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Abstract

Our aim is to find bus interconnection networks which connect as many processors as
possible, for given upper bounds on the number of connections per processor, the number
of processors per bus and the network diameter. Point-to-point networks are a special case
of bus networks in which every bus connects only two processors. In this case de Bruijn
and Kautz networks and their generalizations are known to be among the best families of
networks with respect to the aforementioned criteria. In this paper, we present the directed
de Bruyn bus networks, which connect two or more processors on a bus, and contain the
point-to-point de Bruijn networks and their generalization as a special case. We study two
different schemes of the directed de Bruijn bus networks. We also show that the directed
Kautz bus networks can be defined in the same manner.

1 Introduction

A bus interconnection network is a collection of processing elements (processors) and commu-
nication elements (buses). The processors produce and/or consume messages and the buses
provide communication channels to exchange messages among the processors. Every bus pro-
vides a communication link between two or more processors.

For practical reasons, a processor may be connected only to a limited number of buses
(this number is known as the processor degree) and a bus may connect only a limited number
of processors (this number is known as the bus size). Therefore, messages may have to be
relayed by a number of intermediate processors before arriving at their destinations, and thus
the message transmission time becomes a function of the distance (measured in terms of the
number of buses traversed by a message) between processors. The maximum distance over all
pairs of processors is the network diameter.
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For given upper bounds on the processor degree, bus size, and network diameter, the con-
struction of bus networks with maximal number of processors is an important problem in the
design of interconnection networks. Other design parameters such as network reliability, ease
of message routing, and balanced message traffic throughout the network should also be taken
into consideration.

In the case of traditional point-to-point networks, where a link can connect only two pro-
cessors, the aforementioned problem has been extensively studied in the literature. As a result,
several families of networks with large number of processors for given degree and diameter have
been proposed. (Surveys on this topic can be found in [1], [2], [6] and [8].) Among them, de
Bruijn and Kautz networks appear to have many other desirable properties (for details see [7],
[17]). Classical definition of the de Bruijn networks is based on alphabets. These networks can
be generalized for any number of processors by using arithmetic congruences (see [13], [16]).

When the bus size is taken into account as an extra parameter, the problem becomes more
complicated. There are relatively few results in the literature on this subject (for a survey see
[3]). The problem has been studied for small degree and small diameter where the tools from
Design Theory and Hypergraph Theory are useful. Although there are a few direct methods to
construct bus networks, most of the bus networks proposed in the literature are obtained, in fact,
from the known point-to-point networks using some transformation. A simple transformation is
to partition the set of links into subsets. Each subset of links defines a new bus. Doty [9] used
this idea to construct bus networks from the undirected de Bruijn graphs.

In this paper, we present and study some construction schemes that generalize the point-to-
point de Bruijn and Kautz networks to bus networks. Since the de Bruijn and Kautz networks
are modelled by directed graphs (digraphs), the schemes proposed in this paper impose an
orientation on the buses; i.e. certain processors on a bus can use it only for sending messages,
while others can use it only for receiving. Therefore, we use directed hypergraphs to model these
bus networks.

This paper is organized as follows: In Section 2, we introduce our notation and terminology
and define the problem formally. In Section 3, we propose two schemes to obtain bus networks
from the de Bruijn digraphs. The networks of Scheme 1 are constructed using alphabets (Sec-
tion 3.3). Although they can be defined and generalized arithmetically (see Section 3.7), this
is not always practical. In Section 3.4, we introduce the networks of Scheme 2 by using arith-
metical congruences. They can also be defined using alphabets, but, in contrast with the first
scheme, their alphabetical definition is complicated (Section 3.5). We show in Section 3.6 that
the two schemes, in general, give non-isomorphic networks. In Section 4, we study the Kautz
bus networks.

2 Directed Hypergraphs

A directed hypergraph H is a pair (V(H ), £(H)) where V() is a non-empty set of elements (called
vertices) and E(H ) is a set of ordered pairs of non-empty subsets of V(H ) (called hyperarcs). If
E = (E~,E%)is a hyperarc in £(H ), then the non-empty vertex sets £~ and F¥ are called the
in-set and the out-set of the hyperarc F, respectively. The sets £~ and ET need not be disjoint.



