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HAMILTON CYCLE DECOMPOSITIONOF THE BUTTERFLY NETWORK�J-C. BERMOND, E. DARROT, O. DELMAS and S. PERENNESySLOOP (join project I3S-CNRS/UNSA/INRIA)INRIA Sophia Antipolis2004, route des Lucioles, BP 93 � 06902 Sophia Antipolis Cedex (France)zReceived (received date)Revised (revised date)Communicated by (Name of Editor)ABSTRACTIn this paper, we prove that the wrapped Butter�y graph WBF(d; n) of degree dand dimension n is decomposable into Hamilton cycles. This answers a conjecture ofBarth and Raspaud who solved the case d = 2.Keywords: Butter�y graph, graph theory, Hamilton decomposition, Hamilton cycle,Hamilton circuit, perfect matching.1. Introduction and notationsThe construction of one, and if possible many edge-disjoint Hamilton cycles in anetwork can provide advantage for algorithms that make use of a ring structure. Asexample, the existence of many edge-disjoint Hamilton cycles allows the messagetra�c to be evenly distributed across the network. Furthermore, a partition of theedges into Hamilton cycles can be used in various distributed algorithms (termi-nation, garbage collector, : : :). So, many authors have considered the problem of�nding how many edge-disjoint Hamilton cycles can be found in a given network.The most signi�cant results have been obtained for the class of Cayley graphs onabelian groups, and for (underlying) line digraphs. Here we solve this problem forthe Butter�y networks. These networks have been proposed as suitable topologiesfor parallel computers, due to their interesting structure (see [11,13]) because theyare, when properly de�ned, both Cayley digraphs (on a non-abelian group) anditerated line digraphs.�This work has been supported by the CEFIPRA (french-indian collaboration) and the Europeanproject HCM MAP.y{Jean-Claude.Bermond, Eric.Darrot, Olivier.Delmas, Stephane.Perennes}@sophia.inria.frzSLOOP (Simulation, Object Oriented Languages and Parallelism) is a join project with theCNRS/University of Nice - Sophia Antipolis (I3S laboratory) and the INRIA.1



2 J-C. Bermond, E. Darrot, O. Delmas & S. Perennes1.1. De�nitionsFirst, we have to warn the reader that under the name Butter�y and with thesame notation, di�erent networks are described in the literature. Indeed, whilesome authors consider the Butter�y networks to be multistage networks used toroute permutations, others consider them to be point-to-point networks. In whatfollows, we will study the point-to-point version, and use Leighton's terminology[11], namely, wrapped Butter�y. Also, when we use the terms edge-disjoint or arc-disjoint, it obviously means pairwise edge-disjoint or arc-disjoint.In this article, we will use the following de�nitions and notation, where Zqdenotes the set of integers modulo q - For de�nitions not given here see [13].De�nition 1 The wrapped Butter�y digraph of degree d and dimension n,denoted ~WBF(d; n), has as vertices the ordered pairs (x; l) where x is an elementof Znd, that is, a word xn�1xn�2 � � �x1x0 where the letters belong to Zd, and l 2 Zn(l is called the level). For any l, a vertex (xn�1xn�2 � � � xl � � �x1x0; l) is joined by anarc to the d vertices (xn�1 � � �xl+1 xl + � xl�1 � � �x0; l+1) where � is any elementof Zd. Each one of these arcs is said to have the slope �.~WBF(d; n) is a d-regular digraph with ndn vertices; its diameter is 2n � 1.This network is sometimes considered as undirected, but its structure being indeeddirected, we will always consider the digraph.For convenience, we repeat the level 0 when drawing the wrapped Butter�ydigraph. Hence, the reader has to remember that the two occurrences of level 0have to be identi�ed. Figure (1) displays ~WBF(3; 2) with the arcs directed fromleft to right. Note that ~WBF(d; n) is often represented (for example in [11,13]) inan opposite way to our drawing as the authors denote the nodes (x0x1 � � �xn�1; l).
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Figure 1: The digraph ~WBF(3; 2), the arcs being directed from left to right.



