is usually referred to as telephonemodel [23] or Full{Duplex 1{Port (F1) [33]. We denote by gF1(p;G) the minimum possible numberof rounds to complete the gossiping process in the graph G subject to the above conditions. Anotherpopular communication model is the mail model [23] or Half{Duplex 1{Port (H1) [33], in which ineach round any node can send a message to one of its neighbors or receive a message from it but1



not simultaneously. The problem of estimating gH1(p;G) has been considered in [5]. Analogousproblems in bus networks have been considered in [18, 24]. Optimal bounds on gH1(1; G) whenthe edges of G are subject to random failures are given in [10]. Packet routing in interconnectionnetworks in the F1 model has been considered in [1].1.2 ResultsWe �rst study the extremal case in which gossiping is to be performed under the restriction thatcommunicating nodes can exchange exactly one packet at each round. We provide several lowerbound on the gossip time gF1(1; G) and we provide matching upper bounds for Hamiltonian graphs,complete trees, and complete bipartite graphs. For general graphs we provide asymptotically tightupper and lower bounds. Subsequently, we study the case of p �xed arbitrary constant and we com-pute exactly gF1(p;G) for complete graphs, hypercubes, cycles and paths. Our result for hypercubesallow us to improve the corresponding result in the H1 model given in [5].2 Gossiping by exchanging one packet at timeIn this section we study gF1(1; G), that is the minimum possible number of rounds to completegossip in a graph G under the condition that at each round communicating nodes can exchangeexactly one packet.In order to avoid overburdening the notation, in all this section we will simply write g(G) todenote gF1(1; G).2.1 Lower bounds on g(G)In this section we give some lower bounds on the time needed to complete the gossiping process.Lemma 2.1 For any graph G = (V;E), with jV j = n, let �(G) be the size of a maximum matchingin G, then g(G) � �n(n� 1)2�(G) � : (1)Proof. For any node v 2 V the packet initially resident in v must reach each of the remaining n�1nodes in the graph. Therefore, during the gossiping process, at least n(n� 1) packet transmissionsmust be executed over the edges of G. Since in each communication round at most �(G) calls canbe performed and each call allows the transmission of 2 packets (one in each direction) the boundfollows. 2Lemma 2.2 Let X � V be a vertex cutset of the graph G = (V;E) whose removal disconnects Ginto the connected components V1; : : : ; Vd, theng(G) � & dXi=1 maxfjVij; n� jVijgjMX j ' ; (2)where jMX j is the size of a maximum matching MX in G such that any edge in it has an endpointin X and the other in V �X. 2



Proof. Consider a component Vi, for some 1 � i � d. Nodes in Vi can receive the packets of nodesin V � Vi only by means of calls between a node in X and one in Vi; moreover, at least n � jVijcalls are needed between nodes in X and nodes in Vi to bring all packets in V � Vi to nodes in Vi.Analogously, packets of nodes in Vi can reach nodes in V �Vi only by means of calls between a nodein X and one in Vi and at least jVij such calls are needed. Therefore, for each i = 1; : : : ; d, at leastmaxfjVij; n� jVijg calls must take place between nodes in X and nodes in Vi. We then get that atleast Pdi=1maxfjVij; n� jVijg calls are needed between nodes in X and nodes in V �X = [di=1Vi.Since at most jMX j such calls can take place during each round, we get the desired lower bound of&Pdi=1maxfjVij; n� jVijgjMX j 'on the time necessary to gossip in G. 2Remark 2.1 The bound in the above Lemma 2.2 can sometimes be improved by observing thatafter the last call has been done between a node in some Vi and a node in X , the last exchangedmessage has still to reach all the other nodes of Vi (or of V �Vi). Therefore, we can add to the lowerbound (2) the minimum of the eccentricities of the subgraphs induced by the Vi's and the V � Vi's.Corollary 2.1 Let �(G) be the independence number of G, theng(G) � ��(G)(n� 1)n� �(G) � : (3)Proof. Let Y denote an independent set of G. Applying Lemma 2.2 with cutset X = V � Y andconnected components V1; : : : ; VjY j, each consisting of just one element of Y , we getg(G) � 2666 jY jXi=1 n � jVijjMX j 3777 � 2666 jY jXi=1 n � jVijjX j 3777 = 2666 jY jXi=1 n� 1n � jY j3777 = � jY j(n� 1)n � jY j � :Choosing an independent set of maximum size jY j = �(G) we get (3). 2Let T be a tree and v one of its nodes, we indicate the connected components into which thenode set of T is splitted by the removal of v by V1(v); : : : ; Vdeg(v)(v), ordered so that jV1(v)j � : : :�jVdeg(v)(v)j.Corollary 2.2 Let T be a tree on n nodes of maximum degree � = maxv2V deg(v), theng(T ) � maxv : deg(v)=�L(v);where L(v) = 8<: (deg(v)� 1)n+ 1 if jV1(v)j � n=2;(deg(v)� 2)n+ 1+ 2jV1(v)j if jV1(v)j > n=2.Proof Given a node v, Lemma 2.2 givesg(T ) � deg(v)Xi=1 maxfjVi(v)j; n� jVi(v)jg= deg(v)Xi=2 n � jVi(v)j+8<: jV1(v)j if jV1(v)j > n=2,n� jV1(v)j if jV1(v)j � n=2,= L(v): 3