The hyperarc F is said to join the vertices of £~ to the vertices of ET. Furthermore, the
vertices of £/~ are said to be incident to the hyperarc F and the vertices of ET are said to be
incident from E. The vertices of £~ are adjacent to the vertices of Et, and the vertices of E+
are adjacent from the vertices of £~

If £ is a hyperarc in a directed hypergraph H, then |E~| is the in-size and |F 7| is the
out-size of I/ where the vertical bars denote the cardinalities of the sets. The mazimum in-size
and the mazimum out-size of H are

sT(H)= max |E7| and sT(H)= max |ET|,
Bes(H) Ec&(H)
respectively. The order of H is the number of vertices in V(H ) and is denoted by n(H ). The

number of hyperarcs in H is denoted by m(H ). We note that a digraph is a directed hypergraph
G = (V(G),E(G)) with s7(G) = sT(G) = 1.

Let v be a vertex of H. The in-degree of v is the number of hyperarcs that contain v in
their out-set, and is denoted by dp(v). Similarly, the out-degree of vertex v is the number of
hyperarcs that contain » in their in-set, and is denoted by d}}(v). (When H is clear from the
context, we will write simply d~(v) and d*(v), respectively.) The mazimum in-degree and the
mazimum out-degree of H are, respectively

d”(H)= ug/%ﬁ) d(v) and dY(H)= Ugﬁ)ﬁ) df(v).
A walk in H from vertex u to vertex v is an alternating sequence of vertices and hyperarcs
u = vo, F,v1, Ea,v9, -+, By, v, = v such that vertex v;_y € F; and v; € EZ‘" for each 1 <1 < k.
The length of the walk is equal to the number of hyperarcs on it. The distance from vertex u to
vertex v, di(u,v), is the length of a shortest walk from u to v. The diameter of the hypergraph,
D(H), is the maximum of the distances between pairs of vertices in the hypergraph:

D(H) = d .
() L . m(u,v)

If H is a directed hypergraph, its dual H* is found as follows: For every hyperarc I € E(H)
thereis a corresponding vertex e € V(H*), and for every vertex v € V(H ) thereis a corresponding
hyperarc V = (V=,V*t) € E(H*). Vertex e is in V= if and only if v € E* and similarly, e is in
V*if and only if v € E~.

We will call a directed hypergraph with maximum out-degree d, diameter D and maximum
out-size s, a (d, D, s)-directed hypergraph. (Note that, one may define (d, D, s)-directed hyper-
graphs in different fashions. For example, one may assume that d~(v) + d*(v) < d, for every
vertex v and/or |E~| 4+ |ET| < s for every hyperarc E. We will not consider these cases in
this article.) Let n(d, D,s) denote the maximum number of vertices over all (d, D, s)-directed
hypergraphs. It is easy to show that

D

n(d,D,s) < Z(ds)i.

=0

This bound is known as the Moore bound for directed hypergraphs, and the directed hypergraphs
that attain this bound are called the directed Moore hypergraphs. Ergincan and Gregory [10]



showed that directed Moore hypergraphs do not exist if ds > 1 or D > 1. The (d, D, s)-directed
hypergraph problem consists of finding (d, D, s)-directed hypergraphs with maximum number
of vertices or finding large (d, D, s)-directed hypergraphs.

The drawing of directed hypergraphs can be very complex. Therefore it is useful to represent
a directed hypergraph H with a bipartite digraph,

R(H) = (Vi(R) U Va(R),E(R))

called the bipartite representation digraph of H. Every vertex v in V(H ) is represented by a
vertex v in Vi(R) and every hyperarc F in £(H ) is represented by a vertex e in Vo(R). We draw
an arc from v € Vi(R) to e € Vo(R) if and only if v € £~ in H. Similarly, we draw an arc from
e € Vo(R) tov € Vi(R) if and only if v € E* in H.

If His a (d,D,s)-hypergraph and R(H) is its bipartite representation digraph, then the
maximum out-degrees in V;(R) and in Vy(R) are d and s, respectively. The distance between
two vertices of Vi (R) is at most 2D, but the diameter of R(H ) can be 2D, 2D + 1 or 2D + 2 as
the vertices of V41 (R) and V,(R) do not play the same role. So, the (d, D, s)-directed hypergraph
problem is partly related to but different from the (dy,ds; D’)-bipartite digraph problem, i.e.
finding large bipartite digraphs with maximum vertex out-degrees d; and ds, and diameter D’.
This problem was considered for d; = dy by Fiol and Yebra [11].

