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2 J.-C. BERMOND, J. BOND AND S. DJELLOULFor given upper bounds on the processor degree �, bus size r, and networkdiameterD, the construction of bus networks with maximal number of processorsis an important problem in the design of interconnection networks. We refer tothe survey [10] for a state of art on this problem. Other design parameters suchas network reliability, symmetry properties, ease of message routing, balancedmessage tra�c throughout the network, implementation issues (algorithms andarchitecture) should also be taken into consideration.Our aim is to give some new techniques to design dense bus connection net-works of given maximum degree �, diameter D and maximum bus size r. Inparticular we construct a new family of bus connection networks of diameter 2having a large number of processors.This paper is organized as follows: In section 2 we give the necessary de�ni-tions and notation both from hypergraph theory and from design theory. Wealso state the (�; D; r)-hypergraph problem and give a Moore like upper bound.In section 3 we recall some earlier results obtained in the case of diameter 2. Insection 4 we give our main theorem and deduce as corollary some lower boundsand construction of dense bus connection networks of diameter 2.2. De�nitions and notation2.1. (�; D; r)-hypergraph problem. An (undirected) hypergraph H is apair H = V (H); E(H) where V (H) is a non-empty set of elements, called ver-tices, and E(H) is a �nite set of subsets of V (H) called edges. The numberof vertices in the hypergraph is n(H) = jV (H)j and the number of edges ism(H) = jE(H)j where the vertical bars denote the cardinality of the set. Thedegree of a vertex v is the number of edges containing it and is denoted bydH(v). The maximum degree over all of the vertices in H is denoted by �(H).The size of an edge E 2 E(H) is its cardinality, and is denoted by jEj. Therank of H is the size of its largest edge, and is denoted by r(H). A path inH from vertex u to vertex v is an alternating sequence of vertices and edgesu = v0; E1; v1; � � � ; Ek; vk = v such that vi�1; vi � Ei for all 1 � i � k. Thelength of a path is the number of edges in it. The distance between two verticesu and v is the length of a shortest path between them. The diameter of H is themaximum of the distances over all pairs of vertices, and is denoted by D(H).We call a hypergraph with maximum degree �, diameter D, and rank r, a(�; D; r)-hypergraph. The problem on bus networks we considered in the in-troduction is known as the (�; D; r)-hypergraph problem and consists of �nding(�; D; r)-hypergraphs with the maximum number of vertices or �nding large(�; D; r)-hypergraphs. We will denote by n(�; D; r) the maximum number ofvertices of any (�; D; r)-hypergraph.In the case r = 2 (graph case), this problem has been extensively studiedand is known as the (�; D)-graph problem (see for example [8], [9]), and themaximum number of vertices in any (�; D)-graph is denoted by n(�; D).



DENSE BUS NETWORKS OF DIAMETER 2 3Note that parts of this problem have been studied in other contexts withdi�erent notation. For example d or r is used for maximum degree, k or d isused for diameter, and b or k is used for rank. (In the notation of Design Theoryr and k are used for maximum degree and rank, respectively.) We follow thenotation of Hypergraph Theory [3].Finally, let us mention that the drawing of hypergraphs can be very complexand therefore it is useful to represent a hypergraph H with a bipartite graph,R(H) = (V1(R) [ V2(R); E(R))called the bipartite representation graph. Every vertex vi in V (H) is representedby a vertex vi in V1(R) and every edge Ej in E(H) is represented by a vertexej in V2(R). We draw an edge between vi 2 V1(R) and ej 2 V2(R) if and only ifvi 2 Ej in H.If H is a (�; D; r)-hypergraph and R(H) is its bipartite representation graph,then the maximum degrees in V1(R) and in V2(R) are � and r, respectively.The distance between two vertices of V1(R) is at most 2D, but the diameterof R(H) can be 2D, 2D + 1 or 2D + 2 as the vertices of V1(R) and V2(R) donot play the same role. So, the (�; D; r)-hypergraph problem is partly relatedbut di�erent from the (�1;�2;D0)-bipartite graph problem, i.e. �nding largebipartite graphs with maximum vertex degrees �1, �2 and diameter D0 (fordetails of this problem see [13]).2.2. Duality tools. The dual of a hypergraph H = (V (H); E(H)) is thehypergraph H� = (V (H�); E(H�)) where the vertices of H� correspond to theedges of H, and the edges of H� correspond to the vertices of H. A vertex e�j isa member of an edge V �i in H� if and only if the vertex vi is a member of Ej inH.Bermond, Bond and Peyrat [4] observed the following relationship between ahypergraph and its dual:Proposition 2.1. [J.-C. Bermond, J. Bond, C. Peyrat ] If H is a (�; D; r)-hypergraph then its dual hypergraph H� is a (r;D�;�)-hypergraph where D�1 �D� � D + 1.Note that, if G is a graph of maximum degree � and diameter D then itsdual is a (2; D�;�)-hypergraph. Furthermore,Proposition 2.2. [J.-C. Bermond, J. Bond, C. Peyrat ] If G is a bipartite(�; D)-graph then its dual hypergraph H� is a (2; D�;�)-hypergraph where D� �D.In what follows we will call the diameter of the dual of H the line diameterof H. In particular if a hypergraph H has line diameter 2 it means that for anypair of edges E and F either E \ F 6= ; or there exists an edge I such thatE \ I 6= ; and I \ F 6= ;.