Direct computation shows that if deg(v) > deg(w) then L(v) > L(w) thus proving that the maxi-mum is always attained at a node of maximum degree. 22.2 Upper boundsIn this section we will determine exactly g(G) for several classes of graphs, including Hamiltoniangraphs and complete k-ary trees. Moreover, we will provide good upper bounds on g(G) for generalgraphs G.2.2.1 Hamiltonian GraphsWe �rst note that in any graph G = (V;E) the size of a maximum matching �(G) is at most bjV j=2c.Therefore, from Lemma 2.1 we get that the gossiping time g(G) of any graph with n nodes is alwayslower bounded by g(G) � ( n� 1 if n is even;n if n is odd. (4)We will show that this lower bound is attained by Hamiltonian graphs.Let Cn = (V;E) denote the cycle of length n; we assume the vertex set be V = f0; : : : ; n � 1gand the edge set be E = f(v; w) : 1 = jv � wj(mod n)g1.Lemma 2.3 g(Cn) � �n� 1 if n is even;n if n is odd.Proof. We distinguish two cases according to the parity of the number n of nodes.Case n even. We shall give a gossiping protocol on the ring Cn that requires n � 1 rounds. First,split the edge set of Cn into two disjoint perfect matchings Meven and Modd, whereMeven = f(v; w) : v is even and w = v + 1gModd = f(v; w) : v is odd and w = v + 1(mod n)gand for each integer t let Mt = �Meven if t is even,Modd otherwise. (5)The gossiping algorithm is shown in Figure 1.It is mmediate to see that each node receives a new packet at each round (this can be formallyproved by induction on t). Therefore, at the end of round n� 1 of algorithm Gossiping-even(Cn)each node has received all the packets of the other n � 1 nodes.Case n odd. De�ne the following maximum matchings Mt in Cn for each t = 0; : : : ; n� 1Mt = f(v; w) : v � t (mod n) is odd, w = v + 1(mod n); and v 6= t 6= wg: (6)We give in Figure 2 a gossiping protocol on the ring Cn that requires n rounds. It is easy to seethat at each round t = 1; : : : ; n each node di�erent from t� 1 receives a new packet. Therefore, atthe end of round n of algorithm Gossiping-odd(Cn) each node has received all the packets of theother n� 1 nodes. 21Here and in the rest of the paper with x = a (mod b) we denote the unique integer x < b such that x = qb + a.4



Gossiping-even(Cn)Round t = 1: each node v sends its own packet to the node w such that (v; w) 2M1;Round t = 2: each node v sends its own packet to the node w such that (v; w) 2M2;Round t, 3 � t � n� 1: For each node v let w be the node such that (v; w) 2Mt,node v sends a new packet to w, namely v sends the oldest packet it knows among those vhas neither received from w nor sent to w in any previous round.Figure 1: Gossiping Algorithm in Cn, n even.Gossiping-odd(Cn)Round t, 1 � t � n: For each node v 6= t � 1 let w be the neighbor of v such that(v; w) 2Mt�1,node v sends to w the oldest packet it knows that v has neither received from w nor sent tow in a previous round (v own packet is considered to be older than any other packet).Figure 2: Gossiping Algorithm in Cn, n odd.Example 2.1 For n = 6 we have Modd = M1 = M3 = M5 = f(1; 2); (3; 4); (50)g and Meven =M2 = M4 = f(0; 1); (2; 3); (4; 5)g. The sets I6(v; t), for 0 � v � 5 and 1 � t � 5, are given in thefollowing Table.tnv 0 1 2 3 4 51 f5; 0g f1; 2g f1; 2g f3; 4g f3; 4g f5; 0g2 f5; 0; 1g f0; 1; 2g f1; 2; 3g f2; 3; 4g f3; 4; 5g f4; 5; 0g3 f4; 5; 0; 1g f0; 1; 2; 3g f0; 1; 2; 3g f2; 3; 4; 5g f2; 3; 4; 5g f4; 5; 0; 1g4 f4; 5; 0; 1; 2g f5; 0; 1; 2; 3g f0; 1; 2; 3; 4g f1; 2; 3; 4; 5g f2; 3; 4; 5; 0g f3; 4; 5; 0;1g5 f3; 4; 5; 0; 1;2g f5; 0; 1; 2;3;4g f5; 0; 1; 2;3;4g f1; 2; 3; 4;5; 0g f1; 2; 3; 4;5; 0g f3; 4; 5; 0; 1; 2gFor n = 5 we haveM0 = f(1; 2); (3; 4)g,M1 = f(2; 3); (4; 0)g,M2 = f(3; 4); (0; 1)gM3 = f(4; 0); (1; 2)g,and M4 = f(0; 1); (2; 3)g. The sets K5(v; t), for 0 � v � 4 and 1 � t � 5, are given in the followingTable. tnv 0 1 2 3 41 f0g f1; 2g f1; 2g f3; 4g f3; 4g2 f4; 0g f1; 2g f1; 2; 3g f2; 3; 4g f3; 4; 0g3 f4; 0; 1g f0; 1; 2g f1; 2; 3g f2; 3; 4; 0g f2; 3; 4; 0g4 f3; 4; 0; 1g f0; 1; 2; 3g f0; 1; 2; 3g f2; 3; 4; 0g f2; 3; 4; 0; 1g5 f3; 4; 0; 1; 2g f0; 1; 2; 3; 4g f0; 1; 2; 3; 4g f1; 2; 3; 4; 0g f2; 3; 4; 0; 1g5



