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For given upper bounds on the processor degree, bus size, and network diameter, the con-struction of bus networks with maximal number of processors is an important problem in thedesign of interconnection networks. Other design parameters such as network reliability, easeof message routing, and balanced message tra�c throughout the network should also be takeninto consideration.In the case of traditional point-to-point networks, where a link can connect only two pro-cessors, the aforementioned problem has been extensively studied in the literature. As a result,several families of networks with large number of processors for given degree and diameter havebeen proposed. (Surveys on this topic can be found in [1], [2], [6] and [8].) Among them, deBruijn and Kautz networks appear to have many other desirable properties (for details see [7],[17]). Classical de�nition of the de Bruijn networks is based on alphabets. These networks canbe generalized for any number of processors by using arithmetic congruences (see [13], [16]).When the bus size is taken into account as an extra parameter, the problem becomes morecomplicated. There are relatively few results in the literature on this subject (for a survey see[3]). The problem has been studied for small degree and small diameter where the tools fromDesign Theory and Hypergraph Theory are useful. Although there are a few direct methods toconstruct bus networks, most of the bus networks proposed in the literature are obtained, in fact,from the known point-to-point networks using some transformation. A simple transformation isto partition the set of links into subsets. Each subset of links de�nes a new bus. Doty [9] usedthis idea to construct bus networks from the undirected de Bruijn graphs.In this paper, we present and study some construction schemes that generalize the point-to-point de Bruijn and Kautz networks to bus networks. Since the de Bruijn and Kautz networksare modelled by directed graphs (digraphs), the schemes proposed in this paper impose anorientation on the buses; i.e. certain processors on a bus can use it only for sending messages,while others can use it only for receiving. Therefore, we use directed hypergraphs to model thesebus networks.This paper is organized as follows: In Section 2, we introduce our notation and terminologyand de�ne the problem formally. In Section 3, we propose two schemes to obtain bus networksfrom the de Bruijn digraphs. The networks of Scheme 1 are constructed using alphabets (Sec-tion 3.3). Although they can be de�ned and generalized arithmetically (see Section 3.7), thisis not always practical. In Section 3.4, we introduce the networks of Scheme 2 by using arith-metical congruences. They can also be de�ned using alphabets, but, in contrast with the �rstscheme, their alphabetical de�nition is complicated (Section 3.5). We show in Section 3.6 thatthe two schemes, in general, give non-isomorphic networks. In Section 4, we study the Kautzbus networks.2 Directed HypergraphsA directed hypergraphH is a pair (V(H); E(H))where V(H) is a non-empty set of elements (calledvertices) and E(H) is a set of ordered pairs of non-empty subsets of V(H) (called hyperarcs). IfE = (E�; E+) is a hyperarc in E(H), then the non-empty vertex sets E� and E+ are called thein-set and the out-set of the hyperarc E, respectively. The sets E� and E+ need not be disjoint.2