If only the adjacency relations between the vertices in a directed hypergraph H are con-
sidered, we can use the underlying multidigraph H (also called associated multidigraph and
denoted by A(H)). The vertex set of H is the same as that of H. There are as many arcs from
u to v in ﬁ, as there are hyperarcs £ in H such that u € £~ and v € E*. Then a hyperarc of
H corresponds to a “complete bipartite digraph” (shortly diclique), and a directed hypergraph
corresponds to a multidigraph with a partitioning of its arc set into dicliques.

3 De Bruijn Bus Networks

3.1 De Bruijn Digraphs

An important class of digraphs with a large number of vertices and small diameter is the de
Bruijn digraphs. One of the ways to define de Bruijn digraphs is based on alphabets. For given
integers d > 2 and D > 1, vertices of the de Bruijn digraph B(d, D) are labeled with words of
length D from an alphabet A of size d. Let (a1, as,---,ap) be the label of a vertex v of B(d, D).
Then v is adjacent to the vertices with labels (ag,---,ap, ) for all @ € A. It is easy to see that
B(d, D) has dP vertices, diameter D, and in- and out-degree d. Asymptotically (for fixed D),
de Bruijn digraphs have about the maximum number of vertices.

Reddy, Pradhan and Kuhl [16], and Imase and Itoh [13] independently proposed a family
of digraphs that can be defined on any number of vertices. The vertices of these digraphs are
numbered with integers modulo n (n is the number of vertices), and an arc is drawn from vertex
v to vertex u if u = dv+ a (mod n), where 0 < o < d — 1. The diameter of these digraphs is
[log, n], and, if n = d the resulting digraph is isomorphic to B(d, D). We call these digraphs
the generalized de Bruijn digraphs and denote them by G B(d,n).



Another way to define the de Bruijn digraphs is by using the line digraph iterations [12]. If
G is a digraph, its line digraph L(G) is found as follows: Every arc F in G is represented by a
vertex e in L((); vertex e is adjacent to vertex f in L((G) if and only if the arc £ is incident to
the arc F'in G. The line digraph of B(d, D) is B(d, D +1). (B(d,1) is a complete digraph on d
vertices with self loops.)

3.2 General Remarks

In the following sections, we will present two schemes to construct directed de Bruijn hyper-
graphs. In both schemes the underlying multidigraph is a (generalized) de Bruijn digraph of
out-degree ds where d and s are positive integers. Therefore our schemes correspond to a parti-
tion of the arc set of the (generalized) de Bruijn digraphs into dicliques. This fact was pointed
out to us by J. Bond (private communication) who showed that for n = (ds)”, the proposed
partitioning schemes are refinements of the partitioning of the de Bruijn digraph into “natural
dicliques,” i.e. the arcs joining the vertices (a,a1,---,ap_1) to the vertices (ay,---,ap_1,a),
for all @ € A. (The reader familiar with the de Bruijn digraphs will notice that this partition
follows from the line digraph property. The arcs incident to and from a vertex yield a diclique
in the line digraph.) A similar idea was used by Doty [9] to construct undirected hypergraphs.

Scheme 1 is based on alphabets (Section 3.3). It can be generalized for arbitrary number
of vertices (but with some parity restrictions on the number of hyperarcs and out-size) using
arithmetical congruences (Section 3.7). However, the arithmetical definition is somewhat clumsy.
On the other hand, Scheme 2 is best defined using arithmetical congruences for arbitrary number
of vertices (Section 3.4). An alphabetical definition of this scheme is also possible (Section 3.5),
but it is not as simple as that of Scheme 1. Scheme 2 has the additional property that its dual
hypergraph also belongs to the same family.

In the alphabetical definitions, we will use the following notation to define the composition
of the labels of the vertices and the hyperarcs: Let k be a non-negative integer and let A and
B be two alphabets of sizes d and s, respectively. [A]* denotes any string of k letters from A.
[AB]* denotes any string of 2k letters (a,b,---,a,b) where a € A and b € B. The string is null
if k=0.