Theorem 2.1 For any Hamiltonian graph G on n vertices we haveg(G) = �n � 1 if n is even;n if n is odd.Proof. If G has n vertices the lower bound (4) tells us that g(G) � �n � 1 if n is even,n if n is odd.If G is Hamiltonian, from Lemma 2.3 we get that gossiping along the edges of the Hamiltonian cyclegives a protocol with gossiping time matching the lower bound and the theorem holds. 22.3 TreesIn this section we investigate the gossiping time in trees. We �rst give an upper bound on thegossiping time in any tree and afterwards we exactly compute the gossiping time of complete k{arytrees.Given a tree T = (V;E), let us denote by � the minimum degree of an internal node and by �the maximum number of leaves connected to a same node.Theorem 2.2 For any tree T = (V;E) on n nodesg(T ) � (n� �)�+ (� � 1)�:where � = maxv2V deg(v).Proof. Since � = maxv2V deg(v) we can color the edges of T with � colors, say 0; : : : ;�� 1, sothat no two edges sharing a vertex are assigned the same color. Denote by c(u; v) = c(v; u) thecolor assigned to the edge (u; v). Moreover, give to each edge (u; f), where f is a leaf of T , a secondcolor c0(u; f) 2 f0; : : : ; � � 1g so that c0(u; f) 6= c0(u; f 0). Consider the gossiping algorithm in thetree T given in Figure 3.Gossiping-tree(T )Phase 1Round t, for t = 1; : : : ;�(n � �): For each node u, if there is an edge (u; v) suchthat c(u; v) = t � 1(mod �) then u sends a new packet to v, namely u sends to v theoldest packet among those that u has neither sent to v nor received from v in a previousround, if such a packet exists, otherwise u sends nothing.Phase 2Round �(n� �) + � , for � = 1; : : : ; (� � 1)�: For each leaf f , if (u; f) is the edge onf and c0(u; f) = � � 1(mod �) then u sends to f any packet f does not know.Figure 3: Gossiping Algorithm in a tree T .6



In order to prove the theorem, we shall now prove the correctness of algorithm Gossiping-tree(T ). Let us say that the edge (u; v) of T is saturated from u to v at time t of Gossiping-tree(T ) if no packet is sent from u to v at any time t0 � t, that is, if by time t � 1 node v hasreceived the packet of each node w connected to v through u. We need the following property ofGossiping-tree(T ).Property 2.1 In any round t � �(n � �) of gossiping algorithm Gossiping-tree(T ), if the edge(u; v) has color c(u; v) = t � 1(mod�) and it is not saturated from u to v at time t, then u sendsa new packet to v at round t.Proof. The proof is by induction on the time unit t. Let t � �: At time unit t, for each edge (u; v)of color c(u; v) = t� 1 2 f0; : : : ;�� 1g node u and v exchange a call for the �rst time and have atleast their own packet to send each other.Let now t > � and suppose that the hypothesis holds for each t0 < t.Consider an edge (u; v) such that c(u; v) = t � 1(mod �). Suppose by contradiction that at time tthe edge (u; v) is not saturated from u to v but u has no packets to send to v among those u has notreceived through v, that is, all packets known to u and not received through v have been alreadysent from u to v.In particular, node u has already sent to v all the packets it has received from its other neighbors,call them w1; : : : ; wk. Notice that the last call from u to v has taken place at time t��. Let �i bethe only integer such that both t�d < �i < t and c(u; wi) = �i�1(mod �) hold. If the edge (u; wi)is not saturated at time �i, by inductive hypothesis we know that u has received a packet by wi attime �i. We can have now two cases: The �rst case is that all the edges (u; wi) are saturated at time�i < t, this immediately implies that (u; v) is saturated at time t, contradicting our assumption that(u; v) not saturated from u to v at time t. The second case is that at least one edge (u; wi) is notsaturated at time �i; in such a situation we know by the inductive hypothesis that u has received anew packet by wi at time �i that can be now forwarded to v, again getting a contradiction. 2We can now complete the proof of the theorem by showing that at the end of Gossiping{k{tree(Tk;n) each node knows all the other n � 1 packets. Above Property 2.1 shows that a newpacket is sent from u to v at each round t such that c(u; v) + 1 = t (mod �), until the edge (u; v)is saturated and no more packets will be sent from u to v. Therefore, for any internal node u andfor any � consecutive rounds, either u has already received all packets or it will receive a newpacket from one of its neigbors during one of these � consecutive rounds. Moreover, it is obviousthat u receives a new packet from each of its neighbors during the �rst � � deg(v) initial rounds.Therefore, being deg(u) + (n� � � 1) � n� 1, by time unit �(n� �) node u gets all the necessaryn� 1 packets.Analogously, by round �(n � �), any leaf f knows n �� packets. During the �(� � 1) rounds ofPhase 2 any leaf f will receive a new packet during one out of � consecutive rounds, thus gettingthe remaining � � 1 packets that f needs to complete the gossip. 2The following corollary is immediate.Corollary 2.3 For any connected graph G = (V;E) with n vertices and maximum degree � wehave g(G) � (n� 1)�:?????????????????? (7)7