The hyperarc E is said to join the vertices of E� to the vertices of E+. Furthermore, thevertices of E� are said to be incident to the hyperarc E and the vertices of E+ are said to beincident from E. The vertices of E� are adjacent to the vertices of E+, and the vertices of E+are adjacent from the vertices of E�.If E is a hyperarc in a directed hypergraph H , then jE�j is the in-size and jE+j is theout-size of E where the vertical bars denote the cardinalities of the sets. The maximum in-sizeand the maximum out-size of H ares�(H) = maxE2E(H) jE�j and s+(H) = maxE2E(H) jE+j;respectively. The order of H is the number of vertices in V(H) and is denoted by n(H). Thenumber of hyperarcs in H is denoted by m(H). We note that a digraph is a directed hypergraphG = (V(G); E(G)) with s�(G) = s+(G) = 1.Let v be a vertex of H . The in-degree of v is the number of hyperarcs that contain v intheir out-set, and is denoted by d�H(v). Similarly, the out-degree of vertex v is the number ofhyperarcs that contain v in their in-set, and is denoted by d+H(v). (When H is clear from thecontext, we will write simply d�(v) and d+(v), respectively.) The maximum in-degree and themaximum out-degree of H are, respectivelyd�(H) = maxv2V(H)d�H(v) and d+(H) = maxv2V(H)d+H(v):A walk in H from vertex u to vertex v is an alternating sequence of vertices and hyperarcsu = v0; E1; v1; E2; v2; � � � ; Ek; vk = v such that vertex vi�1 2 E�i and vi 2 E+i for each 1 � i � k.The length of the walk is equal to the number of hyperarcs on it. The distance from vertex u tovertex v, dH(u; v), is the length of a shortest walk from u to v. The diameter of the hypergraph,D(H), is the maximum of the distances between pairs of vertices in the hypergraph:D(H) = maxu;v 2 V(H)dH(u; v):If H is a directed hypergraph, its dual H� is found as follows: For every hyperarc E 2 E(H)there is a corresponding vertex e 2 V(H�), and for every vertex v 2 V(H) there is a correspondinghyperarc V = (V �; V +) 2 E(H�). Vertex e is in V � if and only if v 2 E+ and similarly, e is inV + if and only if v 2 E�.We will call a directed hypergraph with maximum out-degree d, diameter D and maximumout-size s, a (d;D; s)-directed hypergraph. (Note that, one may de�ne (d;D; s)-directed hyper-graphs in di�erent fashions. For example, one may assume that d�(v) + d+(v) � d, for everyvertex v and/or jE�j + jE+j � s for every hyperarc E. We will not consider these cases inthis article.) Let n(d;D; s) denote the maximum number of vertices over all (d;D; s)-directedhypergraphs. It is easy to show that n(d;D; s) � DXi=0(ds)i:This bound is known as the Moore bound for directed hypergraphs, and the directed hypergraphsthat attain this bound are called the directed Moore hypergraphs. Ergincan and Gregory [10]3



showed that directed Moore hypergraphs do not exist if ds > 1 or D > 1. The (d;D; s)-directedhypergraph problem consists of �nding (d;D; s)-directed hypergraphs with maximum numberof vertices or �nding large (d;D; s)-directed hypergraphs.The drawing of directed hypergraphs can be very complex. Therefore it is useful to representa directed hypergraph H with a bipartite digraph,R(H) = (V1(R) [ V2(R); E(R))called the bipartite representation digraph of H . Every vertex v in V(H) is represented by avertex v in V1(R) and every hyperarc E in E(H) is represented by a vertex e in V2(R). We drawan arc from v 2 V1(R) to e 2 V2(R) if and only if v 2 E� in H . Similarly, we draw an arc frome 2 V2(R) to v 2 V1(R) if and only if v 2 E+ in H .If H is a (d;D; s)-hypergraph and R(H) is its bipartite representation digraph, then themaximum out-degrees in V1(R) and in V2(R) are d and s, respectively. The distance betweentwo vertices of V1(R) is at most 2D, but the diameter of R(H) can be 2D, 2D+ 1 or 2D+ 2 asthe vertices of V1(R) and V2(R) do not play the same role. So, the (d;D; s)-directed hypergraphproblem is partly related to but di�erent from the (d1; d2;D0)-bipartite digraph problem, i.e.�nding large bipartite digraphs with maximum vertex out-degrees d1 and d2, and diameter D0.This problem was considered for d1 = d2 by Fiol and Yebra [11].If only the adjacency relations between the vertices in a directed hypergraph H are con-sidered, we can use the underlying multidigraph bH (also called associated multidigraph anddenoted by A(H)). The vertex set of bH is the same as that of H . There are as many arcs fromu to v in bH , as there are hyperarcs E in H such that u 2 E� and v 2 E+. Then a hyperarc ofH corresponds to a \complete bipartite digraph" (shortly diclique), and a directed hypergraphcorresponds to a multidigraph with a partitioning of its arc set into dicliques.3 De Bruijn Bus Networks3.1 De Bruijn DigraphsAn important class of digraphs with a large number of vertices and small diameter is the deBruijn digraphs. One of the ways to de�ne de Bruijn digraphs is based on alphabets. For givenintegers d � 2 and D � 1, vertices of the de Bruijn digraph B(d;D) are labeled with words oflength D from an alphabet A of size d. Let (a1; a2; � � � ; aD) be the label of a vertex v of B(d;D).Then v is adjacent to the vertices with labels (a2; � � � ; aD; �) for all � 2 A. It is easy to see thatB(d;D) has dD vertices, diameter D, and in- and out-degree d. Asymptotically (for �xed D),de Bruijn digraphs have about the maximum number of vertices.Reddy, Pradhan and Kuhl [16], and Imase and Itoh [13] independently proposed a familyof digraphs that can be de�ned on any number of vertices. The vertices of these digraphs arenumbered with integers modulo n (n is the number of vertices), and an arc is drawn from vertexv to vertex u if u � dv + � (mod n), where 0 � � � d� 1. The diameter of these digraphs isdlogd ne, and, if n = dD the resulting digraph is isomorphic to B(d;D). We call these digraphsthe generalized de Bruijn digraphs and denote them by GB(d; n).4



