Design of fault-tolerant networks for satellites
(TWTA* redundancy)

Jean-Claude Bermond, Eric Darrot!
MASCOTTE Join Project CNRS/INRIA /University of Nice Sophia Antipolis
2004 Route des Lucioles, B.P. 93, F-06902 Sophia Antipolis, France
Jean-Claude.Bermond@sophia.inria.fr, eric.darrot@laposte.net

Olivier Delmas?
Université Bordeaux 1
Laboratoire Bordelais de Recherche en Informatique (UMR, 5800)
351 cours de la Libération, 33405 Talence Cedex, France.
Olivier.Delmas@labri.u-bordeaux.fr

Abstract

This article deals with the design of networks to be placed on satellites. These networks
should connect inputs (corresponding to signals arriving at the satellite) to outputs (corre-
sponding to amplifiers), even in case of failures of amplifiers. The networks are made of links
and expensive switches, hence we want to minimize the number of switches subject to the fol-
lowing conditions: each input and each output is connected to exactly one switch; each switch
is adjacent to exactly four links; there are n inputs and n + &k outputs; among the n + k outputs,
k can fail permanently; and finally all the input signals should be sent to valid amplifiers, i.e.,
outputs, via disjoint paths. So, the aim is to design networks having as few switches as possible
and satisfying the following property: there exist n edge-disjoint paths from the n inputs to any
set of n outputs chosen from the n + k total number of outputs. We call such networks valid k-
fault tolerant networks. Let A/ (n, k) denote the minimum number of switches of a valid network
with n inputs, n + k outputs and k output failures.

In this article, we give some details on the problem, and some preliminary results such as
the fact that AM(n, k) > n. We also propose a general construction which yields (under some
conditions) N'(n +n' k) < N(n, k) + N(n', k).
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1 Introduction

ALCATEL SPACE INDUSTRIES asked us to consider the following problem. Signals arriving at a
telecommunication satellite (via input links) have to be routed through a network to amplifiers

*Outputs of such networks use “ Travelling Wave Tube Amplifiers” (TWTA) technology.
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(outputs, also called Travelling Wave Tube Amplifiers, i.e., TWTA [3]). The links of the networks
are made of wave guides (for background information, see [3]).

The problem comes from the fact that the amplifiers may fail during the satellite’s lifetime and
cannot be repaired. So one needs to have more amplifiers than the number of signals. One wants
to be able to route the arriving signals to valid amplifiers, that is to find disjoint paths between the
inputs and valid outputs in the interconnection network. The network consists of switches with 4
ports and which can realize the connections displayed in Figure 1.
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Figure 1: A switch can use 4 different states.

Due to technological constraints, two signals cannot cross in a switch. A switch can be joined
to an input or an output or another switch or a dead end. If the network is able to route signals
to amplifiers in the presence of k faulty amplifiers, we will say that the network is a valid k-fault
tolerant network.

There are variants of the problem according to whether each signal needs a specific amplifier
(see the articles [1]) or can be sent to any of the amplifiers (that is all the amplifiers have the same
function). Here, we suppose we are in this latter case of identical amplifiers. Then, we do not
worry about the impossibility of realizing two opposite connections in a switch. Indeed, as shown
by Figure 2, suppose that the routes from input 4 to output o and that of input i’ to output o' cross
in a switch (Figure 2(a)). Then it suffices to send input i to output o' and input ' to output o
(Figure 2(b)) to avoid the crossing and so we can use the switch in a valid manner.

In all our figures we use the following notation: an arrow represents an input, a circle repre-
sents a switch and a rectangle or square represents an amplifier, i.e., an output.
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Figure 2: We can avoid a forbidden state (a) by applying the transformation (b).



Example 1 Figure 3 represents a 4—fault tolerant valid network with 4 inputs and 8 amplifiers
(among them 4 can fail). This example shows how to route the signals in the inputs iy, i9, i3 and
i4 to the 4 remaining valid outputs (the failed ones are indicated with a cross inside).

Figure 3: A 4-fault tolerant valid network with 4 inputs, 8 amplifiers and 4 failures represented by
crosses inside amplifiers.