Hamilton Cycle Decomposition of the Butter�y Network 3Now, we de�ne two other useful digraphs.� K+d denotes the complete symmetric digraph with a loop on each vertex,� ~Kd;d denotes the complete bipartite digraph where each set of the bipartitionhas size d and with all the arcs directed from one part of the bipartition, calledleft part, to the other, called right part.Note that ~WBF(d; 1) is nothing else than K+d .In digraphs, the concept of dipaths and circuits (directed cycles) is well-known.Here, we need to use more general concepts valid for digraphs of paths and cycles(which are also called oriented elementary paths and oriented elementary cycles).De�nition 2 A path of a digraph is a sequence � = (v0; e0; v1; e1; � � � ; vk; ek; vk+1)where the vi's are vertices and the ei's are arcs such that the end vertices of ei arevi and vi+1 and where the sequence � does not meet twice the same vertex exceptmaybe v0 and vk+1.De�nition 3 A path such that vk+1 = v0 in the sequence � is called a cycle.Note that the arc ei can be either directed from vi to vi+1 or from vi+1 to vi. Ifall the arcs of the path (resp. cycle) are directed from vi to vi+1 we have a dipath(resp. circuit also called dicycle).De�nition 4 A vertex vi of a cycle is said to be of type + (resp. of type �) forthe cycle, if vi is the terminal vertex of ei�1 (resp. ei) and the initial vertex of ei(resp. ei�1).Note that the type is not necessarily de�ned for all the vertices of a cycle. In acircuit, all vertices are of type +.De�nition 5 A vertex v is said to be crossed by a cycle, or a cycle crossesthe vertex v, if v is of type + or of type � for the cycle. When a vertex v is crossedby a cycle, we will de�ne its sign function � by �(v) = +1 (resp. �(v) = �1) if vis of type + (resp. of type �).Remark 1 We can also de�ne the predecessor p(v) and the successor s(v) of thevertex v in the order induced by the cycle. Then, the vertex v is of type + (orhas sign �(v) = +1) if (p(v); v) and (v; s(v)) are both arcs of the digraph, and is oftype � (or has sign �(v) = �1) if both (s(v); v) and (v; p(v)) are arcs of the digraph.



4 J-C. Bermond, E. Darrot, O. Delmas & S. PerennesDe�nition 6 A Hamilton cycle (resp. circuit) of a digraph is a cycle (resp.circuit) which contains every vertex exactly once.De�nition 7 We say that a digraph is decomposable into Hamilton cycles(resp. circuits) if its arcs can be partitioned into Hamilton cycles (resp. circuits).De�nition 8 A Hamilton cycle of ~WBF(d; n) is said to be l-crossing if the cyclecrosses all the vertices of level l and furthermore Pv=(x;l); x2Znd �(v) � 0 (mod d).Figure (3) shows examples of 1-crossing Hamilton cycles in ~WBF(3; 2) and~WBF(3; 3). Note that a Hamilton circuit is l-crossing for all l.1.2. ResultsVarious results have been obtained on the existence of Hamilton cycles in classi-cal networks (see for example the surveys [2,9]). For example, it is well-known thatany Cayley graph on an abelian group is Hamiltonian. Furthermore, it has beenconjectured by Alspach [1] that:Conjecture 1 (Alspach) Every connected Cayley graph on an abelian grouphas a Hamilton decomposition.This conjecture has been veri�ed for all connected 4-regular graphs on abeliangroups in [8]. This includes in particular the toroidal meshes (grids). It is also knownthat H(2d), the hypercube of dimension 2d, is decomposable into d Hamilton cycles(see [2,3]).Concerning line digraphs, it has been shown in [10] that d-regular line digraphsalways admit bd2c Hamilton circuits. In the case of de Bruijn and Kautz digraphswhich are the simplest line digraphs, partial results have been obtained succes-sively in [12] and [5] respectively, and near optimal results have been obtained forundirected de Bruijn and Kautz graphs [4].The wrapped Butter�y digraph is actually a Cayley graph (on a non-abeliangroup) and a line digraph. So, the decomposition into Hamilton cycles (resp. cir-cuits) of this digraph has received some attention. It is well-known that ~WBF(d; n)has one Hamilton circuit (see [11, page 465] for a proof in the case d = 2 or [15]).In [6], Barth and Raspaud proved that the underlying multigraph associated with~WBF(2; n) contains two arc-disjoint Hamilton cycles answering a conjecture ofRowley and Sotteau (private communication). In our terminology, their result canbe stated as:



Hamilton Cycle Decomposition of the Butter�y Network 5Theorem 1 (Barth, Raspaud) ~WBF(2; n) is decomposable into 2 Hamiltoncycles.They conjectured that this result can be generalized for any degree:Conjecture 2 (Barth, Raspaud) For n � 2, ~WBF(d; n) is decomposable into dHamilton cycles.In this paper, we prove the conjecture (2). To do so, we use some techniquesintroduced in [7] where we studied the decomposition of ~WBF(d; n) into Hamiltoncircuits. In fact, we prove that ~WBF(d; n) is decomposable into d l-crossing Hamil-ton cycles. Indeed, the l-crossing property, combined with the recursive structureof ~WBF(d; n), enables us to prove that the number of l-crossing arc-disjoint Hamil-ton cycles that ~WBF(d; n) contains can only increase when n increases. Then, weprove mainly that ~WBF(d; 2) contains d arc-disjoint l-crossing Hamilton cycles, byconstructing two arc-disjoint l-crossing Hamilton cycles using only arcs of slopes 0and 1 and d�2 arc-disjoint Hamilton circuits using arcs of other slopes. The resultsare summarized in the following theorem:Theorem 2 For n � 2,� for d 62 f3; 4; 6g, ~WBF(d; n) is decomposable into d� 2 Hamilton circuits and2 Hamilton cycles,� for d 2 f4; 6g, ~WBF(d; n) is decomposable into d Hamilton circuits,� ~WBF(3; n) is decomposable into 1 Hamilton circuit and 2 Hamilton cycles.2. The general constructionWe give below some additional de�nitions and properties enabling us to establishlemma (2) which is a strengthened version of the inductive lemma of [7]. This lemmais then applied in section 3 to construct inductively the decomposition.2.1. Cyclic-potent families of permutationsIn this paper, M will always denote a permutation of Zd which associates theelement a with the element M(a). To such a permutation, one can associate aperfect matching (denoted also M) of ~Kd;d containing all the arcs (a;M(a)).Let x 2 Znd, Mx will denote a permutation; the label x will be useful in the proofof lemma (2), as we will associate Mx with a perfect matching of ~Kd;d(x) where~Kd;d(x) denote the bipartite subgraph of ~WBF(d; n+1) with left part the vertices(?x; n) and right part the vertices (?x; 0). Mx contains the arcs joining (ax; n) to(Mx(a)x; 0). In [7], Mx is said to be a permutation realizable in ~Kd;d(x).



6 J-C. Bermond, E. Darrot, O. Delmas & S. PerennesDe�nition 9 Let S be a set of slopes (that is a subset of Zd). Then, a permuta-tion M of Zd uses the slopes in S if, for any a 2 Zd, M(a) 2 fa+ s; s 2 Sg. Afamily of dn permutations M = fMx; x 2 Zndg of Zd uses the slopes in S if,for any permutation Mx of the family, Mx uses the slopes in S.De�nition 10 A set of p permutations Mj , with 1 � j � p, is said to be compat-ible if, 8a;Mj(a) 6=Mj0(a) for j 6= j0.In other words the perfect matchings associated with the Mj are arc-disjoint.De�nition 11 For 1 � j � p, let Mj = fMx;j j x 2 Zndg be p families, eachconsisting of dn permutations. The familiesMj are said to be compatible if, foreach x in Znd, the p permutations Mx;j are compatible, i.e. 8a, Mx;j(a) 6=Mx;j0(a)for j 6= j0.The composition M �M 0 of two permutationsM andM 0 is the permutationwhich associates the element a with the element M(M 0(a)).De�nition 12 A permutation M is cyclic if, for some x, all the elements M i(x)are distinct for 0 � i < dn.Remark 2 Note that if M is cyclic, then for every x, the elements M i(x) are alldistinct. In fact, to verify that M is cyclic, it su�ces to verify that for a given x,M i(x) 6= x, for 1 � i < dn. Indeed, if there exists j and k, with j > k, such thatM j(x) =Mk(x), then M j�k(x) = x.For example, the permutation M which associates a with the element a + � isclearly cyclic if and only if � is prime with d, as M i(a) = a+ �i.De�nition 13 A familyM = fMx; x 2 Zndg of dn permutations of Zd satis�es thecyclic-potent property if, for any order of composition of the Mx and any setof sign f�x j x 2 Znd �x 2 f�1; 1gg such that Px �x � 0 (mod d), the permutation�xM �xx is cyclic.De�nition 14 A family of dn permutations M = fMx; x 2 Zndg is of type(i; j) if for x 6= 0, Mx(a) = a+ i; and for x = 0, M0(a) = a+ j.Lemma 1 A family of permutations of type (i; j), M = fMx; x 2 Zndg is cyclic-potent if and only if j � i is relatively prime to d.Proof. As the permutations of the family commute, the permutation �xM �xxof de�nition (13) can be simply expressed as a ! a + �. So, this permutation will