Another way to de�ne the de Bruijn digraphs is by using the line digraph iterations [12]. IfG is a digraph, its line digraph L(G) is found as follows: Every arc E in G is represented by avertex e in L(G); vertex e is adjacent to vertex f in L(G) if and only if the arc E is incident tothe arc F in G. The line digraph of B(d;D) is B(d;D+ 1). (B(d; 1) is a complete digraph on dvertices with self loops.)3.2 General RemarksIn the following sections, we will present two schemes to construct directed de Bruijn hyper-graphs. In both schemes the underlying multidigraph is a (generalized) de Bruijn digraph ofout-degree ds where d and s are positive integers. Therefore our schemes correspond to a parti-tion of the arc set of the (generalized) de Bruijn digraphs into dicliques. This fact was pointedout to us by J. Bond (private communication) who showed that for n = (ds)D, the proposedpartitioning schemes are re�nements of the partitioning of the de Bruijn digraph into \naturaldicliques," i.e. the arcs joining the vertices (�; a1; � � � ; aD�1) to the vertices (a1; � � � ; aD�1; �),for all � 2 A. (The reader familiar with the de Bruijn digraphs will notice that this partitionfollows from the line digraph property. The arcs incident to and from a vertex yield a dicliquein the line digraph.) A similar idea was used by Doty [9] to construct undirected hypergraphs.Scheme 1 is based on alphabets (Section 3.3). It can be generalized for arbitrary numberof vertices (but with some parity restrictions on the number of hyperarcs and out-size) usingarithmetical congruences (Section 3.7). However, the arithmetical de�nition is somewhat clumsy.On the other hand, Scheme 2 is best de�ned using arithmetical congruences for arbitrary numberof vertices (Section 3.4). An alphabetical de�nition of this scheme is also possible (Section 3.5),but it is not as simple as that of Scheme 1. Scheme 2 has the additional property that its dualhypergraph also belongs to the same family.In the alphabetical de�nitions, we will use the following notation to de�ne the compositionof the labels of the vertices and the hyperarcs: Let k be a non-negative integer and let A andB be two alphabets of sizes d and s, respectively. [A]k denotes any string of k letters from A.[AB]k denotes any string of 2k letters (a; b; � � � ; a; b) where a 2 A and b 2 B. The string is nullif k = 0.3.3 De Bruijn Bus Networks - Scheme 1The vertex labels of this scheme are of the form [BA]D , and the hyperarc labels are of theform [A][BA]D�1[A]. If E is a hyperarc with label (a0; b1; a1; � � � ; bD�1; aD�1; aD); it joins theset of vertices E� = f(�; a0; b1; a1; � � � ; bD�1; aD�1) j � 2 Bg; to the set of vertices E+ =f(b1; a1; � � � ; bD�1; aD�1; �; aD) j � 2 Bg: We repeat the incidence rules by taking a vertex asour reference point: The vertex(b1; a1; b2; a2; � � � ; bD�1; aD�1; bD; aD)is incident to the set of hyperarcsf(a1; b2; a2; � � � ; aD�1; bD; aD; �) j � 2 Ag;5