From Corollary 2.2 and Theorem 2.2 we have that for any tree with n nodes and maximum degree� it holds n� � n + 1 � g(T ) � n� � �. Let us consider now the tree Sn;� of Figure 4. If� = n � 1 then Sn;n�1 is the star on n nodes and from Corollary 2.2 and Theorem 2.2 we haveg(Sn;n�1) = (n� 1)2. If � is constant with respect to n > 2� then from Corollary 2.2 and Theorem2.2 we get �(n � 1) � (� � 1) � g(Sn;�) � �(n � 1) � 1. It is not di�cult to obtain a speci�cgossiping algorithm attaining the lower bound. Therefore, we have that for any n and � thereexists a graph Gn;� with n vertices and maximum degree � such that g(Gn;�) = 
((n� 1)�), thusshowing that the bound (7) is asymptotically tight.
� � � � �1�2@@@@�3... ������� 3 ��� 2@ @ @ @ ��� 1�0 �� ��+ 1 � � � �n � 3 �n� 2 �n � 1Figure 4: Tree Sn;�We shall now exactly compute the gossiping time of k-ary trees, that is, rooted trees in whicheach internal node has exactly k sons.Corollary 2.4 For any k-ary tree on n nodes Tk;n it holdsg(Tk;n) = (k + 1)(n� 1)� k:Proof Let u be a node of Tk;n whose sons are all leaves, applying Corollary 2.2 to Tk;n we getg(Tk;n) � maxv L(v) � L(u) = (k� 1)n+ 1 + 2(n� k � 1) = (k + 1)(n� 1)� k:On the other hand from Theorem 2.2, since for any k{ary tree � = � = k + 1 and � = k, we getg(Tk;n) � (k+ 1)(n� 1)� k. 2The above Corollary 2.4 holds for any value of k, in particular it holds for k = 1, that is, in caseTk;n is the path on n nodes Pn.Corollary 2.5 Let Pn be the path on n nodes, for each n � 4g(Pn) = 2n� 3:8



2.4 Complete bipartite graphsLetKr;s = (V (Kr;s); E(Kr;s)) be the complete bipartite graph on the node set V (Kr;s) = fa0; : : : ; ar�1g[fb0; : : : ; bs�1g, with fa1; : : : ; ar�1g\fb0; : : : ; bs�1g = ;, r � s, and edge setE(Kr;s) = fa0; : : : ; ar�1g�fb0; : : : ; bs�1g. In the next theorem we determine the gossiping time of Kr;s.Theorem 2.3 For each r and s with r � s � 1g(Kr;s) = d(r + s � 1)r=se :Proof. The lower bound g(Kr;s) � d(r + s � 1)r=se is an immediate consequence of Corollary 2.1since the complete bipartite graph has �(Kr;s) = r.In order to give a gossiping algorithm in Kr;s requiring d(r+ s� 1)r=se communication rounds,we de�ne the matchings Mj = f(bi; ai+j (mod r)) : 0 � i � s� 1g;for j = 0; : : : ; r� 1. The algorithm is shown in Figure ???.According to the protocol, at the end of Phase 1 of Gossiping{bipartite(Kr;s) each node ai(resp. bi) knows the message of each bi (resp. ai). Consider now Phase 2. It is immediate to seethat during the �rst s�1 rounds of Phase 2 each of the bi's receives the packet of each bj for j 6= i,thus completing its knowledge. Moreover, after the dr(r + s � 1)=se � r = dr(r � 1)=se rounds ofPhase 2 each node ai has been involved in a call at least r � 1 times and has then received thepacket of each of the aj, for j 6= i, thus completing its knowledge. 2Gossiping{bipartite(Kr;s)Phase 1round t, for t = 1; : : : ; r: For each edge (bi; ai+t�1 (mod r)) 2Mt�1nodes bi and ai+t�1 (mod r) exchange their own packets;Phase 2round t, for t = r + 1; : : : ; dr(r+ s � 1)=se: For each edge (bi; aj) 2M(t�1�s)s (mod r)node bi sends to aj any packet that aj has not received in a previous round;if t � r + s � 1 then bi receives from aj the packet of bi+t�r(mod s).Figure ????: Gossiping Algorithm in Kr;s.2.5 Generalized Petersen GraphsIn Section 2.2.1 we have seen that Hamiltonian graphs have the minimum possible gossiping timeamong all graphs with n nodes. A natural question to ask is to see if there are non{Hamiltoniangraphs on n vertices with gossiping time equal to n if n is odd and n� 1 if n is even. A quick check9



shows that this is not the case for rectangular grids Gt;s with both t and s odd 2. In fact, we knowthat �(Gt;s) = d s�t2 e and from Corollary 2.1 we get g(Gt;s) � s � t + 1. Moreover, it is also easy tocheck that the gossiping time of the Petersen graph on 10 vertices is at least 10. Therefore, onecould be tempted to conjecture that the gossiping time g(G) of a graph G is equal to the minimumpossible only if G is Hamiltonian. This conjecture, although nice sounding, would be wrong as thefollowing classes of graphs, including the Generalized Petersen Graphs, shows.
a1a10

