Grooming in Unidirectional Rings: $K_4 - e$ Designs

Jean-Claude Bermond
Mascotte Project, I3S-CNRS
INRIA, Université de Nice-Sophia Antipolis
B.P. 93, F-06902 Sophia-Antipolis Cedex
FRANCE

Charles J. Colbourn
Computer Science and Engineering
Arizona State University
PO Box 875406
Tempe, AZ 85287-5406
U.S.A.

Alan C.H. Ling
Computer Science
University of Vermont
Burlington, VT 05405
U.S.A.

Min-Li Yu
Mathematics and Statistics
University College of the Fraser Valley
Abbotsford, BC
CANADA V2S 4N2

Abstract

In wavelength division multiplexing for unidirectional rings, traffic grooming is used to pack low rate signals into higher rate streams to share a wavelength. The grooming chosen determines the number of add-drop multiplexers used for the optical-to-electronic conversion. The determination of groomings to use the fewest multiplexers is equivalent to a graph design problem, which has been solved when up to four signals can be packed into a stream. We completely settle the case here when five signals pack into one stream, using old and new results on $(K_4 - e)$-designs.

1 Introduction

Traffic grooming is the process of packing low rate signals into higher rate streams which share a wavelength. In optical networks, particularly in SONET ring networks, grooming has received much attention; surveys are given in [5, 10, 16, 17]. The setting is a wavelength-division multiplexed (WDM) network; each wavelength is an optical communication medium
which connects all nodes in a circle, and may be unidirectional or bidirectional. An *add-drop multiplexer (ADM)* is required on each wavelength at each node at which traffic is added or dropped. In general, there are two main goals, given a set of traffic requirements between nodes. The first is to minimize the number of wavelengths employed, while the second is to minimize the total number of ADMs (the *drop cost*). As we shall see, these goals can be in conflict.

A case of substantial interest (see [2, 3] and references therein) arises with symmetric uniform traffic requirements on a unidirectional ring. In this scenario, for every source node \(i\) and every target node \(j\), the traffic requirement is for the fixed fraction \(\frac{1}{n}\) of a wavelength. The quantity \(C\) is the *grooming ratio*, because we can “groom” \(C\) circles onto the same wavelength. A similar problem arises for bidirectional rings [7, 9], but we focus on the unidirectional case here.

Bermond and Coudert [2] establish that minimizing drop cost of a grooming on \(n\) nodes with grooming ratio \(C\) can be expressed as an optimization problem on graphs, as follows. Partition the edges of \(K_n\) into subgraphs \(G_1, \ldots, G_w\) so that each \(G_i\) contains at most \(C\) edges, and the sum of the numbers of vertices of nonzero degree in the \(\{G_i\}\) is minimized. Such a partition of \(K_n\) is a *C-grooming*; see also [13]. As with the work of Wan [19] (see also [7, 9]) for bidirectional rings, this recasts the problem for unidirectional rings as a graph decomposition problem.

When \(C = 1\), each class forms a single edge and no savings in drop cost is possible. When \(C = 2\), classes contain at most two edges, since the line graph of \(K_n\) is eulerian, by taking edges corresponding to consecutive vertices on an eulerian cycle yields a drop cost of \(\lceil 3^{2(n-1)} \rceil\). Bermond and Cerné [1] settled the case when \(C = 3\). When \(C = 4\), the problem is somewhat easier again (see [3, 15]) and the drop cost is \(\binom{n}{2}\) except when \(n \in \{2, 4\}\), in which case it is one larger.

In each of these cases, the minimum drop cost is realized by a grooming in which the number of wavelengths is minimum. This does not occur in general. To see this, we use a simple economic model. Imagine that we can purchase graphs on at most \(C\) edges. The price we pay for a graph is the number of vertices of nonzero degree in the graph; this is precisely the number of ADMs required for this wavelength. We must “purchase” all edges of a complete graph among the graphs chosen, at the lowest possible total cost. In this context, it is natural to calculate the cost per edge obtained, which is the ratio of the number of vertices to the number of edges in the graphs chosen. The smallest ratio for a small number \(m\) of edges are 2 for \(m = 1\), \(\frac{3}{2}\) for \(m = 2\), 1 for \(m = 3\), 1 for \(m = 4\), \(\frac{4}{3}\) for \(m = 5\), \(\frac{6}{5}\) for \(m = 6\), and \(\frac{5}{4}\) for \(m = 7\). Since the ratio for \(C = 6\) is lower than that for \(C = 7\), we prefer to take graphs in the partition with six edges rather than seven. As a result, it is possible for the minimum drop cost to be realized only by groomings with more than the minimum number of wavelengths (in fact, a \(K_4\)-design on 13 points has 13 graphs and drop cost 52; yet only 12 wavelengths are needed, but the lowest drop cost is 54). Indeed suppose that for some integer \(k\), we have that \(\binom{k}{2} < C \leq \frac{k^2}{2}\). Then the best C-grooming in terms of drop cost is actually a \(\binom{k}{2}\)-grooming for some values of \(n\), in particular when a balanced incomplete block design of order \(n\), block size \(k\), and index one exists (see [6] for existence results on these).