3.3 De Bruijn Bus Networks - Scheme 1

The vertex labels of this scheme are of the form [BA]”, and the hyperarc labels are of the
form [A][BA]P~'[A]. If E is a hyperarc with label (ag,by,aq,--+,bp_1,ap_1,ap), it joins the
set of vertices £~ = {(8,a0,b1,a1,--,bp_1,ap_1) | B € B}, to the set of vertices ET =
{(b1,a1,---,bp_1,ap_1,B,ap) | B € B}. We repeat the incidence rules by taking a vertex as
our reference point: The vertex

(b17 ap, b27 Ay, bD—17 ap-1, bD7 QD)
is incident to the set of hyperarcs

{(017527027 " '7aD—17bD7aD7a) | @€ A},



and is incident from the set of hyperarcs

{(a,b1,01,---,ap_2,bp_1,ap_1,ap) | o € A}.

In other words, the set of hyperarcs that a vertex is incident to is found by shifting the
vertex label to the left by one, disposing of by, and introducing a new letter from alphabet A
from the right end. Alternatively, the set of hyperarcs that a vertex is incident from is found
by shifting all letters (except ap) to the right by one (disposing of bp) and adding a new letter
from alphabet A from the left end.

We denote these hypergraphs by Bi(d, D,s). Observe that if s = 1, the letters b; can be
eliminated from both vertex and hyperarc labels. In other words the hypergraph Bi(d, D, s)
is nothing more than the de Bruijn digraph B(d, D). Figure 1 depicts the bipartite digraph
representation of B1(2,2,3).

Clearly, Bi(d,D,s) has (ds)P vertices and d?(ds)P~! hyperarcs. It is regular (dt(v) =
d~(v) = d, for every vertex v), and uniform (|E~| = |ET| = s, for every hyperarc E). Its
diameter is D, since starting from any vertex we can reach any other vertex by at most 2D shift
operations, which in turn corresponds to visiting at most D hyperarcs. Then n(d, D, s) > (ds)”
and therefore, the number of vertices in this scheme approaches the Moore bound.

The underlying multidigraph of Bi(d, D, s) is nothing more than the de Brujn digraph con-
structed on an alphabet of size ds, the letters being pairs (8,a) with 5 € B and a € A. The
“natural dicliques” defined in Section 3.2 are of the following form: they contain the arcs joining

the vertices (8, a,b1,a1,---,bp_1,ap—-1) to (by,a1,---,bp_1,ap_1,5',a’). Such a diclique can
itself be partitioned into sub-dicliques by fixing a = ag and o’ = ap. This smaller diclique
corresponds to the hyperarc £ = (ag,b1,a1,---,bp_1,ap_1,ap).

3.4 De Bruijn Bus Networks - Scheme 2

In this section, we define a family of directed hypergraphs using arithmetic congruences. Let n
be the number of vertices and d be the vertex out-degree. For reasons which will become clear
later, we will assume that the number of hyperarcs m, and the hyperarc out-size s satisfy the
following conditions:

dn=0 (mod m) (1)
sm=0 (mod n). (2)

Assume that the vertices are numbered with integers modulo n and that the hyperarcs are
numbered with integers modulo m. The incidence rules are as follows: Vertex v is incident to
the hyperarcs

EF=dv+a (modm)forall0<a<d-1, (3)
and the out-set of the hyperarc E consists of the vertices

w=sE+4+ 3 (modn)forall0<p<s—1. (4)
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Figure 1: R(B1(2,2,3)) with A = {0,1}, and B = {a,b,c}.



Let G By(d,n,s,m) denote the hypergraphs constructed using the above rules. Note that if
s = 1, we obtain the generalized de Bruijn digraphs. Note also that Condition (1) is necessary
to represent the vertices with integers congruent modulo n. If v and v + n are two integers
(representing the same vertex) then they must be in the in-sets of the same hyperarcs. Namely,
we require that

dv+n)+a=dv+dn+a=dv+a (modm).

This is possible if and only if dn = 0 (mod m). Similarly, we require that two integers congruent
modulo m represent the same hyperarc. Condition (2) satisfies this requirement.

We will now study the in-degree, in-size and diameter of G'By(d,n,s, m).
Proposition 1 If £ is a hyperarc in GBy(d,n,s,m) then |E~| = dn/m = s~.

Proof. Every vertex v is incident to d hyperarcs numbered from dv (mod m) to dv +d — 1
(mod m) due to Condition (1). The set of n vertices (whole vertex set) is incident to the
hyperarcs numbered from 0 through dn — 1 (mod m). Thus |[E7| = dn/m = s~, for every
hyperarc F, since dn =0 (mod m) by definition. a

Proposition 2 If v is a vertex in GBy(d,n,s,m) then d”(v) = sm/n =d".