Hamilton Cycle Decomposition of the Butter�y Network 7be cyclic if and only if � is prime with d. Here � = (Px6=0 �x)i+ �0j. AsPx �x = 0,we have � = (Px �x)i + �0(j � i) = �0(j � i). So, � is clearly prime with d if andonly if j � i is prime with d. 2We will represent a set of p families of permutations of type (i; j): f(i0; j0);(i1; j1); :::; (ip�1; jp�1)g by the array: Familiesi0 i1 i2 i3 : : : ip�2 ip�1j0 j1 j2 j3 : : : jp�2 jp�1In section 3, we will need some very simple cyclic-potent families of permutationsthat we give as examples.Families 1 There exist d compatible cyclic-potent families of permutations:Families 10 1 2 3 4 5 : : : d� 2 d� 11 2 3 4 5 6 : : : d� 1 0These families are cyclic-potent as, applying lemma (1), 1 � 0 = 2 � 1 = � � � =d� 1� (d� 2) = 0� (d� 1) = 1 which is prime with d. These families use all theslopes.Families 2 There exist 2 compatible cyclic-potent families using slopes f0; 1g:Families 20 11 0According to lemma (1) they are two compatible cyclic-potent families and theyuse the slopes f0; 1g.Families 3 When d 6= 3, there exist d � 2 compatible cyclic-potent families ofpermutations using the slopes f2; : : : ; d� 1g. One possible solution is given below:� when d is odd and d 6= 3, the following families can be used:Families 3 (d odd and d 6= 3)2 3 4 5 : : : d� 3 d� 2 d� 14 5 6 7 : : : d� 1 2 3� when d is even, we use the following families:Families 3 (d even)2 3 4 5 : : : d� 2 d� 13 2 5 4 : : : d� 1 d� 2



8 J-C. Bermond, E. Darrot, O. Delmas & S. PerennesThese families are cyclic-potent as, applying lemma (1), we get:� for d odd, 4�2 = 5�3 = � � � = d�1�(d�3) = 2 and 2�(d�2) = 3�(d�1) = 4,as 2 and 4 are prime with d;� for d even, 3� 2 = 5� 4 = � � � = (d� 1)� (d� 2) = 1 and 2� 3 = 4� 5 = � � �= (d� 2)� (d� 1) = �1, which are prime with d.In both cases, the slopes used are in f2; : : : ; d� 1g.2.2. Inductive constructionLemma 2 If ~WBF(d; n) admits p arc-disjoint l-crossing Hamilton cycles and ifthere exist p compatible cyclic-potent families each of dn permutations, then~WBF(d; n+ 1) admits p arc-disjoint l-crossing Hamilton cycles.Proof. Let H be an l-crossing Hamilton cycle of ~WBF(d; n). As all the levelsare equivalent, we can suppose without loss of generality and for simplicity in thenotations that l = 0. Let M = fMx; x 2 Zndg be a cyclic-potent family of dnpermutations. The vertices of ~WBF(d; n + 1) can be labeled (ax; l) with a 2 Zd;x 2 Znd and l 2 Zn+1. Now, we associate H and M with a partial digraph H 0 in~WBF(d; n+ 1) as follows (for an example of such a construction see �gure (3)):� for 0 � l � n � 1 and for each a, if the arc (x; l)(x0; l + 1) belongs to H ,we put in H 0 the arc (ax; l)(ax0; l + 1) where the indices are taken modulon+1, which means that to the arc (x; n� 1)(x0; 0) of H is associated the arc(ax; n� 1)(ax0; n) in H 0;� between levels n and 0 of ~WBF(d; n + 1) we put the arcs joining (ax; n) to(Mx(a)x; 0).With such a de�nition, each vertex of ~WBF(d; n+ 1) is incident to two arcs ofH 0. Hence, we can de�ne for each vertex a predecessor and a successor on H 0 thatenables us to prove that we can order H 0 in a cycle.For 1 � l � n� 1, let (x0; l0) (resp. (x00; l00)) be the predecessor (resp. successor)of (x; l) in H , then the predecessor (resp. successor) of (ax; l) in H 0 will be (ax0; l0)(resp. (ax00; l00)).For l = 0 and n, as H is a 0-crossing Hamilton cycle, vertices (x; 0) are eitherof type + or � on H .� When (x; 0) is of type +, its predecessor (resp. successor) in the cycle H is(x0; n � 1) (resp. (x00; 1)). Then, in H 0 the predecessor (resp. successor) of(ax; n) will be (ax0; n� 1) (resp. (Mx(a)x; 0)); the predecessor (resp. succes-sor) of (ax; 0) will be (M�1x (a)x; n) (resp. (ax00; 1)).