The ratios calculated determine the drop cost only if we can indeed partition \(K_n\) into
copies of the relevant graphs. So, although the ratios provide a lower bound, it remains an open question whether this phenomenon occurs for any \(C < 7 \), or for any \(C \) not satisfying \(\left(\frac{k}{2} \right) < C \leq \left[\frac{k^2}{2} \right] \). For \(C \leq 4 \), we have seen that lowest drop cost is realized among groomings with the fewest frequencies (see [1]). Our main objective here is to establish that the same holds true for \(C = 5 \); indeed we prove:

Theorem 1.1 [Main Theorem] The minimum drop cost for a 5-grooming of \(K_n \) is

\[
4 \cdot \left[\frac{1}{5} \binom{n}{2} \right] + \begin{cases}
0 & \text{ if } n \equiv 0, 1 \pmod{5} \text{ and } n \neq 5 \\
1 & \text{ if } n = 5 \\
2 & \text{ if } n \equiv 2, 4 \pmod{5} \text{ and } n \neq 7 \\
3 & \text{ if } n = 7 \\
3 & \text{ if } n \equiv 3 \pmod{5} \text{ and } n \neq 8 \\
4 & \text{ if } n = 8.
\end{cases}
\]

and this drop cost is realized by a 5-grooming using the minimum number \(\left\lceil \frac{n(n-1)}{10} \right\rceil \) of wavelengths.

We shall see that this meets the elementary lower bound except when \(n \in \{5, 7, 8\} \).

2 Lower Bounds

Given any 5-grooming, we first determine the structure under the single assumption that the drop cost is minimum. In a putative 5-grooming, let \(a_i \) be the number of classes containing \(i \) edges, for \(i = 1, 2, 3, 4, 5 \). We establish some inequalities on \(i \) subject to the constraints that \(\sum_{i=1}^{5} i \cdot a_i = \binom{n}{2} \), and that \(2a_1 + 3a_2 + 3a_3 + 4a_4 + 4a_5 \) is minimized, where each \(a_i \) is a nonnegative integer. Considering such selections of \((a_1, a_2, a_3, a_4, a_5) \) which realize the minimum does not, of course, guarantee that there is such a 5-grooming, but it tells us what is possible in theory as the minimum.

We tabulate some cases here in which the weighted sum is not minimum, showing a selection leading to a lower value:

\[
\begin{align*}
a_1 &\geq 2 & (a_1 - 2, a_2 + 1, a_3, a_4, a_5) \\
a_2 &\geq 2 & (a_1, a_2 - 2, a_3 + 1, a_4 + 1, a_5) \\
a_3 &\geq 3 & (a_1, a_2, a_3 - 3, a_4 + 1, a_5 + 1) \\
a_4 &\geq 2 & (a_1, a_2, a_3 + 1, a_4 - 2, a_5 + 1) \\
(a_1, a_2) &= (1, 1) & (a_1 - 1, a_2 - 1, a_3 + 1, a_4, a_5) \\
(a_1, a_3) &= (1, 2) & (a_1 - 1, a_2 + 1, a_3 - 2, a_4, a_5 + 1) \\
(a_1, a_4) &= (1, 1) & (a_1 - 1, a_2, a_3, a_4 - 1, a_5 + 1) \\
(a_2, a_3) &= (2, 1) & (a_1, a_2 - 1, a_3 - 1, a_4, a_5 + 1) \\
(a_3, a_4) &= (2, 1) & (a_1 + 1, a_2 - 1, a_3, a_4 - 1, a_5 + 1) \\
\end{align*}
\]

In plain terms, this states that at most one of \(a_1, a_2, \) or \(a_3 \) is nonzero, and if so then it is one. In the first and third cases, \(a_3 \) may then be 0 or 1; in the second, it must be zero. Now
observing that \(\binom{n}{2} \) is always \(0, 1, 3 \pmod{5} \), we find that \((a_1, a_2, a_3, a_4) \) is one of \((0,0,0,0), (1,0,0,0), (0,0,1,0), \) or \((0,0,2,0)\).