and is incident from the set of hyperarcsf(�; b1; a1; � � � ; aD�2; bD�1; aD�1; aD) j � 2 Ag:In other words, the set of hyperarcs that a vertex is incident to is found by shifting thevertex label to the left by one, disposing of b1, and introducing a new letter from alphabet Afrom the right end. Alternatively, the set of hyperarcs that a vertex is incident from is foundby shifting all letters (except aD) to the right by one (disposing of bD) and adding a new letterfrom alphabet A from the left end.We denote these hypergraphs by B1(d;D; s). Observe that if s = 1, the letters bi can beeliminated from both vertex and hyperarc labels. In other words the hypergraph B1(d;D; s)is nothing more than the de Bruijn digraph B(d;D). Figure 1 depicts the bipartite digraphrepresentation of B1(2; 2; 3).Clearly, B1(d;D; s) has (ds)D vertices and d2(ds)D�1 hyperarcs. It is regular (d+(v) =d�(v) = d; for every vertex v), and uniform (jE�j = jE+j = s; for every hyperarc E). Itsdiameter is D, since starting from any vertex we can reach any other vertex by at most 2D shiftoperations, which in turn corresponds to visiting at most D hyperarcs. Then n(d;D; s)� (ds)Dand therefore, the number of vertices in this scheme approaches the Moore bound.The underlying multidigraph of B1(d;D; s) is nothing more than the de Brujn digraph con-structed on an alphabet of size ds, the letters being pairs (�; �) with � 2 B and � 2 A. The\natural dicliques" de�ned in Section 3.2 are of the following form: they contain the arcs joiningthe vertices (�; �; b1; a1; � � � ; bD�1; aD�1) to (b1; a1; � � � ; bD�1; aD�1; �0; �0). Such a diclique canitself be partitioned into sub-dicliques by �xing � = a0 and �0 = aD. This smaller dicliquecorresponds to the hyperarc E = (a0; b1; a1; � � � ; bD�1; aD�1; aD):3.4 De Bruijn Bus Networks - Scheme 2In this section, we de�ne a family of directed hypergraphs using arithmetic congruences. Let nbe the number of vertices and d be the vertex out-degree. For reasons which will become clearlater, we will assume that the number of hyperarcs m, and the hyperarc out-size s satisfy thefollowing conditions: dn � 0 (mod m) (1)sm � 0 (mod n): (2)Assume that the vertices are numbered with integers modulo n and that the hyperarcs arenumbered with integers modulo m. The incidence rules are as follows: Vertex v is incident tothe hyperarcs E � dv + � (mod m) for all 0 � � � d� 1; (3)and the out-set of the hyperarc E consists of the verticesu � sE + � (mod n) for all 0 � � � s � 1: (4)6
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Connections  from  vertices  to  hyperarcs. Connections  from  hyperarcs  to  vertices.

Note:  All  edges  are  directed  from  left  to  right.Figure 1: R(B1(2; 2; 3)) with A = f0; 1g, and B = fa; b; cg.7



Let GB2(d; n; s;m) denote the hypergraphs constructed using the above rules. Note that ifs = 1, we obtain the generalized de Bruijn digraphs. Note also that Condition (1) is necessaryto represent the vertices with integers congruent modulo n. If v and v + n are two integers(representing the same vertex) then they must be in the in-sets of the same hyperarcs. Namely,we require that d(v + n) + � = dv + dn+ � � dv + � (mod m):This is possible if and only if dn � 0 (mod m). Similarly, we require that two integers congruentmodulo m represent the same hyperarc. Condition (2) satis�es this requirement.We will now study the in-degree, in-size and diameter of GB2(d; n; s;m).Proposition 1 If E is a hyperarc in GB2(d; n; s;m) then jE�j = dn=m = s�:Proof. Every vertex v is incident to d hyperarcs numbered from dv (mod m) to dv + d � 1(mod m) due to Condition (1). The set of n vertices (whole vertex set) is incident to thehyperarcs numbered from 0 through dn � 1 (mod m). Thus jE�j = dn=m = s�, for everyhyperarc E, since dn � 0 (mod m) by de�nition. 2Proposition 2 If v is a vertex in GB2(d; n; s;m) then d�(v) = sm=n = d�:Proof. Similar to the proof of Proposition 1. 2Corollary 3 jE�j = jE+j = s for every hyperarc E and d�(v) = d+(v) = d for every vertex vin GB2(d; n; s;m), if and only if dn = sm:Theorem 4 The underlying multidigraph of GB2(d; n; s;m) is GB(ds; n).Proof. When Conditions (1) and (2) are satis�ed, vertex v is joined via hyperarcs E � dv + �(mod m) to the vertices v0 � (ds)v + �s + � (mod n), for 0 � � � d � 1, and 0 � � � s � 1.Indeed, E = dv + �+ km for some integer k, andv0 = s(dv + �+ km) + �� (ds)v + �s+ � (mod n);which means that v is adjacent to the vertices numbered (ds)v + 
 (mod n); for all 0 � 
 �ds� 1. This is the same as the adjacency rule of GB(ds; n). 2Corollary 5 D(GB2(d; n; s;m)) = dlogds ne:If Conditions (1) and (2) are not satis�ed, then Proposition 1, Proposition 2, and Theorem 4do not hold. We will demonstrate this with an example. Consider Figure 2 where n = 14,8