0b

a0

1b

2b

a2

a3
3b

a4

4b

a5

5b

a6

b6

a8
8b

a9

9b

a7

7b

10b

Figure ????: A 3-coloration of the GPG with n = 11 and s = 2.Let Pn;� be the graph consisting of two cycles of size n connected by a perfect matching in thefollowing way: given a permutation � of f0; : : : ; n � 1g the graph Pn;� = (V (Pn;�); E(Pn;�)) hasvertex set V (Pn;�) = fa0; : : : ; an�1g [ fb0; : : : ; bn�1g and edge setE(Pn;�) = f(ai; ai+1(mod n)) : 0 � i � n�1g[f(bi; bi+1(mod n)) : 0 � i � n�1g[f(ai; b�(i)) : 0 � i � n�1g:The Petersen Graph has n = 5 and �(i) = 3i (mod 5), for i = 0; 1; 2; 3; 4; Generalized PetersenGraphs (GPG) have n odd and �(s � i (mod n)) = i, i = 0; : : : ; n� 1, for a �xed integer s.From Lemma 2.1 we know that g(Pn;�) � 2n� 1. We will show that for any n and � such thatPn;� is 3{edge{colorable, we have the equalityg(Pn;�) = 2n � 1:Notice that each cubic GPG, other than the Petersen graph itself, is 3{edge{colorable; this classinclude the family of non Hamiltonian GPGs with n = 5 (mod 6) and s = 2 (see [2] and referencestherein quoted). Figure ????? shows a 3-coloration of the GPG with n = 11 and s = 2.2It is well known that all rectangular grids Gt;s are Hamiltonian but for values of t and s both odd.10



Gossiping{3{color(Pn;�)Phase q (1 � q � (n� 1)=2) [it consists of 3 communication rounds]:round t (t = 1; 2; 3): make a call between the endpoints of each edge of color t.Calls are made so that:when an edge (ai; ai+1(mod n)) is used, then ai receives the packet of ai+p(mod n), andai+1(mod n) receives the packet of ai+1�p(mod n);when an edge (bi; bi+1(mod n)) is used then bi receives the packet of bi+p(mod n), and bi+1(mod n)receives the packet of bi+1�p(mod n);when the edge (ai; b�(i)) is used then ai receives the packet of some bj, 0 � j � n � 1 andb�(i) receives the packet of some aj , 0 � j � n� 1.Phase 3(n� 1)=2 + q (1 � q � (n+ 1)=2) [it consists of 1 communication round]:node ai (resp. b�(i)), for i = 0; : : : ; n�1, sends to b�(i) (resp. ai) the packet of some aj (resp.bj) it has not already sent to it.Figure ????: Gossiping Algorithm in Pn;�.The gossiping algorithm is described in Figure ???; it assumes that the edges of the graph arecolored with the three colors 1,2, and 3. It is easy to prove by induction on q that all the callsof Phase q, for q � (n � 1)=2, can actually be done. Therefore, after the �rst (n � 1)=2 phaseseach node ai has the packet of ai�j(mod n) for j = 0; : : : ; (n� 1)=2, that is, it knows the packet ofeach other node in its own cycle; moreover it knows the packet of (n� 1)=2 nodes in the cycle onfb0; : : : ; bn�1g. Analogously, each bi knows the packet of each other node in its own cycle and of(n� 1)=2 nodes in fa0; : : : ; an�1g.Therefore, the calls between nodes in fa0; : : : ; an�1g and in fb0; : : : ; bn�1g of the last (n + 1)=2communication rounds allow to complete the knowledge of each node in the graph.3 Gossiping by exchanging more than one packet at timeIn this section we shall study the minimum number of time units gF1(p;G) necessary to performgossiping in a graph G, under the restriction that at each time instant communicating nodes canexchange up to p packets, p �xed but arbitrary otherwise. Again, for ease of notation, we shallwrite g(p;G) to denote gF1(p;G).3.1 Lower BoundsFirst of all we shall present a simple lower bound on g(p;G) based on elementary counting arguments.Nonetheless, we shall prove in the sequel that the obtained lower bound is tight for complete graphswith an even number of nodes and for hypercubes. In order to derive the lower bound, let us de�neI(p; t) as the maximum number of packets a vertex can have possibly received after t communication11



rounds in any graph. Since at each round i, with 1 � i � t, any vertex can receive at mostminfp; 2i�1g packets, it follows thatI(p; t) = 1 + tXi=1 minfp; 2i�1g; (8)or, equivalently I(p; t) = 1 + dlog peXi=1 2i�1 + p(t� dlog pe)= 2dlog pe + p(t� dlog pe) (9)for any t � dlog pe. Therefore, for any graph G = (V;E), the gossiping time g(p;G) is always lowerbounded by the smallest integer t? for which I(p; t?) � jV j. Since t? is obviously greater or equalto dlog jV je � dlog pe, we can use (9) and obtaing(p;G)� dlog pe+ �1p(N � 2dlog pe)� :Moreover, notice that if the number of nodes in the graph is odd then at each round there is a nodethat does not receive any message. This implies that after any round t there exists a node who canhave possibly received at most I(p; t� 1) packets. Therefore, we getg(p;G)� dlog pe + �1p(N � 2dlogpe)� + 1:The above arguments give the following lemma.Lemma 3.1 For any graph G = (V;E), jV j = N , and integer p such that 2dlog pe � N we haveg(p;G)� 8><>: dlog pe+ l1p(N � 2dlog pe)m if N is even,dlog pe+ l1p(N � 2dlog pe)m+ 1 if N is odd.Using similar arguments, we can also generalize the lower bound (1) that we extablished inSection 2.1 for p = 1 to general values of p.Lemma 3.2 Let G = (V;E) be a graph with N vertices and let �(G) be the size of a maximummatching in G. For any integer p < N we haveg(p;G)� dlog pe + �1p �N(N � 1)2�(G) � 2dlog pe + 1�� :Proof. The proof is similar to that of Lemma 2.1 but now one has to take into account that ateach communication round t, 1 � t � g(p;G), at most minfp; 2t�1g�(G) packets out of N(N � 1)can be exchanged in the graph. 212