Now it is easily seen that if this minimum can be achieved, it can be done (indeed, must be done) with the fewest wavelengths possible. Hence our goal is to partition \(K_n \), or \(K_n \) minus an edge, a triangle, or two triangles, into copies of \(K_4 - e \). We pursue this in the remainder of the paper.

3 Graph Designs and Constructions

Let \(G \) and \(H \) be (finite, simple, undirected) graphs. A \(G \)-decomposition of \(H \) is a partition of the edges of \(H \) into classes so that the edges within each class form a graph isomorphic to \(G \). When \(H \) is a complete graph of order \(n \), the graphs in a \(G \)-decomposition of \(H \) form a \(G \)-design of order \(n \) (and index one, since each edge of \(H \) appears in exactly one of the graphs chosen). A \(K_k \)-design of order \(n \) is a Steiner system \(S(2, k, n) \).

We shall be interested not only in taking \(H \) to be complete, but also taking \(H \) to be “nearly” complete. To this end, define a complete multipartite graph to be of type \(g_{i}^{n_{i}} \) if it has exactly \(\sum_{i=1}^{s} n_{i} \) classes in the multipartition, and there are \(n_{i} \) parts of size \(g_{i} \) for \(i = 1, \ldots, s \). A \(G \)-decomposition of the complete multipartite graph of type \(g_{1}^{n_{1}} \cdots g_{s}^{n_{s}} \) is termed a \(G \)-group divisible design of type \(g_{1}^{n_{1}} \cdots g_{s}^{n_{s}} \), and is often called a \(G \)-GDD for short. The special case when a \(G \)-GDD has type \(1^{r}h \) is an incomplete \(G \)-design of order \(r+h \) with a hole of size \(h \); in graph-theoretic vernacular this is a partition of the edges of \(K_{r+h} - K_h \) into copies of \(G \).

In view of the application to grooming, we are primarily concerned in this paper with the case that \(G = K_4 - e \), the unique graph on four vertices and five edges. We recall some existence results:

Lemma 3.1 [4] There exists a \((K_4 - e)\)-design of order \(n \) if and only if \(n \equiv 0, 1 \pmod{5} \) and \(n \neq 5 \).

Lemma 3.2 [8] There exists a \((K_4 - e)\)-GDD of type \(g^u \) if and only if \(u \geq 3 \), \(g^2 \left(\binom{u}{2} \right) \equiv 0 \pmod{5} \) (equivalently, \(g \equiv 0 \pmod{5} \) or \(u \equiv 0, 1 \pmod{5} \)), and \((g,u) \neq (1,5)\).

We prove another simple lemma.

Lemma 3.3 Let \(n \geq 1 \). Then there is an \((K_4 - e)\)-GDD of type \(n^2(2n)^1 \).

Proof: Let \(L \) be a latin square of size \(n \). The GDD to be formed has \(4n \) elements, \(\{r_1, \ldots, r_n\}, \{c_1, \ldots, c_n\} \), and \(\{s_1, \ldots, s_m : i \in \{0,1\}\} \). When \(L(i,j) = k \), form the \(K_4 - e \) containing edges \(\{r_i, c_j\}, \{r_i, s_{k0}\}, \{r_i, s_{k1}\}, \{c_j, s_{k0}\}, \) and \(\{c_j, s_{k1}\} \). This forms \(n^2 \) \((K_4 - e)s\) which are edge disjoint, and hence forms the required GDD. \(\square \)

Now we give the main construction.