m = 10, d+ = 2, and s+ = 2. Observe that the incidence relations comply with Rules (3) and (4).However, we have jE�j j = 3, for 0 � j � 7, and jE�j j = 2, for j = 8; 9. Similarly, d�(vi) = 2for 0 � i � 5, and d�(vi) = 1, for 6 � i � 13. Observe also that vertices v12 and v13 cannotbe reached in two steps starting from vertex v6, and the diameter is 3 > dlog4 14e = 2. This isdue to the fact that the hyperarcs incident to vertex n � 1 and vertex 0 are not consequentlynumbered (similarly the vertices incident to the hyperarcs m � 1 and 0 are not consequentlynumbered).
Hyperarcs VerticesVertices

Connections  from  hyperarcs  to  vertices.Connections  from  vertices  to  hyperarcs.

Note:  All  edges  are  directed  from  left  to  right.
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13Figure 2:3.5 Alphabetical De�nition of Scheme 2If n = (ds)D and m = d2(ds)D�1, then we can give an alphabetical de�nition of the hypergraphsobtained using Rules (3) and (4). However, this de�nition is more complicated than that ofScheme 1.Let A and B be two alphabets of sizes d and s, respectively. Let the form of vertex labelsbe [BA]D and the form of hyperarc labels be [A][BA]D�1[A]. We de�ne the following bijectionsbetween vertex labels and integers modulo n = (ds)D, and between the hyperarc labels andintegers modulo m = d2(ds)D�1.� Vertex label (b1, a1, � � �, bD�1, aD�1, bD, aD) corresponds to the integerDXi=1(bid+ ai)(ds)D�i: (5)9



� Hyperarc label (a0; b1; a1; � � � ; bD�1; aD�1; aD) corresponds to the integera0d(ds)D�1 + D�1Xi=1 (bid+ ai)d(ds)D�i�1 + aD: (6)We now give the alphabetical equivalents of Rules (3) and (4). With Rule (3), vertex v isincident to the hyperarcs dv+� (mod m); 0 � � � d� 1. If the label of v is (b1, a1, � � �, bD�1,aD�1, bD, aD), then the hyperarcs that include v in their in-set ared DXi=1(bid+ ai)(ds)D�i + � (mod d2(ds)D�1)� a1d(ds)D�1 + DXi=2(bid+ ai)d(ds)D�i + � (mod d2(ds)D�1):Therefore vertex v is incident to the set of hyperarcs f(a1; b2; a2; � � � ; bD; aD; �) j � 2 Ag:With Rule (4) the out-set of hyperarc E consists of the vertices sE + � (mod n); 0 � � �s� 1. If the label of E is (a0, b1, a1, � � �, bD�1, aD�1, aD), then the vertices in the out-set of Eare s[a0d(ds)D�1 + D�1Xi=1 (bid+ ai)d(ds)D�i�1 + aD] + � (mod (ds)D)� D�1Xi=1 (bid+ ai)(ds)D�i + aDs+ � (mod (ds)D)and thereforeE+ = f(b1; a1; � � � ; bD�1; aD�1; bx; ax) j bxd+ ax = aDs + �; 0 � � � s� 1g:As in the case of Scheme 1, each hyperarc in Scheme 2 corresponds to a sub-diclique of a\natural diclique" of B(ds;D). Natural dicliques of B(ds;D) contain the arcs joining the vertices(�; �; b1; a1; � � � ; bD�1; aD�1) to (b1; a1; � � � ; bD�1; aD�1; �0; �0). They are partitioned into smallerdicliques by �xing � = a0 and letting �0; �0 be such that �0d+�0 = aDs+�; 0 � � � s� 1: Thiscorresponds to taking s consecutive integers in the usual numbering of vertices.These hypergraphs satisfy the condition dn = sm. Thus they are uniform and regular andtheir diameter is D. We denote the networks of this special case by B2(d;D; s). Figure 3 depictsthe bipartite digraph representation of B2(2; 2; 3).3.6 Non-Isomorphism of Scheme 1 and Scheme 2Theorem 6 If d; s � 2, then B1(d;D; s) and B2(d;D; s) are not isomorphic.Proof. Let (a; b; a; b; a; � � � ; b; a; a) be a vertex in R(B1(d;D; s)) corresponding to a hyperarc ofB1(d;D; s) for some a 2 A and b 2 B. This vertex is on the following s cycles of length 2D (for10