Realizing a valid k—fault tolerant network is easy, but it is difficult to optimize it. For many
reasons (layout properties, reliability, energy saving, etc), but mainly to decrease launch costs, it
is crucial to minimize the network’s physical weight, i.e., to minimize the number of switches, the
number of links (waveguides) and their length. Remember, on-board networks are not simple small
electronic devices. The technology of such networks is based on wave guides with specific switches
and TWTA amplifiers; the weight of such components is not negligible (cf. [3]). As launch and
switch costs are dramatically high, it is worth saving even one switch. Other optimization criteria
can be considered, such as minimizing the length of the routes (either in terms of the number of
switches crossed or the physical length of the links) to decrease power loss, the number of routes to
change or the number of elementary switch rotations in case of a failure (to increase energy savings),

etc.
Here, we restrict ourselves to find a valid k fault tolerant network with
e identical amplifiers;
e a number of signals equal to the number of inputs;

e a minimum number of switches.

In Section 2 we formalize the problem. Then, in Section 3 we give some preliminary results
and show that in the presence of 1 or 2 faults an optimal design needs as many switches as inputs.
In Section 4 we prove a composition theorem which enables us to construct large networks from
smaller ones; this construction happens to be optimal for 3 or 4 faults. Finally, in the conclusion
we indicate recent results obtained on the problem and new perspectives.

2 Formalization of the problem

The problem formulated in the introduction can be restated more formally as follows.



Definition 2 An (n, k)-network G = ({I,0, S}, F) is a graph (V, F) where V is partitioned into
the 3 subsets (I,0,S) respectively called the inputs the outputs and the switches, satisfying the
following constraints:

e there are n inputs and n + k outputs;
e cach input and each output is connected to exactly one switch;

e switches have degree at most 4.

Definition 3 An (n,k)-network G = ({I,0, S}, E) is valid if for any subset O’ C O with |O'| > n
there exists in G n edge-disjoint paths from I to O'.

Definition 4 We will denote by N (n, k) the minimum number of switches (i.e., the cardinality of S)
of any valid (n, k)-network. A valid (n, k)-network with A(n, k) switches will be called minimum.

Our design problem consists of determining N (n, k) and of constructing minimum valid networks
or at least valid networks having a number of switches close to this optimal value. We note that
testing the validity of a network can be done by solving (Z) flow problems and therefore we can use
network flow theory. However constructions in the literature of n connected graphs cannot be used;
indeed the reader has to be careful that in our networks we have 3 classes of vertices: two of them
(inputs and outputs) have a given cardinality and we want to minimize the cardinality of the third
class (switches). Furthermore we are interested in paths only between the inputs and the outputs
(and not between any pair of vertices).

3 Preliminary results and the case of k < 2 failures

The design problem is of interest only if & > 1. Otherwise, if there is no failure, we can connect
directly each input to an output link and so there is no need of a network.

Lemma 5 In a minimum valid (n,k) network, with k > 1 failures, there is no switch connected to
2 or more inputs.

Proof. If there was a switch connected to 3 (or a fortiori 4) inputs, it will be impossible to
route the input signals through the only remaining link. Now, suppose that a switch sg is connected
to 2 inputs. If sqg is also connected to an output, the failure of this output leaves only one available
link for two input signals. Otherwise, s¢ is connected to two other switches s; and so. In this case
we can remove sg and connect directly the two inputs respectively to s; and s9 (as amplifiers are
identical). Therefore, we obtain a new valid network with one fewer switch which is in contradiction
with the minimality hypothesis. O

Corollary 6 If k> 1, then N'(n,k) > n.
Proposition 7 N (n,1) = N(n,2) = n.

Proof. By Corollary 6, it suffices to construct a valid (n,2) network with n switches. Such a
network is given in Figure 4; it contains n switches s;, 1 < j < n, each being connected to the



switch sj4q for 1 < j <n —1 and to the switch s;_; for 2 < j < n. Each switch s; is connected to
an input 7; and an output o;. Furthermore, s; is connected to output oy and s, to output o,41.
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Figure 4: A minimum valid 2—fault tolerant network.