Hamilton Cycle Decomposition of the Butter�y Network 9� When (x; 0) is of type �, its predecessor (resp. successor) in H is (x0; 1) (resp.(x00; n � 1)). Then, in H 0 the predecessor (resp. successor) of (ax; 0) will be(ax0; 1) (resp. (M�1x (a)x; n)); the predecessor (resp. successor) of (ax; n) willbe (Mx(a)x; 0) (resp. (ax00; n� 1)) in H 0.Therefore, when (x; 0) is of type + (resp. �), (ax; n) and (ax; 0) are vertices oftype + (resp. �) in H 0. Hence, all the vertices of levels 0 and n are crossed by H 0;furthermore, the sum of the signs of the vertices of H 0 of levels 0 or n will be dtimes the sum of the signs of the vertices of H of level 0, that is, by hypothesis, 0.Hence, H 0 is 0-crossing (and also n-crossing).Now, we have to prove that H 0 is e�ectively a Hamilton cycle. For this it su�cesto prove that if we start at some vertex (ax; 0) and follow H 0, we meet successivelyall the vertices of level 0 and n before coming back to (ax; 0). Indeed, suppose that(y; l) was on the portion of cycle H between (x1; 0) and (x2; 0). Then, (ay; l) willbe on the portion of H 0 between (ax1; �) and (ax2; �), where � = 0 (resp. � = n)if (x1; 0) is of type + (resp. �), and � = 0 (resp. � = n) if (x2; 0) is of type �(resp. +). These cases are described on �gure (2).
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figure  c figure  c’ figure  d figure  d’Figure 2: This �gure shows the four possible cases when we perform the inductiveconstruction of ~WBF(d; n+ 1) from ~WBF(d; n). In �gure a and a0 (resp. b andb0) the vertices x1 and x2 are of type + (resp. �). Figure c and c0 (resp. d and d0)displays the case where the vertex x1 is of type + (resp. �) and the vertex x2 is oftype � (resp. +).Now, let (x0; 0); (x1; 0); : : : ; (xdn = x0; 0) be the sequence of vertices ofH at level0 in the order we meet them on H . Starting from (a0x0; 0) we will meet successively(a1x1; 0); (a2x2; 0); : : : ; (adnxdn = adnx0; 0) on H 0. Following such a path, we canmeet either xi of type + by going from level n to level 0, in which case we will apply



10 J-C. Bermond, E. Darrot, O. Delmas & S. Perennesthe permutation Mxi to some a, or xi of type � by going from level 0 to n, in whichcase we will apply M�1xi to a. So adn = �M �xixi (a) where the product is taken inan order depending on x0. As all the xi di�er, we can meet again (a0x0; 0) only atsome aqdnx0, but M being cyclic-potent, the values adn ; a2dn ; : : : ; aqdn ; : : : ; a(d)dnare all distinct. So, we meet again (a0x0; 0) only after having encountered the dn+1vertices of level 0.Now, note that we can perform this construction with p arc-disjoint 0-crossingcycles and p compatible cyclic-potent families. From construction, the p 0-crossingcycles that we will obtain, will be arc-disjoint. 2Remark 3 When the 0-crossing Hamilton cycles used in the lemma above arecircuits of ~WBF(d; n), all the vertices are of type +, and the construction leads tocircuits of ~WBF(d; n+ 1), giving another proof of the inductive lemma of [7].3. Decomposition of ~WBF(d; n)We will use a decomposition of ~WBF(d; n) into two partial digraphs.De�nition 15 The Butter�y digraph ~WBF(d; n) is the sum of two partialdigraphs ~WBF0;1(d; n) and ~WBF2;:::;d�1(d; n) de�ned as follows:� ~WBF0;1(d; n) contains the arcs which slopes belong to f0; 1g,� ~WBF2;:::;d�1(d; n) contains the arcs which slopes belong to f2; : : : ; d� 1g.3.1. Decomposition of ~WBF2;:::;d�1(d; n)The proof is by induction on n. We start the induction for n = 1.Lemma 3 When d 62 f4; 6g, ~WBF2;:::;d�1(d; 1) is decomposable into d�2 Hamiltoncircuits.Proof. As ~WBF(d; 1) = K+d , ~WBF2;:::;d�1(d; 1) is obtained from K+d by re-moving the loops and the arcs of slope 1. Following Tillson [14], we know thatK+d without the loops contains d � 1 arc-disjoint Hamilton circuits when d 6= 4; 6.So, using Tillson's decomposition, we can label the vertices of K+d such that one ofthe circuits uses all the arcs of slope 1. By removing it, we get d � 2 arc-disjointHamilton circuits in ~WBF2;:::;d�1(d; 1). 2Proposition 1 For d 62 f3; 4; 6g, ~WBF2;:::;d�1(d; n) is decomposable into d � 2Hamilton circuits.Proof. As d 62 f4; 6g, the proposition is proved for n = 1 by lemma (3).Then, as d 6= 3, the d � 2 compatible cyclic-potent families (3) use the slopes