Note:  All  edges  are  directed  from  left  to  right.
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Figure 3: R(B2(2; 2; 3)) with A = f0; 1g, and B = fa; b; cg.11



all � 2 B): (a; b; a; b; a; � � � b; a; a)(b; a; b; a � � � b; a; �; a)(a; b; a; b; a; � � � �; a; a)...(�; a; b; a � � � b; a; b; a)(a; b; a; b; a; � � � b; a; a):Now, let us look at the cycles of length 2D in R(B2(d;D; s)). Let E be a hyperarc inB2(d;D; s), and e be its vertex image in R(B2(d;D; s)). The numbers corresponding to thevertices that are reachable from vertex e in 2D steps (i.e. the hyperarcs at distance D fromhyperarc E in B2(d;D; s)) form a set of (ds)D consecutive integers. Thus, there are at mostd (ds)Dd2(ds)D�1 e = dsdecycles of length 2D, containing the vertex e. The theorem follows, since ds=de < s, for d > 1. 2Another way to prove Theorem 6 is to compare the duals of B1(d;D; s) and B2(d;D; s).Observe that the dual of B2(d;D; s) is also a de Bruijn hypergraph, namely B2(s;D; d), andtherefore its diameter is D. Whereas the diameter of the dual of B1(d;D; s) is D + 1.3.7 Arithmetical De�nition of Scheme 1It is also possible to generalize the hypergraphs of Scheme 1 for any number of vertices usingarithmetic congruences. Let d be the vertex out-degree, and n be the number of vertices. Choosethe number of hyperarcs m and the hyperarc out-size s such thatdn � 0 (mod m)sm � 0 (mod n)m � 0 (mod d):Assume that the vertices are numbered with integers modulo n and the hyperarcs are numberedwith integers modulo m. Then the incidence relations between vertices and hyperarcs are asfollows: Vertex v is incident to the hyperarcsE � dv + � (mod m); for all 0 � � � d� 1; (7)and hyperarc E is incident to the verticesu � s(bEd cd) + �d+ (E � bEd cd) (mod n); for all 0 � � � s � 1: (8)Let GB1(d; n; s;m) denote the hypergraphs constructed using Rules (7) and (8) above. Notethat if s = 1, we obtain the generalized de Bruijn digraphs. We will now study the in-degree,in-size and diameter of GB1(d; n; s;m). 12



Proposition 7 If E is a hyperarc in GB1(d; n; s;m) then jE�j = dn=m = s�:Proof. Same as the proof of Proposition 1. 2Proposition 8 If v is a vertex in GB1(d; n; s;m) then d�(v) = sm=n = d�:Proof. Let E be a hyperarc and u be the vertex with number u = bE=dc(ds) + E � bE=dcd(mod n): Then E is incident to the s vertices with numbers u+�d (mod n) for all 0 � � � s�1.A cluster of d hyperarcs, numbered consecutively from bE=dcd to bE=dcd+ d� 1, are incidentto ds vertices, numbered consecutively from bE=dcds (mod n) to bE=dcds+ ds� 1 (mod n).Since m is chosen to be a multiple of d, m hyperarcs are incident to sm vertices, numberedconsecutively from 0 to sm�1 (mod n). Every vertex is in the in-set of d� = sm=n hyperarcs,because sm � 0 (mod n). 2We will demonstrate with an example (Figure 4) that if m is not a multiple of d, thenProposition 8 does not hold. Let n = 10, and d = 3. Choose m = 10 and s = 2. The in-degreesof vertices v1 and v9 are d�(v1) = 3; and d�(v9) = 1.
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Note:  All  edges  are  directed  from  left  to  right.Figure 4:Theorem 9 The underlying multidigraph of GB1(d; n; s;m) is GB(ds; n).Proof. Let v be a vertex such that v 2 E�. We can write E = dv + � + km where k is aninteger, and 0 � � � d � 1. The condition m � 0 (mod d) implies that bE=dcd = dv + km,and the condition sm � 0 (mod n) implies that u � dsv + �d + � (mod n). Therefore v isadjacent to the vertices dsv + 
; 0 � 
 � ds� 1 which is exactly same as the adjacency rule inGB(ds; n). 213