Now, suppose the two failing outputs are o;, and o, with j; < j.

e If j; = 0 we route the input ; as follows: for 1 < 7 < jo to the output o; via s;; for jo < j <n
to output o0j41 via s; and sjy1; for j = n to output 0,41 via s,.

e If jo = n + 1 then we route the input i; as follows: for j = 1 to oy via sy; for 1 < j < j; to
0j—1 via sj and s;_1; for j; < j < n to oj via s;.

e If 1 <7 < jo2 <m then we route the input i; as follows: for j =1 to og via sq; for 2 < j < 7
to 0;_1 via s; and s;_1; for j1 < j < j2 to 0; via s;; for jo < 57 < n —1 to 0j4 via s; and
sjy1; for j =n to op41 via s,.

So, the network is valid. O

4 A recursive construction

We have to warn the reader that if you have a valid (n, k) network with N switches and a valid
(n', k)-network with N’ switches, then the trivial union of them is unfortunately not a desired
network as it contains n+n'+ 2k outputs (i.e., amplifiers) and can tolerate only k failures. However
is also possible to give a recursive construction which enables us to double the number of failures.
Consider two valid (n, k) networks G; and Ga. Replace (n + k — 1) outputs in G and (n +k — 1)
outputs in Ga by 2(n + k — 1) links connected pairwise (one from G; paired with one from G3) to
n + k — 1 switches with 2 outputs. One can check that we obtain a valid (2n,2k)-network. This
construction can be interesting due to its symmetry and simplicity. Unfortunately, it gives poor
asymptotic bounds and we found a more efficient one (see the next theorem).

Definition 8 An Is—switch is a switch connected to one input, two outputs and one other switch.
In the example of Figure 3 the 4 peripheral switches are Is—switches.

Theorem 9 Let k be even. If there exists a wvalid (n,k) network with N switches and a wvalid
(n', k)-network with N' switches both containing at least % Iy —switches, then there exists a valid
(n +n' k) network with N + N' switches.



Proof. Let G (resp. G') be a valid (n, k)-network (resp. (n/, k)fnetwork) and let s1,89,...,8%
2
(resp. si,sh,...,8% ) be % I, switches in G (resp. G'). For 1 < S , let v; and w; (resp. ~} and
2
w!) be the two outputs connected to s; (resp. s;).

Now, we construct a network H as follows. Consider a copy of G and a copy of G'. For 1 <1 < %
remove the outputs w; and w} and join s; and s, (see Figures 5 and 6). H has n + n' inputs and
(n+k)—%+ (' +k) —% =n+n+k outputs. So, H is an (n + n’, k)-network. Furthermore, H
has N + N’ switches. To finish the proof it remains to show that H is valid.

Figure 5: A valid (n + n', k)-network H (k even) can be obtained by the composition of a valid
(n, k) network G with a valid (n’,k) network G' each with & I, switches.

Let K be a set of k failed outputs in H and let kg (resp. k) be the number of failed outputs
in the copy of G (resp. G') in H. We have kg + ke = k. Without loss of generality, let us suppose
that kg > ke (the reverse case can be dealt with by exchanging the roles of G and G'); therefore
kg > % Among the k¢ failures, we distinguish those on outputs of type v, and we denote by

= {Jj1,...,jn} the indices of the failed 7, i.e., 7_;-1, o ’7.;'11'

Now, let us route the n inputs in the copy G. In G, consider the following set of k failures: the
k¢ failures of H, plus k¢ outputs of type wj, j € J with J D J' (that is we necessarily choose as
failed the h outputs wj,,...,w;,; the others are arbitrarily chosen among the w;). As G is a valid
(n, k)-network we can route in G the n inputs of G to n outputs that are not failed. In H, we route
an input of the copy of G using the above routing obtained in G except if it was routed to an output
wj in which case we route it to 7 using at the end the switches s; and s' Note that routing to 77
can happen only if 7 &€ J; therefore j & J' and so 77 is not failed in H.

Now, it remains to route the n’ inputs in the copy of G'. For that, we can use an output in the
copy of G’ excep‘r if it is failed in H (there are k¢ such failures) or used by the inputs of G that is
of the form 77 with j ¢ J (there are k — k¢ such amplifiers). So, there remain n’ valid outputs in
G' and we use the routing in G’ as it is a valid (n', k) network. O



Notice that if G (resp. G') contains m (resp. m') Ir-switches, with m > £ and m/ > £, then H
contains (m +m' — k) I switches. In particular, if G and G’ contain at least k Iy switches, H also
contains at least k Io—switches and we can apply recursively the theorem.