3.2 Rings and PathsLet g(1; G) denote the gossiping time of the graph G in absence of any restriction on the size ofthe messages. We show that g(p;G) = g(1; G), for each p � 2, when G is either the ring Cn or thepath Pn on n nodes.Theorem 3.1 For each p � 2 it holds g(p; Cn) = g(2; Cn) = �n=2 if n is even,(n+ 3)=2 if n is odd.Proof. The lower bound is immediate by noting that for any p � 2 one has g(p; Cn) � g(1; Cn)and that [27] g(1; Cn) = �n=2 if n is even,(n+ 3)=2 if n is odd.We give now a gossiping algorithm Cn that uses g(1; Cn) rounds and in which nodes exchange2 packets at the time, thus showing that g(2; Cn) = g(1; Cn). Consider the matchings Mt be asde�ned in (5) if n is even, and as de�ned in (6) if n is odd. Moreover de�ne the setsWi = f2i� 1; 2ig; for i = 1; : : : ; dn=2e � 1 and W0 = � fn� 1; 0g if n is evenf0g if n is odd.The gossiping algorithm is shown in Figure 6. 2Gossiping(p,Cn)Round t = 1: each node v sends its packet to its neighbor in M1, but 0 if n is odd;[Now each node knows the packet of the other node in the same Wi]Round t, 2 � t � t(n): Along each edge (v; w) 2 Mt, v sends to w the oldest messageconsisting of the packets of the set Wi that v knows and that v has neither sent to w norreceived from w in a previous round (if any).Figure 6: Gossiping Algorithm in Cn, n even, and p � 2.Let us consider now the path Pn on the n nodes 0; : : : ; n� 1.Theorem 3.2 For each n � 2 and p � 2 it holds g(p; Pn) = g(2; Pn) = 2dn2e � 1.Proof. The lower bound follows from g(p; Pn) � g(1; Pn) and by g(1; Pn) = 2dn2 e � 1 [27].We give in Figure ??? a gossiping algorithm showing that g(2; Pn) = g(Pn). In the algorithmwe use the mathchings Mt and the sets Vi de�ned asMt = � f(v; v+ 1) : v is even, 0 � v � n� 2g if t is odd,f(v; v+ 1) : v is odd, 1 � v � n� 2g if t is even, for t = 1; : : : ; nVi = � f2i; 2i+ 1g if 0 � i � bn=2c � 1,fn� 1g if n is odd and i = bn=2c. (10)13



Gossiping{path(p; Pn)Round 1: Each node v sends its packet to its neighbor in M1.Round t, 2 � t � 2dn2 e � 1: Along each edge (v; v+ 1) 2Mtnode v sends to v + 1 a message containing the packets of the nodes in a new set Vi with2i+ 1 � v, if any;node v + 1 sends to v a message containing the packets of the nodes in a new set Vi with2i � v + 1, if any. Figure 8: Gossiping Algorithm in Pn, p � 2.3.3 Complete graphsIn this section we study the gossiping time of the complete graph Kn on n nodes. We shall denoteby f0; 1; : : : ; n� 1g the vertex set of Kn. We recall that g(1; Kn) is equal to dlogne if n is even,and dlog ne+ 1 if n is odd.Theorem 3.3 For each even integer n and integer p such that 2dlog pe � n it holdsg(p;Kn) = dlog pe+ �1p(n� 2dlogpe)� :Proof. The lower bound follows from Lemma 3.1. We give now a gossiping algorithm in Kn thatuses the optimal number of rounds. For each node v, with v even and 0 � v � n � 1, de�ne thesequence of nodes vt asvt = 8>>>>><>>>>>: v + 2t � 1 (mod n) if 1 � t � dlog pe,v + 2dlog pe � 1 + (� � 1)p+ 2dp2e (mod n) if t = dlog pe+ � , with � � 1 even,v + 2dlog pe � 1 + �p (mod n) otherwise. (11)Note that for each t Mt = f(v; vt) : v even, 0 � v < ng is a perfect matching between even andodd nodes.Finally, for each integer � � 1, for each even node v, with 0 � v � n� 1, de�nePeven(v; �) = 8><>: fv + i(modn) : 1 � i � pg if p and � are odd;fv + i(modn) : 0 � i � p� 1g otherwise, (12)and for each odd node v, with 0 � v � n � 1Podd(v; �) = 8><>: fv � i(modn) : 1 � i � pg if p and � are odd;fv � i(modn) : 0 � i � p� 1g otherwise: (13)14