Corollary 10 D(GB1(d; n; s;m)) = dlogds ne.Theorem 11 If n = (ds)D andm = d2(ds)D�1, then G1(d; n; s;m) is isomorphic to B1(d;D; s).Proof. We will use Bijection (5), de�ned in Section 3.5 between vertex labels and integersmodulo (ds)D, and Bijection (6) between hyperarc labels and integers modulo d2(ds)D�1. ThenE � bEd cd = aD andsbEd cd (mod (ds)D) = D�1Xi=1 (bid+ ai)(ds)D�i;therefore, the vertices in E+ are PD�1i=1 (bid + ai)(ds)D�i + �d + aD; which corresponds to thevertices with labels (b1, a1 � � �, bD�1, aD�1, �, aD), where 0 � � � s � 1. 24 Kautz Bus Networks4.1 Kautz DigraphsAn important class of digraphs with large number of vertices and small diameter is the Kautzdigraphs [15]. One of the de�nitions of the Kautz digraphs is based on alphabets: Let d and Dbe two positive integers, and A be an alphabet of d+ 1 letters. The vertices of Kautz digraphK(d;D) are labeled by strings of D letters from A, such that no two consecutive letters areidentical. Vertex (a1; a2; � � � ; aD) is joined to the vertices (a2; � � � ; aD; �), for all � 2 A � faDg.It is easy to see that K(d;D) is a regular digraph with in- and out-degree d. It has dD + dD�1vertices and its diameter is D.A class of digraphs that generalize Kautz digraphs is de�ned by Imase and Itoh [14] usingarithmetic congruences: The vertices are numbered with integers modulo n. If the out-degreeis d, then vertex v is joined to vertices u � �dv � � (mod n), for 1 � � � d. The diameterof the resulting digraph is at most dlogd ne. Furthermore, if n = dD + dD�k for a positive oddinteger k, then the diameter is D. If n = dD + dD�1 these digraphs are isomorphic to K(d;D).Therefore we call these digraphs the generalized Kautz digraphs and denote them by GK(d; n).4.2 Arithmetical De�nitionIn this section, we de�ne a family of directed hypergraphs using arithmetic congruences. Let nbe the number of vertices and d be the vertex out-degree. Choose the number of hyperarcs m,and the hyperarc out-size s such thatdn � 0 (mod m)sm � 0 (mod n):14



Assume that the vertices are numbered with integers modulo n and that the hyperarcs arenumbered with integers modulo m. The incidence rules are as follows: Vertex v is incident tothe hyperarcs E � dv + � (mod m); 0 � � � d� 1; (9)and the out-set of the hyperarc E consists of the verticesu � �sE � � (mod n); 1 � � � s: (10)We call these hypergraphs the generalized Kautz hypergraphs since, as we will see later, their un-derlying multidigraphs are the generalized Kautz digraphs. We denote them by GK(d; n; s;m).Figure 5 depicts the bipartite representation digraph of GK(2; 42; 3; 28). In the case d = s,bipartite digraphs using the same rules have also been constructed by Fiol and Yebra [11], inorder to obtain large bipartite digraphs.Proposition 12 The following incidence rules can alternatively be used in place of Rules (9)and (10), respectively, in the de�nition of GK(d; n; s;m):Vertex v is incident to the hyperarcsE � �dv � � (mod m) 1 � � � d; (11)and the out-set of hyperarc E consists of the verticesu � sE + � (mod n) 0 � � � s� 1: (12)Proof. De�ne a bijection f from hyperarcs to hyperarcs with f(E) = m�E� 1, and renumberthe hyperarcs using the bijection f . Rule (9) becomesm�Ei � 1 � dv + � (mod m); 0 � � � d� 1;Ei � �dv � (�+ 1) (mod m); 0 � � � d� 1;Ei � �dv � � (mod m); 1 � � � d;and, Rule (10) becomesvi � �s(m� E � 1)� � (mod n); 1 � � � s;� sE + s� � (mod n); 1 � � � s;� sE + � (mod n); 0 � � � s� 1: 2Figure 6 depicts the bipartite representation digraph of GK(2; 42; 3; 28), constructed using Rules(11) and (12). 15
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Figure 5: The bipartite representation digraph of GK(2; 42; 3; 28)16
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Note:  All  edges  are  directed  from  left  to  right.Figure 6: The bipartite representation digraph of GK(2; 42; 3; 28)17