Proof. Similar to the proof of Proposition 1. a

Corollary 3 |E~| = |E*| = s for every hyperarc E and d=(v) = d*(v) = d for every vertex v
in GBy(d,n,s,m), if and only if dn = sm.

Theorem 4 The underlying multidigraph of G By(d,n, s, m) is GB(ds,n).

Proof. When Conditions (1) and (2) are satisfied, vertex v is joined via hyperarcs £ = dv + «
(mod m) to the vertices v’ = (ds)v+as+ 3 (mod n),for 0 <a<d-1,and 0 < 3 < s—1.
Indeed, £ = dv+ a 4+ km for some integer k, and

vl = s(dv+a+km)+p
(ds)v+as+ f  (mod n),

which means that v is adjacent to the vertices numbered (ds)v + 5 (mod n), for all 0 < v <
ds — 1. This is the same as the adjacency rule of GB(ds,n). O

Corollary 5 D(GBy(d,n,s,m)) = [logg, n].

If Conditions (1) and (2) are not satisfied, then Proposition 1, Proposition 2, and Theorem 4
do not hold. We will demonstrate this with an example. Consider Figure 2 where n = 14,



m =10, d* = 2,and st = 2. Observe that the incidence relations comply with Rules (3) and (4).
However, we have [E-| = 3, for 0 < j < 7, and |E;| = 2, for j = 8,9. Similarly, d™(v;) = 2
for 0 <7 <5, and d=(v;) = 1, for 6 < ¢ < 13. Observe also that vertices v;3 and v13 cannot
be reached in two steps starting from vertex vg, and the diameter is 3 > [log, 14] = 2. This is
due to the fact that the hyperarcs incident to vertex n — 1 and vertex 0 are not consequently
numbered (similarly the vertices incident to the hyperarcs m — 1 and 0 are not consequently
numbered).

Vertices

© 0 N OO g b~ W N P O

Connections from vertices to hyperarcs. Connections from hyperarcs to vertices.

Note: All edges are directed from left to right.

Figure 2:

3.5 Alphabetical Definition of Scheme 2

If n = (ds)” and m = d*(ds)”~!, then we can give an alphabetical definition of the hypergraphs
obtained using Rules (3) and (4). However, this definition is more complicated than that of
Scheme 1.

Let A and B be two alphabets of sizes d and s, respectively. Let the form of vertex labels
be [BA]” and the form of hyperarc labels be [A][BA]”~![A]. We define the following bijections

between vertex labels and integers modulo n = (ds)”, and between the hyperarc labels and

integers modulo m = d?(ds)P .

e Vertex label (b1, a1, -+, bp_1, ap—1, bp, ap) corresponds to the integer
D .
> (bid + a;)(ds)P . (5)
=1



e Hyperarc label (ag,b1,a1,---,bp_1,ap_1,ap) corresponds to the integer

D-1
aod(ds)? ™1 + > " (bid + ap)d(ds)P 7 + ap. (6)
=1

We now give the alphabetical equivalents of Rules (3) and (4). With Rule (3), vertex v is
incident to the hyperarcs dv+a (mod m),0 < a < d— 1. If the label of v is (b1, a1, -+, bp_1,
ap-1, bp, ap), then the hyperarcs that include v in their in-set are

D
dY (bid+ a;)(ds)P~ +a (mod d*(ds)P™1)
=1
D .
= apd(ds)Pt + D (bid + a;)d(ds)P T + @ (mod d*(ds)PT).
=2
Therefore vertex v is incident to the set of hyperarcs {(a1,b2,a2,---,bp,ap,a)| a € A}.

With Rule (4) the out-set of hyperarc £ consists of the vertices sE' + 3 (mod n),0 < 3 <

s — 1. If the label of E is (ag, b1, a1, -+, bp_1, ap_1, ap), then the vertices in the out-set of F
are
D-1 )
slapd(ds)P~t + Z (bid + a;)d(ds)P~ "t +ap] + B (mod (ds)P)
=1
D-1 )
= Z (bid + a;)(ds)P~" + aps+ 5 (mod (ds)P)
=1

and therefore

E+ = {(blvalv' : '7bD—17aD—17bl’7al’) | bxd‘l' Uy = Ap$S +ﬁ70 S ﬁ S 5= 1}

As in the case of Scheme 1, each hyperarc in Scheme 2 corresponds to a sub-diclique of a
“natural diclique” of B(ds, D). Natural dicliques of B(ds, D) contain the arcs joining the vertices
(B,a,by,a1,-++,bp_y,ap—1) to (by,a1,---,bp_1,ap—1, 5, a"). They are partitioned into smaller
dicliques by fixing a = ag and letting 3’, o’ be such that 3’d+ o’ = aps+ 5,0 < 3 < s—1. This
corresponds to taking s consecutive integers in the usual numbering of vertices.