4 J.-C. BERMOND, J. BOND AND S. DJELLOUL2.3. Design Theory. Wewill need some concepts of design theory (for moredetails and results see [17] and [18]). In particular, we need the concept oftransversal design.A transversal design T [�; �; k] is a triple (X;G;P) where X is a �nite set ofelements, G a partition of X into � classes Gi, i = 1; 2; : : : ;�, called groupsor classes each containing exactly k elements and P a family of subsets, calledblocks of X such that :(i) For any block P of P and any group Gi jP \Gij = 1.(ii) Each pair fx; yg of elements ofX where x and y belong to distinct groupsis contained in exactly � blocks of P.A transversal design T [�; �; k] has exactly �k elements. Each block containsexactly � elements. Easy countings show that each element belongs to exactlyk� blocks of P and that the number of blocks is k2�.The case � = 1 can be viewed as a partition of the edges of a complete �-partite graph into cliques of size �. It is known that there exists a T [�; 1; k]if and only if there exist � � 2 mutually orthogonal latin squares of order k(see [17]). In particular T [3; 1; k] transversal designs always exist and T [4; 1; k]transversal designs exist if and only if k 6= 2; 6. For a general �, a T [�; �; k]exists if k is large enough by a result of Wilson [22].2.4. Moore-like bounds. As for graphs, we can determine an upper boundon the maximum number of vertices of a (�; D; r)-hypergraph . Indeed, bycomputing the number of vertices at distance 0; 1; : : : ; D from a given vertex,we �nd at most one vertex at distance 0, �(r� 1) vertices at distance 1, �(��1)(r � 1)2 vertices at distance 2, �(� � 1)2(r � 1)3 vertices at distance 3, ...,�(��1)D�1(r�1)D vertices at distance D. Therefore, we obtain the Moore-likebound given by :Proposition 2.3. The maximum number n(�; D; r) of vertices ofa (�, D, r)-hypergraph satis�es :n(�; D; r) � 1 + �(r � 1)�i=D�1i=0 (�� 1)i(r � 1)i:The topologies whose number of vertices achieves the Moore bound are calledMoore geometries. Several authors have tried to know for what values of �, Dand r Moore geometries exist. Now, it is established that the Moore bound maybe achieved only in case r = 2 or D=1 or D=2 with r > 3 (see [5] for references).In case D = 1, the Moore bound is 1+�(r�1). We have the following result[6] :Proposition 2.4. [ J.-C. Bermond, J. Bond, J.-F. Sacl�e ] The maximumnumber n(�; 1; r) of vertices of a (�; 1; r)-hypergraph is equal to the Moore boundif and only if there exists a (v; r; 1)-BIBD with v = 1 + �(r� 1).