4.3 Properties of Kautz Bus NetworksProposition 13 If E is a hyperarc in GK(d; n; s;m) then jE�j = dn=m = s�:Proof. Every vertex v is incident to the d hyperarcs numbered from dv (mod m) to dv+d�1(mod m). The set of n vertices (whole vertex set) is incident to the hyperarcs numbered from 0through dn� 1 (mod m). Since dn � 0 (mod m) by de�nition, every hyperarc has an equalnumber of vertices, s� = dn=m, in its in-set. 2Proposition 14 If v is a vertex in GK(d; n; s;m) then d�(v) = sm=n = d�:Proof. Similar to the proof of Proposition 13. 2Corollary 15 jE�j = jE+j = s for every hyperarc E and d�(v) = d+(v) = d for every vertex vin GK(d; n; s;m) if and only if dn = sm:Theorem 16 The underlying multidigraph of GK(d; n; s;m) is GK(ds; n).Proof. In GK(d; n; s;m) the vertex v is adjacent to the vertices ( 0 � � � d� 1; 1 � � � s):u � �s((dv + �) (mod m))� � (mod n);� �s(dv + �� km)� � (mod n); for some k � 0;� �dsv � s�+ ksm� � (mod n);� �dsv � (s�+ �) (mod n);� �dsv � 
 (mod n); 1 � 
 � ds;which are exactly the same as the neighbours of v in GK(ds; n). 2Corollary 17 Diameter of GK(d; n; s;m) is at most dlogds ne. Furthermore, the diameter isD, if n = (ds)D + (ds)D�k where k is a positive odd integer.Corollary 18 GK(d; ds+1; s;m) is a directed Moore hypergraph of diameter one, if there existpositive integers d, s, m such thatd2s + d � 0 (mod m)sm � 0 (mod ds+ 1):18



5 ConclusionWe have de�ned two schemes to obtain bus networks from de Bruijn digraphs and one schemeto obtain bus networks from Kautz digraphs.We showed that the directed de Bruijn bus networks of maximum out-degree d, maximumbus out-size s, and diameter D, have (ds)D processors. Also, we presented generalizations ofthe directed de Bruijn bus networks for arbitrary numbers of processors, and established thattheir diameter is logarithmic in terms of the number of processors. Similar properties hold forthe directed Kautz bus networks which connect (ds)D + (ds)D�1 processors.We can easily obtain undirected bus networks from the aforementioned networks, by ignoringthe orientation of the buses. Undirected de Bruijn bus networks have (�r4 )D processors where� is the maximum degree and r is the maximum bus size. Undirected Kautz bus networks, onthe other hand, connect (�r4 )D + (�r4 )D�1 processors.We can, furthermore, obtain bus networks on any number of processors and with logarithmicdiameter, by ignoring the orientation of the buses of the generalized de Bruijn or Kautz busnetworks.The connectivity, network load, and routing issues for both directed and undirected de Bruijnand Kautz bus networks are being considered in [4] and ongoing research. In [5], we show thatde�nitions of the de Bruijn digraphs and of the Kautz digraphs using line digraph iterations canalso be extended to hypergraphs by using the \directed line hypergraph" technique.AcknowledgementsFahir �O. Ergincan would like to thank Dr. Johny Bond and Dr. Patrick Sol�e for valuablediscussions.References[1] J.-C. Bermond, J. Bond, M. Paoli, and C. Peyrat. Graphs and interconnection networks:diameter and vulnerability. In E.K. Lloyd, editor, Surveys in Combinatorics, Invited Papersfor the Ninth British Combinatorial Conference, volume 82 of London Math. Society LectureNote Series, pages 1{30. Cambridge University Press, 1983.[2] J.-C. Bermond, C. Delorme, and J.-J. Quisquater. Strategies for interconnection networks:some methods from graph theory. J. Parallel and Distributed Processing, 3:433{449, 1986.[3] J.-C. Bermond and F.�O. Ergincan. Bus interconnection networks. submitted to DiscreteApplied Mathematics.[4] J.-C. Bermond and F.�O. Ergincan. Connectivity in bus interconnection networks. in prepa-ration.[5] J.-C. Bermond and F.�O. Ergincan. Directed line hypergraphs. in preparation.19
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