Girth in Digraphs
J. C. Bermond
A. Germa
M. C. Heydemann
D. Sotteau
UNIVERSITE DE PARIS SUD

ABSTRACT

For an integer $k > 2$, the best function $m(n, k)$ is determined such that every strong digraph of order n with at least $m(n, k)$ arcs contains a circuit of length k or less.

INTRODUCTION

Let D be a digraph (without loops or multiple arcs) with vertex set $V(D)$ and arc set $E(D)$ where $|V(D)| = n$. The girth $g(D)$ of a digraph D which has at least one circuit (directed cycle) is the length of the smallest circuit in D. Definitions not given here can be found in [3].

A problem which has been studied is to find the minimum number $f(r, g)$ of vertices an r-regular digraph ($d^+(x) = d^-(x) = r$ for all x) with girth g may possess. In particular it has been conjectured that:

Conjecture 1. $f(r, g) = r(g - 1) + 1$ [1].

If $h(r, g)$ is the minimum number of vertices in a digraph of girth g in which every vertex has out degree at least r it has been conjectured that:

Conjecture 2. $h(r, g) = r(g - 1) + 1$ [4].

These conjectures are respectively equivalent to the following:

Conjecture 1'. If $d^+(x) = d^-(x) = r$ for every vertex x and $n \leq kr$ then $g(D) \leq k$ [1].

Conjecture 2'. If $d^+(x) \geq r$ for every vertex x and $n \leq kr$ then $g(D) \leq k$ [4].

(Note that Conjecture 2 implies Conjecture 1.)

1 91405—ORSAY, France, Informatique bât. 490.

© 1980 by John Wiley & Sons, Inc. 0364-9024/80/0004-0337$0.00
Only particular cases of these conjectures are solved: essentially the cases \(r = 2, 3 \), any \(k \), for the Conjecture 1, plus some couples of values \((r, k)\) (see [2, 4]); the case \(r = 2 \) any \(k \) for Conjecture 2 (see [5]).

Thomassen [6] asked the problem of finding the best function \(m(n, k) \) such that a strong digraph of order \(n \), with at least \(m(n, k) \) arcs satisfies \(g(D) \leq k \). We solve this problem by showing

Theorem. Let \(D \) be a strong digraph of order \(n \), and let \(k \geq 2 \). Then

\[
|E(D)| \leq \frac{n^2 + (3 - 2k)n + k^2 - k}{2},
\]

implies that \(g(D) \leq k \).

Remark. We will also show that the theorem is the best possible.

Proof. (1) Since \(D \) is strong \(g(D) \) exists and \(2 \leq g(D) \leq n \). Thus the theorem is true for \(n = k \). The theorem is also true for \(k = 2 \), because

\[
|E(D)| \geq \frac{n^2 - n + 2}{2} = \frac{n(n-1)}{2} + 1.
\]

(2) Thus we will suppose \(k \geq 3 \) in what follows and prove the theorem by induction on \(|V(D)| = n \). The theorem is true for \(n = k \); we suppose that it is true for every \(n' \) with \(k \leq n' \leq n - 1 \) and let \(D \) be a strong digraph with \(n \) vertices, where then \(n \geq k + 1 \).

Exactly we will prove that if \(g(D) \geq k + 1 \) then

\[
|E(D)| \leq \frac{n^2 + (3 - 2k)n + k^2 - k}{2} - 1 = \varphi(n, k).
\]

Furthermore since \(k + 1 \geq 3 \), \(D \) is antisymmetric: let

\[
\tilde{E}(D) = \{(x, y), x, y \in V(D), (x, y) \notin E(D) \text{ and } (y, x) \notin E(D)\}
\]

then

\[
|\tilde{E}(D)| = \frac{n(n-1)}{2} - |E(D)|.
\]

Thus it suffices to prove that if \(g(D) \geq k + 1 \), then

\[
|\tilde{E}(D)| \leq (k - 2)n - \frac{(k + 1)(k - 2)}{2}.
\]

(3) If \(g(D) = n \), then \(D \) is a circuit of length \(n \) and \(|E(D)| = n \). The condition \(n \leq \varphi(n, k) \) reduces to \((n - k + 2)(n - k - 1) \geq 0\), which is true for every \(n \geq k + 1 \).

Thus we will suppose that \(k + 1 \leq g(D) \leq n - 1 \).

(4) Let \(D' \) be a strong proper subdigraph of \(D \) of maximum order. A subdigraph is called proper if it has strictly less than \(n \) vertices. Strong
Girth in Digraphs 339

proper subdigraphs of D exist: for instance the subdigraph generated by
the vertices of a smallest circuit of D.

Let $p = |V(D')|$ then $k + 1 \leq p \leq n - 1$. Since $g(D') \geq g(D) \equiv k + 1$ we
have by induction hypothesis that

$$|\bar{E}(D')| \geq (k-2)p - \frac{(k+1)(k-2)}{2}.$$

To prove the theorem it suffices thus to prove that

$$|\bar{E}(D)| - |\bar{E}(D')| \geq (k-2)(n-p).$$

(5) Suppose that $|V(D')| = p = n - 1$. Let $V(D) = V(D') \cup \{a\}a \notin D'$. As
D is strong and $g(D) \geq k + 1$, there exists a circuit of length at least $k + 1$
containing a. Let $C_i = (a, y_1, y_2, \ldots, y_t, a)$ be such a circuit of minimum
length $l + 1$ with $l \geq k$. As C_i is of minimum length for $2 \leq i \leq l - 1$
$\{a, y_i\} \in \bar{E}(D) - \bar{E}(D')$ and thus

$$|\bar{E}(D)| - |\bar{E}(D')| \geq l - 2 \geq k - 2.$$

(6) Thus we can assume that $|V(D')| = p \leq n - 2$. Let P be a directed
path having only its end vertices in common with D' and containing a
vertex of $D - D'$ (such a path exists as D is strong and antisymmetric).
Every other vertex of $D - D'$ belongs to P otherwise $D' \cup P$ would be a
larger strong proper subdigraph of D.