These hypergraphs satisfy the condition dn = sm. Thus they are uniform and regular and
their diameter is . We denote the networks of this special case by Ba(d, D, s). Figure 3 depicts
the bipartite digraph representation of B3(2,2,3).

3.6 Non-Isomorphism of Scheme 1 and Scheme 2

Theorem 6 Ifd,s > 2, then B1(d,D,s) and By(d, D, s) are not isomorphic.

Proof. Let (a,b,a,b,a,---,b,a,a)be a vertex in R(B1(d, D,s)) corresponding to a hyperarc of
By(d, D, s) for some a € A and b € B. This vertex is on the following s cycles of length 2D (for

10
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Figure 3: R(B3(2,2,3)) with A = {0,1}, and B = {a,b,c}.

Connections from hyperarcs to vertices.

Note: All edges are directed from left to right.
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all 3 € B):

(a,b,a,b,a, -~ b,a,a)
(b,a,bya --- bya,p,a)

(a,b,a,b,a, --- [,a,a)
(B,a,b,a -+ b,a,b,a)

(a,b,a,b,a, --- b,a,a).

Now, let us look at the cycles of length 2D in R(Bz(d, D,s)). Let E be a hyperarc in
By(d,D,s), and e be its vertex image in R(By(d, D,s)). The numbers corresponding to the
vertices that are reachable from vertex e in 2D steps (i.e. the hyperarcs at distance D from
hyperarc E in By(d, D, s)) form a set of (ds)” consecutive integers. Thus, there are at most

ds)P s
=] = 5]

cycles of length 2D, containing the vertex e. The theorem follows, since [s/d] < s, ford > 1. O

Another way to prove Theorem 6 is to compare the duals of By(d, D,s) and Bg(d, D, s).
Observe that the dual of By(d, D,s) is also a de Bruijn hypergraph, namely Bz(s, D,d), and
therefore its diameter is D. Whereas the diameter of the dual of By(d, D,s)is D + 1.

3.7 Arithmetical Definition of Scheme 1

It is also possible to generalize the hypergraphs of Scheme 1 for any number of vertices using
arithmetic congruences. Let d be the vertex out-degree, and n be the number of vertices. Choose
the number of hyperarcs m and the hyperarc out-size s such that

dn =0 (mod m)
sm =0 (mod n)
m =0 (mod d).
Assume that the vertices are numbered with integers modulo n and the hyperarcs are numbered

with integers modulo m. Then the incidence relations between vertices and hyperarcs are as
follows: Vertex v is incident to the hyperarcs

EF=dv+a (modm), forall0 <a<d-1; (7)
and hyperarc F is incident to the vertices
F F

U= S(ngd) + Bd+ (F - ngd) (mod n), forall 0 < 3 < s —1. (8)

Let GBq(d,n,s, m) denote the hypergraphs constructed using Rules (7) and (8) above. Note
that if s = 1, we obtain the generalized de Bruijn digraphs. We will now study the in-degree,
in-size and diameter of GBy(d,n,s, m).

12



Proposition 7 If £ is a hyperarc in GBy(d,n,s,m) then |[E~| = dn/m = s~.

Proof. Same as the proof of Proposition 1. a

Proposition 8 If v is a vertex in GBy(d,n,s,m) then d”(v) = sm/n =d".

