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ABSTRACT

For an integer k >2, the best function mi{n, k} is determined such that
every strong digraph of order n with at least m(n, k) arcs contains a
circuit of length k or less.

INTRODUCTION

Let D be a digraph (without loops or multiple arcs) with vertex set V(D)
and arc set E(D) where |V(D)|= n. The girth g(D) of a digraph D which
has at least one circuit (directed cycle) is the length of the smallest circuit
in D. Definitions not given here can be found in [3].

A problem which has been studied is to find the minimum number
f(r, g) of vertices an r-regular digraph (d*(x)=d (x)=r for all x) with
girth g may possess. In particular it has been conjectured that:

Conjecture 1. f(r,g)=r(g—-D+1{1]
If h(r, g) is the minimum number of vertices in a digraph of girth g in
which every vertex has out degree at least r it has been conjectured that:
Conjecture 2. h{r, g)=r(g—1+1 [4]

These conjectures are respectively equivalent to the following:

Conjecture 1. If d*(x)=d (x)=r for every vertex x and n=kr then
g(D)=k [1].

Conjecture 2'. If d*(x)=r for every vertex x and n<kr then g(D)=k
[4].

(Note that Conjecture 2 implies Conjecture 1.)
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Only particular cases of these conjectures are solved: essentially the
cases r=2, 3, any k, for the Conjecture 1, plus some couples of values
(r, k) (see [2,4]); the case r=2 any k for Conjecture 2 (see [5]).

Thomassen [6] asked the problem of finding the best function m(n, k)
such that a strong digraph of order n, with at least m(n, k) arcs
satisfies g(D) = k. We solve this problem by showing

Theorem. Let D be a strong digraph of order n, and let k=2. Then

n?+(3-2kyn+k*—k
2 3

|E(D)|=
implies that g(D)=k. .
REMARK. We will also show that the theorem is the best possible.

Proof. (1) Since D is strong g(D) exists and 2= g(D)=n. Thus the
theorem is true for n=k. The theorem is also frue for k=2, because

2_ —
n+2:n(n 1)+

n
|E(D)|= 5 5

1.

(2) Thus we will suppose k =3 in what follows and prove the theorem
by induction on |V(D)|=n. The theorem is true for n=k; we suppose
that it is true for every n' with k=n'=n-1 and let D be a strong
digraph with n vertices, where then n=k+1.

Exactly we will prove that if g(D)=k+1 then

n?+B3-2kn+k*—k
2

|E(D)|= —1=o(n k).

Furthermore since k+1=3, D is antisymmetric: let

ED)={x v}, x,ye V(D),(x,y)¢ E(D) and (y,x)¢E(D})}
then

|E(D)|=

nin—1)
> —|E(D)}.

Thus it suffices to prove that if g(D)=k+1, then
(k+1)(k—-2)
-

(3) If g(D)=mn, then D is a circuit of length n and |[E(D)|=n. The
condition n=¢(n, k) reduces to (n—k+2)(n—k—1)=0, which is true
for every n=k+1.

Thus we will suppose that k+1=sg(D)sn-1.

(4) Let D' be a strong proper subdigraph of D of maximum order. A
subdigraph is called proper if it has strictly less than n vertices. Strong

\E(D) = (k—2)n
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proper subdigraphs of D exist: for instance the subdigraph generated by
the vertices of a smallest circuit of D.

Let p=|V(D')] then k+1=p=n-1. Since g(DV=g(D)=k+1 we
have by induction hypothesis that

(k+1)(k~2)
-
To prove the theorem it suffices thus to prove that

|E(D)|—~|E(D")|=(k - 2)(n—p).

(5) Suppose that |V(D")|=p=n—1. Let V(D)= V(D'}U{a}a¢ D'. As
D is strong and g(D)=k +1, there exists a circuit of length at least k+1
containing a. Let G =(a, y;, Y2, . . -, Y, @) be such a circuit of minimum
length [+1 with I=k. As G is of minimum length for 2=i=[-1
{a, v;}e E(D)—E(D') and thus

|E(D)|~ |E(D)|=1-2=k-2.

(6) Thus we can assume that |V(D')|=p=n—2. Let P be a directed
path having only its end vertices in common with D’ and containing a
vertex of D— D' (such a path exists as D is strong and antisymmetric).
Every other vertex of D— D’ belongs to P otherwise D'UP would be a
larger strong proper subdigraph of D.