Gossiping{even(p, Kn)Phase 1Round t, 1 � t � dlog pe : For each even node vnodes v and vt exchange all the packets they knows;Phase 2Round t = dlog pe + � , 1 � � � l1p(n� 2dlog pe)m : For each even node vnode v sends to vt the packets of nodes in Peven(v; �) andnode vt sends to v the packets of nodes in Podd(vt; �).Figure ????Consider the gossiping algorithm given in Figure ???? and let In(v; t) denote the set of nodes whosepackets are known by v by the end of round t. For each node v the size of In(v; t) doubles at eachround of Phase 1 and increases of p in every round of Phase 2. Indeed, it is immediate to seethat for each t = 1; : : : ; dlog peIn(v; t) = 8><>: fv + i(modn) : 0 � i � 2t � 1g if v is even;fv � i(modn) : 0 � i � 2t � 1g if v is odd; (14)and for each � = 1; : : : ; l1p (n� 2dlog pe)mIn(v; dlog pe+ �) = 8><>: fv + i(modn) : 0 � i � 2dlog pe + �p� 1g if v is even;fv � i(modn) : 0 � i � 2dlog pe + �p� 1g if v is odd: (15)Hence, at the end of round dlog pe + l1p(n� 2dlogpe)m we have In �v; dlog pe+ l1p(n� 2dlogpe)m� =f0; : : : ; n� 1g = V for each node v. 2Remark 3.1 A close look to the algorithmGossiping-even(p;Kn) reveals that the calls are alwaysmade between even and odd nodes. Therefore, the same protocol works in the complete bipartitegraphs Kr;r from which we get that for any p and rg(p;Kr;r) = g(p;K2r) = dlog pe+ �1p(2r � 2dlog pe)� :We consider now the case of complete graphs with odd number of nodes.Theorem 3.4 For each odd integer N and integer p such that 2dlog pe � N + 1 it holdsdlog pe + &N � 2dlogpep '+ 1 � g(p;KN) � dlog pe+ &N + 1� 2dlog pep '+ 2:15



Gossiping{odd(p, KN )Phase 1Round t, 1 � t � dlog pe : For each even node v, with v 6= N + 1 � 2t, nodes v and vtexchange all the packets they know;Round t = dlog pe+ 1 : each node v withv 2 f3 + 4i : 0 � i � 2dlogpe�2 � 2g [ fN � 3� 4i : 0 � i � 2dlog pe�2 � 1g receives fromv + 2 a message containing the packets of all the nodes in fN � 2dlogpe�1 + 1; : : : ; N � 1g.Phase 2Round t = dlog pe+1+ � , 1 � � � �(N + 1� 2dlogpe)=p� : For each even v with vt�1 6= Nnode v sends to vt�1 the packets of nodes in Peven(v; �) and vt�1 sends to v the packets ofnodes in Podd(vt�1; �).Round t = dlog pe + �(N + 1� 2dlog pe)=p� + 2: Each node v such that vt�1 = n � 1 forsome t = dlog pe + 1 + � with 1 � � � �(N + 1� 2dlog pe)=p� + 1 receives from v + 1 amessage containing the packets of the nodes in Podd(N; �).FIGURE ????Proof. The lower bound follows from Lemma 3.1.To prove the upper bound, we show that the algorithm Gossiping{odd(p;KN ) given in Figure???? completes gossiping in KN in dlog pe + lN+1�2dlog pep m+ 2 rounds. The algorithm Gossiping{odd(p;KN) is described in terms of the algorithm Gossiping{even(p;KN), where n = N + 1.Let Vt, Peven(v; �), and Podd(v; �) be de�ned as in (11), (12), and (13), respectively. In orderto show the correctness of Gossiping{odd(p;Kn), let us �rst consider Phase 1. At round t, for1 � t � dlog pe, node N + 1 � 2t does not receive the information of the nodes in In(N; t)� fNgIt is easy to see that the set of nodes that have not the packet of all the nodes in In(v; t) are thenodes in the set Xt de�ned by X1 = ; andXt = Xt�1[fv+2t�1 ( mod n) : v 2 Xt�1 even g[fv�2t+1 ( mod n) : v 2 Xt�1 odd g[fN+1�2tg;for 2 � t � dlog pe, that givesXt = f3 + 4i : 0 � i � 2t�2 � 2g [ fN � 3� 4i : 0 � i � 2t�2 � 1g; for t = 2; : : : ; dlog pe:Moreover, each node inXt has at least the packets of all nodes in I(v; t)�I(N; t�1). Therefore, at theend of round dlog pe each node in Xdlogpe misses at most the packets of the nodes in I(N; dlog pe�1) =fN�2dlog pe�1+1; N�2dlog pe�1+2; : : : ; N�1g and the calls of Round dlog pe+1 between each nodev 2 Xdlog pe and v+2 =2 Xdlogpe assure that each node knows the packets of all nodes in I(v; dlogpe).Consider now Phase 2. It is immediate that at round t each node receives p new packets, but forthe even node v such that vt�1 = n� 1. Hence after the calls of round dlog pe+ l1p(n� 2dlog pe)m+2each node knows the packet of each of the other N � 1 nodes. 216