Proof. Let F be a hyperarc and u be the vertex with number v = |E/d|(ds)+ £ — | F/d|d
(mod n). Then F is incident to the s vertices with numbers u43d (mod n)forall0 < < s—1.
A cluster of d hyperarcs, numbered consecutively from |F/d|d to |E/d]d+ d — 1, are incident
to ds vertices, numbered consecutively from |F/d|ds (mod n)to |F/d|ds+ds—1 (mod n).
Since m is chosen to be a multiple of d, m hyperarcs are incident to sm vertices, numbered
consecutively from 0 to sm—1 (mod n). Every vertex is in the in-set of d= = sm/n hyperarcs,
because sm =0 (mod n). 0

We will demonstrate with an example (Figure 4) that if m is not a multiple of d, then
Proposition 8 does not hold. Let n = 10, and d = 3. Choose m = 10 and s = 2. The in-degrees
of vertices vy and vy are d”(vy) = 3, and d™(vg) = 1.

Vertices Hyperarcs Vertices
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

Connections from vertices to hyperarcs. Connections from hyperarcs to vertices.

Note: All edges are directed from left to right.

Figure 4:

Theorem 9 The underlying multidigraph of G B1(d,n,s,m) is GB(ds,n).

Proof. Let v be a vertex such that v € E~. We can write £ = dv + a + km where k is an
integer, and 0 < a < d — 1. The condition m = 0 (mod d) implies that |F/d|d = dv 4+ km,
and the condition sm =0 (mod n) implies that u = dsv 4+ fd + a (mod n). Therefore v is
adjacent to the vertices dsv 4+ v, 0 < < ds — 1 which is exactly same as the adjacency rule in

G'B(ds,n). ]

13



Corollary 10 D(GBy(d,n,s,m))= [logg, n].
Theorem 11 Ifn = (ds)P and m = d*(ds)P~!, then G1(d, n, s, m) is isomorphic to By(d, D, s).

Proof. We will use Bijection (5), defined in Section 3.5 between vertex labels and integers
modulo (ds)P, and Bijection (6) between hyperarc labels and integers modulo d?(ds)P~t. Then

E— ngd = ap and
L D ~ D-i
SLEJd (mod (ds)”) = Z: (bid + a;)(ds)" 71,

therefore, the vertices in Bt are Y2271 (b;id 4 a;)(ds)P~" + 8d + ap, which corresponds to the
vertices with labels (b1, a1 -+, bp_1, ap_1, 8, ap), where 0 < g < s — 1. O

4 Kautz Bus Networks

4.1 Kautz Digraphs

An important class of digraphs with large number of vertices and small diameter is the Kautz
digraphs [15]. One of the definitions of the Kautz digraphs is based on alphabets: Let d and D
be two positive integers, and A be an alphabet of d + 1 letters. The vertices of Kautz digraph
K(d, D) are labeled by strings of D letters from A, such that no two consecutive letters are
identical. Vertex (a1, asq,---,ap) is joined to the vertices (agz,---,ap,a), forall @« € A — {ap}.
It is easy to see that K(d, D) is a regular digraph with in- and out-degree d. It has d” 4 dP~!
vertices and its diameter is D.

A class of digraphs that generalize Kautz digraphs is defined by Imase and Itoh [14] using
arithmetic congruences: The vertices are numbered with integers modulo n. If the out-degree
is d, then vertex v is joined to vertices u = —dv — a (mod n), for 1 < a < d. The diameter
of the resulting digraph is at most [log,n]. Furthermore, if n = d” + d”~* for a positive odd
integer k, then the diameter is D. If n = d” 4+ dP~! these digraphs are isomorphic to K(d, D).
Therefore we call these digraphs the generalized Kautz digraphs and denote them by GK(d,n).

4.2 Arithmetical Definition

In this section, we define a family of directed hypergraphs using arithmetic congruences. Let n
be the number of vertices and d be the vertex out-degree. Choose the number of hyperarcs m,
and the hyperarc out-size s such that

dn

sm

(mod m)

(mod n).

14



Assume that the vertices are numbered with integers modulo n and that the hyperarcs are
numbered with integers modulo m. The incidence rules are as follows: Vertex v is incident to
the hyperarcs

EF= dv+a (modm), 0<a<d-1, (9)
and the out-set of the hyperarc E consists of the vertices
w= —skE—f (modn), 1<8<s. (10)

We call these hypergraphs the generalized Kautz hypergraphs since, as we will see later, their un-
derlying multidigraphs are the generalized Kautz digraphs. We denote them by GK(d,n,s, m).
Figure 5 depicts the bipartite representation digraph of GK(2,42,3,28). In the case d = s,
bipartite digraphs using the same rules have also been constructed by Fiol and Yebra [11], in
order to obtain large bipartite digraphs.