DENSE BUS NETWORKS OF DIAMETER 2 5The problem of existence of (v; r; 1)-BIBD is itself a large domain of researchand the results are complete only for r � 6.3. Earlier resultsMany results have been obtained on the construction of \good" (�; D; r)hypergraphs (see the survey [10]) in particular in the case D = 1 or � = 2.Let us recall what is known in the case of diameter 2. The Moore bound is(�2 ��)r2 � (2�2 � 3�)r + (�� 1)2. The case D = 2 and � = 2 was studiedin [4] and will be recalled in paragraph 4.For D = 2 and � � 3 one construction is based on the following propositions:Proposition 3.1. [ J. Bond ] For any � � 2, any D � 2 and any r � 2,n(�; D; r) � rn(�� 1; D � 1; r):Proof. Take r copies of a (��1; D�1; r) hypergraph and join the r verticeshaving the same label in each copy with a hyperedge. Therefore we obtain a(�; D; r) hypergraph [12].Proposition 3.2. [ J.-C. Bermond, J. Bond, J.-F. Sacl�e ] If a projectiveplane of order q exists then, for � = q + 1 and r � �, there exists a (�; 1; r)-hypergraph with �r � (� � 1)d r�e vertices and then, in this case, n(�; 1; r) ��r � (�� 1)d r�e.Proof. see [6].Proposition 3.3. For any � � 3 such that ��1 = 1+ q where q is a primepower and for any r � �� 1,n(�; 2; r)� (�� 1)r2 � (�� 2)rd r�� 1e:Proof. According to proposition 3.1, n(�; 2; r) � rn(� � 1; 1; r). On theother hand, there exists a projective plane of order q and therefore a (q+1; 1; r)hypergraph for any prime power q. Then, using proposition 3.2, we have, forany r � �� 1 ,n(�� 1; 1; r) � (�� 1)r � (�� 2)d r� � 1e.Remark 3.1. For any � � 3 such that � � 1 = q + 1 where q is a primepower, n(�; 2; r) � f(�) with f(�) = �2 � 3�+ 3�� 1 r2 +O(r):We give here for � = 3; 4 the lower bounds f(�) on n(�; 2; r), deduced fromproposition 3.3 : � f(�) Moore bound3 32r2 + O(r) 6r2 � 9r + 44 73r2 + O(r) 12r2 � 20r + 9 Table 1.



6 J.-C. BERMOND, J. BOND AND S. DJELLOULWhen D = 2 and � � 16, � and r even, a better construction is obtained byconsidering the de Bruijn bus networks which have �216 r2 vertices [7].Remark 3.2. In the particular case where r is a multiple of �, the lowerbounds of table 1 will be improved by the technique of construction we shallpropose in section 4.4. A new technique to design dense bus connection networks ofdiameter 24.1. Case � = 2. The technique presented below is inspired from the con-struction presented in [4] for the case D = 2, � = 2. We repeat this construction:Step 1 : Consider the graph G0 = C5, the cycle of length 5. Note that C5 hasline-diameter 2.Step 2 : Replace each vertex xi of C5 by a set Xi of k vertices and each edgexixj of C5 by the edges of the complete bipartite graph constructed on Xi [Xj .We therefore obtain a graph G regular of degree 2k, on 5k vertices and having5k2 edges. One can check that G has still line-diameter 2.Step 3 : Take the dual G� of G. G� is a (2; 2; r)� hypergraph with r = 2k andN = 5k2 = 5r24 vertices.So we have shown that n(2; 2; r) � 5r24 when r is even. In fact Kleitman [19](see also [21] and [14]) has proved that n(2; 2; r) � 5r24 soTheorem 4.1. If r is even, then n(2; 2; r) = 5r24 .If r is odd, r = 2k+1 we have to modify slightly the construction by replacingtwo adjacent vertices x1 and x2 of the C5 each by a set of k + 1 = d r2e verticesand the 3 other vertices by a set of k = b r2c vertices. The graph G obtained hasmaximum degree r and has 5r2�2r+14 edges. By taking its dual we obtainn(2; 2; r) � 5r2�2r+14 . In [21] and [14] they have also proved that there is in factequality. SoTheorem 4.2. If r is odd, then n(2; 2; r) = 5r2�2r+14 .Note that the value given in [4] for r odd is incorrect.4.2. General case : Main theorem. For D = 2 and � � 2 we generalizethe construction given before :Step 1 : We construct a hypergraph H0, with �-uniform rank and with line-diameter 2 (in the case � = 2, H0 was choosen as C5). Let d be the maximumdegree, n the number of vertices and m the number of edges of H0.