3.4 HypercubeIn the next theorem we shall determine g(p;G) for any p when the graph G is the n-dimensionalhypercube Hn.Theorem 3.5 For each integer p < 2n.g(p;Hn) = dlog pe+ �1p(2n � 2dlog pe)� :Proof. The lower bound follows from Lemma 3.1. We prove now the matching upper bound.Let p be �xed. Denote by tn the minimum integer such that I(p; tn) � 2n, where I(p; tn) is givenin (8). We shall show that there exists a gossiping protocol that requires tn rounds. Notice thattn = dlog pe+ l1p(2n � 2dlog pe)m :The proof is by induction on n. The assertion is trivially true for n = 1; suppose now thatthere exists a gossiping protocol in Hn that takes tn rounds to be completed and that satis�es theadditional property that after any round t � tn � 1 each vertex knows exactly I(p; t) packets. Weshall exhibit a gossiping protocol in Hn+1 that takes tn+1 rounds to be completed and that alsosatis�es the aforesaid additional property.Case 1: I(p; tn) = 2n. This implies that in the last round of the gossiping protocol in Hn |the tn-th | each vertex must receive exactly minfp; 2n�1g packets. Consider now the fol-lowing protocol in the n + 1{dimensional hypercube Hn+1: Split Hn+1 into two hypercubesof dimension n according to the value of its n + 1-th dimension; during the �rst tn roundsgossip separately in each n-dimensional subcube according to the protocol whose existenceis guaranteed by the induction hypothesis. After tn rounds each vertex has received all theinformation of the subcube it belongs to, i.e., according to the hypothesis of this Case eachvertex has received exactly I(p; tn) = 2n packets. Now, exchange in the successive roundspackets along dimension n + 1 in Hn+1 by sending either all the 2n packets in one round, ifp > 2n, or p packets per round except may be in the last one where one sends 2n � pb2n=pc(if non zero) packets. It is clear that this protocol requires tn+1 rounds to be completed.Moreover, for each t, with 0 � t � b2n=pc, after round tn + t � tn+1 � 1 each node in Hn+1knows exactly I(p; tn) + p t = I(p; tn + t) packets. Hence the protocol for Hn+1 satis�es allinductive hypothesis.Case 2: I(p; tn) > 2n. This implies that p < 2n�1, otherwise it is easy to check that one wouldhave tn = n and I(p; tn) = 1 +Pi 2i�1 = 2n. Consider the protocol in Hn whose existence isimplied by the induction hypothesis. By inductive hypothesis at round tn� 1 each vertex hasreceived I(p; tn� 1) packets and in the last round receives � packets, with � < p, otherwise,we would be again in Case 1.Let M = [2n�1i=1 (xi; yi) be the perfect matching used in the last round, i.e., the round tn, ofthe protocol on Hn and let Ai (resp. Bi) be the set of new packets that xi (resp. yi) receivesin this last round. Note that Ai\Bi = ; and jAij = jBij = �. For what follows, let Ci and Dibe two sets of packets such that jCij = jDij = p�� and Ci\Ai = ;, Di\Ai = ;, Ci\Bi = ;,Di \ Bi = ;, and Ci \ Di = ;. Such sets exist since jAij + jBij + jCij + jDij = 2p < 2n:Consider now the following gossiping protocol in Hn+1. Split Hn+1 according to the value ofthe n + 1-th dimension in two subcubes Hn and H 0n of dimension n; during the �rst tn � 1rounds gossip in Hn and H 0n separately. At the end of this phase each vertex knows 2n � �17



packets. Now, for each node x in Hn denote by x0 its neighbour in H 0n. Next round exchangep packets along dimension n + 1 in such a way xi (resp. yi, x0i, y0i) sends to x0i (resp. y0i, xi,yi) p packets including Ci (resp. Di, C 0i, D0i) and not Di (resp. Ci, D0i, C 0i).In the next round exchange p packets along the matching M in such a way xi (resp. yi) sendsto yi (resp. xi) all packets in Bi [ C 0i (resp. Ai [D0i) and x0i (resp. y0i) sends to y0i (resp. x0i)all packets in B0i [ Ci (resp. A0i [Di).After the above tn+1 rounds we are sure that each vertex xi (resp. x0i) knows all the packets ofthe subcube it belongs to and so we can �nish the protocol by sending packets along dimensionn + 1 in such a way p new packets are received during each round (except possibly the last�nal round). Therefore, for each t, with 1 � t � 1 + b2n=pc, each node in Hn+1 after roundtn + t � 1 � tn+1 � 1 knows exactly I(p; tn � 1) + p t = I(p; tn + t � 1) packets. Hence thisprotocol in Hn+1 satis�es all the induction hypothesis. 2Remark 3.2 It is worth pointing out that the obvious inequality gH1(p;G)� 2gF1(p;G) and abovetheorem allow us to improve the upper bound on gH1(p;Hn) given by Theorem 4 of [5] for all valuesof p not power of two. Indeed, the authors of [5] have gH1(p;Hn) � 2n + 2n+1=p � 2=p while fromTheorem 3.5 we get gH1(p;Hn) � 2gF1(p;Hn) = 2dlog pe+ 2 l1p(2n � 2dlog pe)m.4 Conclusions and open problemsWe have considered the problem of gossiping in communication networks under the restriction thatcommunicating nodes can exchange up to a �xed number p of packets at each round. In the extremalcase p = 1 we have exactly determined the optimal number of communication rounds to performgossiping for several classes of graphs, including Hamiltonian graphs, paths, complete k-ary trees,complete bipartite graphs, 3{colorable generalized Petersen graphs. For arbitrary graphs we giveasymptotically matching upper and lower bounds.In the case of arbitrary p we have determined the optimal number of communication rounds toperform gossiping under this hypothesis for complete graphs, hypercubes, cycles, and paths.Several open problems remain in the area. We list the most important of them here.� It would be interesting to determine the computational complexity of computing gF1(1; G) forgeneral graphs, we suspect that it is NP{hard. We can ask the same question for gF1(p;G)(we know that computing gF1(1; G) is NP{hard, see [33]).� We have left open the problem of determining the gossiping time gF1(1; Gt;s) for non hamil-tonian rectangular grids Gt;s with both t and s odd. We know that �(Gt;s) = d s�t2 e and,therefore, from Corollary 2.1 we have that gF1(1; Gt;s) � st + 1. Does equality holds? It canbe shown that gF1(1; G3;3) = 10.� It would be interesting to determine the exact value of gF1(p;G), p � 2, for other classes ofgraphs like grids, complete k{ary trees, complete bipartite graphs.18
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