Hamilton Cycle Decomposition of the Butter�y Network 11f2; : : : ; d � 1g and satisfy the hypothesis of lemma (2). Hence, we can apply thatlemma inductively, in order to construct d � 2 arc-disjoint Hamilton circuits (seeremark (3)) in ~WBF2;:::;d�1(d; n). 23.2. Decomposition of ~WBF0;1(d; n)Lemma 4 ~WBF0;1(d; 2) is decomposable into 2 l-crossing Hamilton cycles.Proof. For this proof, the vertices of ~WBF0;1(d; 2) will be denoted by theordered pairs (xy; l) with x 2 Zd, y 2 Zd and l 2 Z2. We will show that we canbuild two arc-disjoint 1-crossing Hamilton cycles in ~WBF0;1(d; 2) by using two setsof arcs of ~WBF0;1(d; 2) de�ned by the next two rules:1. Arcs of H0:( if x 6= y; (x(y � 1); 0) +1! (xy; 1) +0! (xy; 0); (1)if x = y; (xx; 0) +0! (xx; 1) +1! ((x+ 1)x; 0): (2)2. Arcs of H1:( if x 6= y; (xy; 0) +0! (xy; 1) +1! ((x+ 1)y; 0); (1)if x = y; (x(x � 1); 0) +1! (xx; 1) +0! (xx; 0): (2)It is easy to verify that H0 and H1 are arc-disjoint. With the arcs (1) of H0, wecan de�ne for each x 2 Zd a dipath Px as follows:Px8<: (xx; 0) ! (x(x + 1); 1) ! (x(x+ 1); 0) !! (x(x + 2); 1) ! � � � ! (x(x + d� 2); 1) !! (x(x + d� 2); 0) ! (x(x + d� 1); 1) ! (x(x + d� 1); 0)The d dipaths Px, x 2 Zd, are clearly vertex-disjoint. Only the vertices noted(xx; 1) are not in these d dipaths. The arcs (2) of H0 allows us to join the endvertices of the d dipaths through the missing vertices (xx; 1) as follows:Px  ((x + d� 1)(x+ d� 1); 1)  Px+d�1   ((x + d� 2)(x+ d� 2); 1)  � � �   ((x + 1)(x+ 1); 1)  Px+1   (xx; 1)  Px