Proposition 12 The following incidence rules can alternatively be used in place of Rules (9)
and (10), respectively, in the definition of GK(d,n,s,m):
Vertex v is incident to the hyperarcs
EF= —dv—a (modm) 1<a<d, (11)

and the out-set of hyperarc E consists of the vertices

v= sE+p (modn) 0<fG<s—1. (12)

Proof. Define a bijection f from hyperarcs to hyperarcs with f(F)= m— F — 1, and renumber
the hyperarcs using the bijection f. Rule (9) becomes

m—FE, -1 = dv+a (modm), 0<a<d-1,
B = —dv—(a+1) (modm), 0<a<d-1,
E; = —dv—a (mod m), 1<a<d,;

and, Rule (10) becomes

v, = —s(m—-—FE—-1)—pF (modn), 1<8<s,
= sE+s—F (modn), 1 <8 <s,
= sE+ [ (mod n), 0<p<s—1.

Figure 6 depicts the bipartite representation digraph of G K(2,42, 3,28), constructed using Rules
(11) and (12).
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Figure 5: The bipartite representation digraph of GK(2,42,3,28)
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Figure 6: The bipartite representation digraph of GK(2,42,3,28)
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4.3 Properties of Kautz Bus Networks

Proposition 13 If I is a hyperarc in GK(d,n,s,m) then |[E~| = dn/m = s~.

Proof. Every vertex v is incident to the d hyperarcs numbered from dv  (mod m) todv+d—1
(mod m). The set of n vertices (whole vertex set) is incident to the hyperarcs numbered from 0
through dn —1 (mod m). Since dn =0 (mod m) by definition, every hyperarc has an equal
number of vertices, s~ = dn/m, in its in-set. a

Proposition 14 If v is a vertex in GK(d,n,s,m) then d~(v)=sm/n =d".

Proof. Similar to the proof of Proposition 13. a

Corollary 15 |E~| = |E*t| = s for every hyperarc E and d~(v) = d*(v) = d for every vertex v
in GK(d,n,s,m) if and only if dn = sm.

Theorem 16 The underlying multidigraph of GK(d,n,s,m) is GK(ds,n).

Proof. In GK(d,n,s, m) the vertex v is adjacent to the vertices (0 < a<d—-1, 1< <s):

v = —s((dv+a) (modm))—pF (modn),
= —s(dv+a—km)—p (modn), forsomek >0,
= —dsv—sa+ksm— [ (modn),
= —dsv—(sa+ ) (mod n),
= —dsv—7 (modn), 1<7v<ds,
which are exactly the same as the neighbours of v in GK(ds,n). O

Corollary 17 Diameter of GK(d,n,s,m) is at most [log,, n|. Furthermore, the diameter is
D, if n = (ds)? + (ds)P=F where k is a positive odd integer.

Corollary 18 G K(d,ds+1,s,m) is a directed Moore hypergraph of diameter one, if there exist

positive integers d, s, m such that

d?s +d

sm =

(mod m)

0
0 (modds+1).
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5 Conclusion

We have defined two schemes to obtain bus networks from de Bruijn digraphs and one scheme
to obtain bus networks from Kautz digraphs.

We showed that the directed de Bruijn bus networks of maximum out-degree d, maximum
bus out-size s, and diameter D, have (ds)D processors. Also, we presented generalizations of
the directed de Bruijn bus networks for arbitrary numbers of processors, and established that
their diameter is logarithmic in terms of the number of processors. Similar properties hold for
the directed Kautz bus networks which connect (ds)” + (ds)P~! processors.

We can easily obtain undirected bus networks from the aforementioned networks, by ignoring

the orientation of the buses. Undirected de Bruijn bus networks have (%)D processors where
A is the maximum degree and r is the maximum bus size. Undirected Kautz bus networks, on

the other hand, connect (£2)P + (£2)P~! processors.

We can, furthermore, obtain bus networks on any number of processors and with logarithmic
diameter, by ignoring the orientation of the buses of the generalized de Bruijn or Kautz bus
networks.

The connectivity, network load, and routing issues for both directed and undirected de Bruijn
and Kautz bus networks are being considered in [4] and ongoing research. In [5], we show that
definitions of the de Bruijn digraphs and of the Kautz digraphs using line digraph iterations can
also be extended to hypergraphs by using the “directed line hypergraph” technique.
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