Thus let us write P={(a', x;,..., Xy ..., X,_p, b'), where a’e D', b'e D',
x;€ D— D' (with eventually a'=b").

(7) Suppose, now that p=n—3. (i) As D’ is of maximum cardinality
{x, ute E(D) for 2=i=n-p—1 and ue V(D'). We have thus exhibited
p(n—p—2) pairs of vertices of E(D)-E(D"). (ii) Furthermore let C=
(Kgy o vs Xneps B =X pur,oo ., %oy, @'=X, %;) be a circuit of length I
containing P; thus =k +1. For 2=i=<k there is no arc (x;,x,) in D,
otherwise (x,,..., %, x;) would be a circuit of length at most k, and
k < g(D). For 3=i=1, there is no arc (x,, x;), otherwise D' would not be
of maximum order. Thus for 3=<i<k, {x, x,}€ E(D)~ E(D’). Similarly
{Xnop X} E E(D)-E(D") for n—p—k+1=i=<n—p—2, where the indices
are to be taken modulo I Thus we have exhibited 2(k—2) pairs of
vertices of E(D)— E(D’) which are distinct, except possibly we have
counted {x,, x,,_,} twice, and which are distinct from the p(n—p—2) pairs
exhibited in (i). In summary

[E(D)|~|E(D)|=p(n—p-2)+2(k—2)—1=(k—2)(n—p)
+p—k+2)(n—-p-2)—1

=(k-2{n—-p)+3n-p~2)—- 1>k ~-2}{n—p),

|E(D)|=(k-2)p

and thus the theorem is proved for p=n—3 (with a strict inequality).

=
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(8) The only remaining case is p= n—2. As we have seen in (6) D
consists of D' plus an arc (a, b) with at least an arc from D' to a and one
arc from b to D’. Let us consider now a circuit of minimum length
containing the arc (a, b): C=(q, b, V1, Yar - - - » Vi—2@) Of length =k + 1.

The arc (a, y;) ¢ E(D) otherwise D' will not be of minimum order and

the arc (y, a)¢ E(D) for I=i= [ -3 otherwise the circuit C will not be of
minimum length. Thus for 1=i=I1-3 {a, y}e E(D)— E(D". Similarly
for 2=i=1-2 {b, yi}eE(D)—-E(D’). Thus
|E(D)| - |E(D)|=2(1~3)=2(k—2)+2(~k-1).
Thus the theorem is also true for p=n—2. In order t0 characterize the
extremal graphs we will show that in the case p=n—2 we have in fact
\E(D)| - [(E(D"|>2(k ~2). That is the case if [>k+1. I I=k+1, then
since n— 1=k +1 there exists a vertex z not on the circuit C. Neither the
arcs (a,z) nor (z,b) belongs 1o E(D) otherwise D' will not be of
maximum order. Furthermore at least one of the arcs (z, a) and (b, z)
does not belong to E(D) otherwise we will have a circuit of length 3
contradicting g(D)=k +1=4. So we have one more pair of vertices in
E(D)—IZJ(D’) and thus the inequality is strict. §

=emark. The theorem is the best possible in the sense that there exist
strong digraphs of order n, which have @(n, k) arcs and girth k+1. For
example let D be the digraph consisting of a Hamiltonian circuit
(X1, Xy - - - » %oy X1) Plus the arcs {x; x;), where k-1=<i<j—1=n—1ex-
cept the arc (x,_1, x,). For n=k+1, this digraph reduces 0 a circuit of
length k+1 and is the only strong digraph of order k+1, having
p(k+1,ky=k+1 arcs and girth k+1. However for n>k+1, the di-
graph D above is not the unique digraph of order n with ¢(n, k) arcs and
girth k+1. Such digraphs can be constructed recursively from the circuit
of length k+1. Indeed the proof of the theorem, in particular the fact
that the equality |E(D)|—|E(D"] = (k—2)(n~ p) occurs only for n=p+1
shows that a strong digraph of order n, with o(n, k) arcs and girth k+1 s
obtained from a strong digraph D’ of order n— 1, with @{n—1, k) arcs
and girth k+1 by adding a vertex of degree n—k+1 in such a way that
no circuit of length less than or equal to k is created.

Note added in proof: Other partial results on Conjectures 1 and 2 have
been obtained by Y. O. Hamidoune, A note on the girth of digraphs, to
appear.
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