12 J-C. Bermond, E. Darrot, O. Delmas & S. PerennesOne can easily check that we have de�ned a Hamilton cycle. The d dipaths arejoined through their extremal vertices in a cyclic way, using only arcs (2) of H0.By construction, all the vertices at level 1 are crossed. In order to compute thesign of the vertices at level 1, we can choose to walk along the cycle in the direction(xx; 0)! (x(x + 1); 1). Therefore, all the vertices (xy; 1) with x 6= y are of type +and have +1 as sign, while the vertices (xx; 1) are of type � and have �1 as sign.So, the sum of the signs is (d2 � d)� (d) � 0 (mod d).To prove that the second set of rules builds a second 1-crossing Hamilton cycle,it su�ces to notice that we can rewrite this rule up to a permutation of the lettersx and y as being:� Arcs of H1 (with permutation of x and y):( if y 6= x; (y(x+ 1); 0) +1 (yx; 1) +0 (yx; 0);if y = x; (yy; 0) +0 (yy; 1) +1 ((y � 1)y; 0):Construction 2 is then clearly similar to construction 1; to be convinced, justexchange x and y, and replace 1 by �1 in the proof for construction (1).Hence, H0 and H1 are two arc-disjoint 1-crossing Hamilton cycles. As the levelsare equivalent, the result holds also for level 0. 2Figure (3) gives a decomposition of ~WBF0;1(3; 2) into two 1-crossing Hamiltoncycles.Proposition 2 For n � 2, ~WBF0;1(d; n) is decomposable into 2 l-crossing Hamil-ton cycles.Proof. The proposition is proved for n = 2 by the lemma (4). Then, weuse lemma (2) with the two compatible cyclic-potent families (2) which use theslopes f0; 1g to construct inductively two arcs-disjoint l-crossing Hamilton cycles in~WBF0;1(d; n). 2Figure (3) gives the recursive construction of two 1-crossing arc-disjoint Hamil-ton cycles in ~WBF0;1(3; 3) from two 1-crossing arc-disjoint cycles in ~WBF(3; 2).
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figure  cfigure  a

Figure 3: Figures a and c show the two 1-crossing arc-disjoint Hamilton cycles of~WBF0;1(3; 2). We display on �gures b and d, two 1-crossing arc-disjoint Hamiltoncycles in ~WBF0;1(3; 3) obtained by applying lemma (2) with the families (2).3.3. Global decompositionWe are now ready to prove the main result:Theorem 2 For n � 2,� for d 62 f3; 4; 6g, ~WBF(d; n) is decomposable into d� 2 Hamilton circuits and2 Hamilton cycles,� for d 2 f4; 6g, ~WBF(d; n) is decomposable into d Hamilton circuits,� ~WBF(3; n) is decomposable into 1 Hamilton circuit and 2 Hamilton cycles.Proof. According to propositions (1) and (2) we have, when d 62 f3; 4; 6g, d�2arc-disjoint circuits in ~WBF2;:::;d�1(d; n) and 2 arc-disjoint cycles in ~WBF0;1(d; n).So, the result holds in these cases. For d 2 f4; 6g and n = 2, an exhaustive computer



14 J-C. Bermond, E. Darrot, O. Delmas & S. Perennessearch shows that ~WBF(d; n) is decomposable into Hamilton circuits, and so, forn � 2, ~WBF(4; n) and ~WBF(6; n) are decomposable into Hamilton circuits. Ford = 3, we can construct two 1-crossing arc-disjoint Hamilton cycles and one arc-disjoint Hamilton circuit in ~WBF(3; 2) (see �gure (4)). Then, we can apply lemma(2) with families (1) and the result holds for ~WBF(3; n) with n � 2. 2

Figure 4: The decomposition of ~WBF(3; 2) into two 1-crossing arc-disjoint Hamil-ton cycles and one arc-disjoint Hamilton circuit.The preceding result implies the conjecture of Barth and Raspaud:Theorem 3 For any d and n � 2, ~WBF(d; n) is decomposable into d Hamiltoncycles.Remark 4 We could also have derived theorem (3) by proving that, if ~WBF(d; n)is decomposable into l-crossing Hamilton cycles, then ~WBF(d; n+1) is also decom-posable into l-crossing Hamilton cycles. This can be done by applying lemma (2)with the families (1). But to start the induction we needed to split the Butter�ydigraph into two partial digraphs in order to prove that ~WBF(d; 2) is decomposableinto l-crossing Hamilton cycles for n = 2 and d 6= 3.4. ConclusionIn this paper we have proved that ~WBF(d; n) is always decomposable intoHamilton cycles. In the paper [7], we considered the problem of decomposing~WBF(d; n) into Hamilton circuits and conjectured that such a decomposition intod Hamilton circuits exists for n � 2, except for (d = 2 and (n = 2 or n = 3)) and(d = 3 and n = 2). The di�culty in that case was to start the induction; indeedin [7] we were able to reduce the problem to the case n = 2 and d prime and tosolve it in many cases. Consequently, we proposed as an open problem the followingconjecture:Conjecture 3 ([7]) For any prime number p > 3, ~WBF(p; 2) is decomposable intoHamilton circuits.
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