Corollary 10 If there exists a valid (n,k) network with N switches and at least k Iy switches, then
for any integer p there exists a valid (pn, k)-network with pN switches and k Iy—switches.

Proof. By induction on p. The property is true for p = 1 as G is a valid (n, k) network. Suppose
it is true for p and let G’ be the valid (pn, k)-network with k Iy—switches. By applying Theorem 9
to G and G', the graph H obtained is a valid ((p + 1)n, k) network with still & I switches. O

Proposition 11 N (4p,4) < 5p.

Proof. For k = 4, Figure 3 displays an example of a valid (4,4) network with 5 switches, 4
of them being Ir—switches. So, by Corollary 10 we can construct a valid (4p,4)-network with 5p
switches. O

The cases p = 2 and 3, that is n = 8 and 12, are illustrated in Figure 6.

@

Figure 6: Examples of recursive composition. (a) displays a valid (4,4) network. With this network,
we obtain by composition a valid (8,4)-network (b) and a valid (12, 4)-network (c).

In a preliminary version [2| of this paper, we conjectured that N (4p,4) = 5p. This result has
been proved by S. Pérennes and D. Toth [4].

Theorem 12 (S. Pérennes, D. Toth) N (n,3) = N (n,4) = [2].



We similarly obtain constructions for k = 6,8, ... starting with small examples [2|. For £k =6 a
valid (6,6) network is given in Figure 7. One can prove that it is a minimum network [2, 4]. It has
9 switches, among them 6 are Ir,—switches. So, we have N (6p,6) < 9p.

Figure 7: A minimum (6,6)-network with 9 switches, including 6 Is—switches.

Unfortunately, for general p, these networks are not minimum. For example in Figure 8, we
have illustrated a valid (12, 6)-network with only 17 switches to be compared with the 18 switches
obtained by Theorem 9. It is also a minimum network (see [4]).

Figure 8: A minimum (12,6) network with only 17 switches.

5 Conclusion

In this paper we have given preliminary results and a recursive construction of valid (n, k)-networks.
Using this construction and other variants we have been able to construct small networks of practical
importance; for example for the satellite ASTRA1K we have reduced the number of switches used
by 50 (from a total of 249).

Recently, S. Pérennes and D. T6th [4] have found a general methodology which enables them both
to obtain lower bounds on N (n, k) and to derive constructions of valid (n, k) network asymptotically
matching the lower bounds. For example they have shown N(n,6) = 5 + /% + O(1), N(n,8) =
42 /240 (n%), N(n,10) = 12 + © (y/n) and for larger k they show that N'(n, k) < 32 + k,
and this bound is asymptotically tight. In all the example we have found, the values of N'(n, k) are
the same (or differ by at most one) for & = 2p or 2p + 1; perhaps this property is always true.



Many variants of this problem are of practical interest and are considered in forthcoming papers.
An important case appears to be one in which, without failures, an input signal can be routed directly
to some amplifier. That means that a switch connected to an input should also be connected to
at least one output. That is the case for our optimal solutions for k& = 4 but not for the optimal
solutions for greater values of k. Partial answers are given in [4]; for example, with 6 failures one
needs n+ %n + O(1) switches. D. Toth also considered the case where the network should be planar
which is interesting for the practical realization. As stated in the introduction other optimization
criteria can be considered.

Furthermore in practice the inputs are not all used simultaneously and we have to route p signals
arriving in p entries (chosen among n) to p amplifiers (chosen among p + k). We define a (p,n, k)
network with p < n as having n inputs and p + k outputs. It is valid if we can route any set of p
inputs to any set of p outputs. We could define N (p, n, k) as the minimum number of switches of a
valid (p,n, k)-network. The determination of N'(p,n, k) appears very difficult.

A completely different class of problems appears if an input signal needs to be routed to a
specific kind of amplifier. An extremal case appears when we have to realize a permutation of the
inputs on the valid outputs. When there is no failure this is an old problem studied in multistage
interconnection networks. For details on this problem we refer the reader to [1].
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