DENSE BUS NETWORKS OF DIAMETER 2 7Step 2 : Replace each vertex xi of H0 by a set Xi of k vertices and each edgeE = (x1; x2; : : : ; x�) ofH0 by the edges (blocks) of a transversal design T [�; 1; k]constructed on the set X = [Xi, with classes(groups) Xi, (i = 1; 2; :::;�) corre-sponding to the vertices xi of E. If such a transversal design exists it follows thatthe hypergraph H obtained from H0 has nk vertices, mk2 edges and maximumdegree dk. Figure 1 shows an example with � = 4, k = 3 and H0 reduced to anedge fa; b; c; dg.
∆=4

a b c d k=3 a2 b2 c2 d2

a1 b1 c1 d1

a0 b0 c0 d0Figure 1. H0 H1Furthermore we will prove thatLemma 4.1. If there exists a transversal design T [�; 1; k] then the hypergraphH constructed from H0 as described above has line-diameter 2.(Note that for � = 2 we use a T [2; 1; k] transversal design which is nothingelse than a bipartite complete graph).Step 3 : Take the dual H� of H. By step 2 and the lemma H� is a (�; 2; r)-hypergraph with r = dk, N = mk2 = mr2d2 vertices. So we haveTheorem 4.3. If there exists a �-uniform hypergraph of line-diameter 2 withmaximum degree d and m edges and if there exists a transversal design T [�; 1; k]then n(�; 2; dk) � mk2.Proof. (of lemma 4.1). Let P and Q be two distinct edges of H. P (resp.Q) corresponds to some block of a transversal design T [�; 1; k]associated to anedge E (resp. F ) of H0.Case 1 : E = F = (x1; x2; : : : ; x�). Let p be a vertex of P which does notbelong to Q; p belongs to some set Xi. Let q be a vertex of Q not in Xi. Bythe de�nition of a tranversal design there exists an edge R containing p and q.R intersects both P and Q and so the distance between P and Q is at most 2.Case 2 : E 6= F , E \ F 6= ;. Let xi 2 E \ F and let p = P \Xi (by de�nitionP \Xi is not empty) and q = Q \Xi. If p = q, P and Q are at distance 1. Ifp 6= q, let p0 be an element of P di�erent from p and let R be the edge of thetransversal design associated to E containing p0 and q. R intersects both P andQ and so the distance between P and Q is at most 2.



8 J.-C. BERMOND, J. BOND AND S. DJELLOULCase 3 : E\F = ;. As H0 is of line-diameter 2 there exist an edge E0 intersectingboth E end F . Let xi 2 E\E0 and xj 2 F \E0. Let p = P \Xi and q = Q\Xj.By de�nition there exists in the transversal design associated to E0 an edge Rcontaining both p and q. So R intersects both P and Q and again the distancebetween P and Q is at most 2 (in fact exactly 2 in that case).Remark 4.1. This theorem can easily be generalized for a line-diameter Dgiving a lower bound for n(�; D; dk). Unfortunately this bound is of order mk2and therefore cannot be good asymptotically.4.3. Results. Note that to apply theorem 4.3 we need the existence of atransversal design T [�; 1; k] (see some known results in 2.3) and the constructionof a �-uniform hypergraph H0 of line-diameter 2. We can have many possiblechoices. For a given degree d of H0 we will try to maximize m. For a given r wewill choose the hypergraph H0 optimizing md2 , with d divisor of r. (We can alsoin that case use a solution for a value near for r like we did for r odd in the case� = 2.)So all the di�culty consists in �nding optimal or good hypergraphs H0. Theline-diameter of H0 correspond to half the maximum distance between verticesbelonging to the class V2(R) associated to the buses. As we want a line-diameter2, we have to consider bipartite graphs of diameter 4, 5 or 6. In the literature (seefor example [13]) has been considered the case of regular graphs (in that case� = d). Using these results for diameter 5 we have a good family of hypergraphs.Let us denote by b0(�; 5) the maximumnumber of vertices of a biregular bipar-tite graph with degree � and diameter 5, then we have a family of hypergraphsH0 with m = b0(�;5)2 and d = �. So we obtain:Theorem 4.4. Let � � 3 and r be a multiple of �, r = �k, then if thereexists a transversal design T [�; 1; k]n(�; 2; r) � b0(�;5)r22�2 .For example, in the case � = 3, we have b0(3; 5) � 56. So as there exists aT [�; 1; k] for any k, n(3; 2; r) � 289 r2 for r multiple of 3.In the case � = 4, we have b0(4; 5) � 144. So as there exists a T [�; 1; k] forany k 6= 2; 6, n(4; 2; r) � 92r2 for r multiple of 4, r 6= 8; 24.Asymptotically we have a family better than those obtained before. In thecase � = 3, recall that n(3; 2; r) was of order 32r2 and for � = 4, n(4; 2; r) wasof order 73r2.If one is particularly interested in some values of r not multiple of �, we caneither use a d di�erent from � (but in that case we have to construct "good\(d;�; D)-bipartite biregular graphs) or modi�y the construction by starting froma solution with a slightly di�erent r.
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