Thus let us write $P = (a', x_1, \ldots, x_i, \ldots, x_{n-p}, b')$, where $a' \in D'$, $b' \in D'$,
$x_i \in D - D'$ (with eventually $a' = b'$).

(7) Suppose, now that $p \leq n - 3$. (i) As D' is of maximum cardinality
$\{x_i, u\} \in \bar{E}(D)$ for $2 \leq i \leq n - p - 1$ and $u \in V(D')$. We have thus exhibited
$p(n-p-2)$ pairs of vertices of $\bar{E}(D) - \bar{E}(D')$. (ii) Furthermore let $C = (x_1, \ldots, x_{n-p}, b' = x_{n-p+1}, \ldots, x_{l-1}, a' = x_{l}, x_l)$ be a circuit of length l
containing P; thus $l \geq k + 1$. For $2 \leq i \leq k$ there is no arc (x_i, x_i) in D,
otherwise (x_1, \ldots, x_l, x_1) would be a circuit of length at most k, and
$k < g(D)$. For $3 \leq i \leq l$, there is no arc (x_i, x_i), otherwise D' would not be
of maximum order. Thus for $3 \leq i \leq k$, $(x_i, x_i) \in \bar{E}(D) - \bar{E}(D')$. Similarly
$(x_{n-p}, x_l) \in \bar{E}(D) - \bar{E}(D')$ for $n - p - k + 1 \leq i \leq n - p - 2$, where the indices
are to be taken modulo l. Thus we have exhibited $2(k-2)$ pairs of vertices of $\bar{E}(D) - \bar{E}(D')$ which are distinct, except possibly we have
counted (x_1, x_{n-p}) twice, and which are distinct from the $p(n-p-2)$ pairs
exhibited in (i). In summary

$$|\bar{E}(D)| - |\bar{E}(D')| \geq p(n-p-2) + 2(k-2) - 1 = (k-2)(n-p)$$
$$+ (p-k+2)(n-p-2) - 1$$
$$\geq (k-2)(n-p) + 3(n-p-2) - 1 > (k-2)(n-p),$$

and thus the theorem is proved for $p \leq n - 3$ (with a strict inequality).
(8) The only remaining case is $p = n - 2$. As we have seen in (6) D consists of D' plus an arc (a, b) with at least one arc from D' to a and one arc from b to D'. Let us consider now a circuit of minimum length containing the arc $(a, b): C = (a, b, y_1, y_2, \ldots, y_{l-1}, a)$ of length $l \geq k + 1$.

The arc $(a, y_i) \not\in E(D)$ otherwise D' will not be of minimum order and the arc $(y_i, a) \not\in E(D)$ for $1 \leq i \leq l-3$ otherwise the circuit C will not be of minimum length. Thus for $1 \leq i \leq l-3$ \{$(a, y_i) \in \bar{E}(D) - \bar{E}(D')$\}. Similarly for $2 \leq i \leq l-2$ \{$(b, y_i) \in \bar{E}(D) - \bar{E}(D')$\}. Thus

$$|\bar{E}(D)| - |\bar{E}(D')| \geq 2(l-3) = 2(k-2) + 2(l-k-1).$$

Thus the theorem is also true for $p = n - 2$. In order to characterize the extremal graphs we will show that in the case $p = n - 2$ we have in fact $|\bar{E}(D)| - |\bar{E}(D')| > 2(k-2)$. That is the case if $l > k + 1$. If $l = k + 1$, then since $n - 1 \geq k + 1$ there exists a vertex z not on the circuit C. Neither the arcs (a, z) nor (z, b) belongs to $E(D)$ otherwise D' will not be of maximum order. Furthermore at least one of the arcs (z, a) and (b, z) does not belong to $E(D)$ otherwise we will have a circuit of length 3 contradicting $g(D) \geq k + 1 \geq 4$. So we have one more pair of vertices in $\bar{E}(D) - \bar{E}(D')$ and thus the inequality is strict.

Remark. The theorem is the best possible in the sense that there exist strong digraphs of order n, which have $\varphi(n, k)$ arcs and girth $k + 1$. For example let D be the digraph consisting of a Hamiltonian circuit $(x_1, x_2, \ldots, x_n, x_1)$ plus the arcs (x_i, x_j), where $k - 1 \leq i < j - 1 \leq n - 1$ except the arc (x_{n-1}, x_n). For $n = k + 1$, this digraph reduces to a circuit of length $k + 1$ and is the only strong digraph of order $k + 1$, having $\varphi(k + 1, k) = k + 1$ arcs and girth $k + 1$. However for $n > k + 1$, the digraph D above is not the unique digraph of order n with $\varphi(n, k)$ arcs and girth $k + 1$. Such digraphs can be constructed recursively from the circuit of length $k + 1$. Indeed the proof of the theorem, in particular the fact that the equality $|\bar{E}(D)| - |\bar{E}(D')| = (k-2)(n-p)$ occurs only for $n = p + 1$ shows that a strong digraph of order n, with $\varphi(n, k)$ arcs and girth $k + 1$ is obtained from a strong digraph D' of order $n - 1$, with $\varphi(n - 1, k)$ arcs and girth $k + 1$ by adding a vertex of degree $n - k + 1$ in such a way that no circuit of length less than or equal to k is created.

Note added in proof: Other partial results on Conjectures 1 and 2 have been obtained by Y. O. Hamidoune, A note on the girth of digraphs, to appear.

References