Theorem 3.4 Let \(n \) be a positive integer, \(n \notin \{5, 7, 8, 9\} \), and write \(n = 5t + h \) for \(0 \leq h \leq 4 \). Then there exists a partition of \(K_n - K_h \) into copies of \(K_4 - e \) (i.e., an incomplete \((K_4 - e)\)-design of order \(n \) with a hole of size \(h \)).
<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcd cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abcd {ae, be, ce, de, cd}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feba bacd dcef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abfg cdgf cead efg {ca, cb, ce}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hfac aceg gbd bdfh [abcd] [efgh]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>agfe gbc dcd hcef habd bife def ghi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cfbk labh gfja gbeh kiab dgk kejh fdhl djba ceal chij lige eidf k1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lhbde egjc idch hgmf cfbm lagc aekh iefl fjla ibgk kdgf bdaj mia medb jkch klm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gleh hiof fklh qlib hemj mgkq aknb oaqg mipd pcjg fica odje nchq kije omlbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paeh ngdi okpc fnmo dpbf ldca ebcn qfej nljp bgfj dqhk amcj pq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kdmog niki rkh ojcm dgrp mcrn flre clkq fjdn pejn jqik mifh jbra cide mlpe pqr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>keba jghl hedo ahpc nhlq bfhq dbln qgco bgcm fpkc pbbc aqdm ilao nrao</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dqBi B1gm mach ckAd fqcA spfr inmo ectp aljc hBji egqi ratB cbip smtA pqam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>edfs sloh fbtb gApO Areh jcem fkIm litA Bpnt bNJa amsg kpdr gmgt gtcN cron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fjri lhpB bmgL lrqB cBSf sqbN kjsg jtqA nelli bokB jDop qhkC tndk dabA ekaB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fnga AB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pajmfdme kAjl jfGB Ahpe Bepq sAcN shiq sced Aimq oacg sblf bqak dbPl cCjn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tBdc lfan mkCt jdho iBaq opsc ikeo mBln tnhq bNJj tCep jsrM jlqe rDkA irpC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obCt skBG tglr CIdl Atsa tIfj qMrc bmgc qofd chgl ggCp orAl onMB Adgn kahC ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kpfn nerg brEB CfrH Acfb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG1l FqAc ngiq nALb amjF ojFe eimb pCie BrlA ApCo mjKg ckAb DtpI Coar aSgp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thjE Cslg lrDE FdpB BqMn aqef oehs Ebpq gkmO djnc smfb cDGg gAEb Fftn sirF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pgfA daAD toqB BnEC dmCo dkie rGgb hCBF l0ic sdqE lJBP EmcG tdGa bAhC GGep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bfibi fhGG jFDr jgeb aihE CijQ klfH FlgS skDE nGkG nDCA DEoF GBdE cCtf lDbq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EKFC oBDF nsth rfae sAjd tAke tMGl rpMn MDrH rHocQ FG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>secq aeAJ AgcB BstH Fbsn jfsh FaEQ HsEB bPlA lfGF hqnm jFAp oBJD hgDF ckFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thCM HFbp ogls pggB iTBg etph mGdin gCdf JEGC GQkD oblP ahrH rmfK aSgF qHf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jgmj iHM AeQO diBE afBD GAbP tKjA gCoHgkt Canl kiHa ADHd hCAG gEne cMgQd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFio CrDs ElHk eBn mcab bchE rBeg eFp nDps rDEp jHlr iLqD mLAS fnAt FmBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crn1 CqBT bDek ksdP tEDm reGF kBCn noHi acdt ceFK rotq iArs jdbM dtF1 pCm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Solutions for Smaller Values of n
Table 2: Incomplete \((K_4 - e)\)-designs

Proof: Lemma 3.1 handles cases when \(n \equiv 0,1 \pmod{5}\), \(n \neq 5\). In Table 1 (see also [12, 14] for examples), packings are given for all values of \(n\) less than 30 when \(n \equiv 2,3 \pmod{5}\), and also when \(n \in \{4,5,6,9\}\), writing \(abcd\) for the graph containing edges \(ab, ac, ad, bc, bd\). In each case except for \(n \in \{5,7,8,9\}\), what is shown is a collection of \(\binom{n}{2}/5\) edge-disjoint copies of \(K_4 - e\), and one \(K_2\), or \(K_3\) to account for the remaining 1 or 3 edges (when elements \(ab\) are listed, it is a \(K_2\); \(abc\) denotes a \(K_3\)). Taking the vertices of the small complete graph as the hole yields the required solution in these cases except when \(n = 4 \pmod{5}\), which omit a \(K_4\). Table 2 presents solutions for \(n \in \{14,19,24,29\}\), in each case having a hole on the four symbols \(a, b, c, d\). The “missing” \(K_4\) can be partitioned into a \(K_4 - e\) and a \(K_2\) to complete the partition (see Table 1).

We prove the theorem inductively. When \(n \geq 30\), write \(n = 10s + 5m + h\) with \(2 \leq s \leq m \leq 2s\) and \(0 \leq h \leq 4\). Form a \(TD(3,s)\) (equivalently, a latin square of side \(s\), or a \(K_3\)-GDD of type \(s^3\)). Replace points in two of the groups by five points each, and in the third group by either five or ten points. Since \((K_4 - e)\)-GDDs of type \(5^3\) and \(5^21^1\) exist by Lemmas 3.2 and 3.3, we obtain a \((K_4 - e)\)-GDD of type \((5s)^2(5m)^1\) whenever \(2 \leq s \leq 2s\). Now adjoin \(h\) new vertices, and fill in groups using incomplete \((K_4 - e)\)-designs of orders \(5m + h\) and \(5s + h\), each with a hole of size \(h\) to be aligned on the \(h\) new vertices. \(\Box\)

Theorem 3.4 establishes that \(K_n\) can, except when \(n \in \{5,7,8,9\}\), be decomposed into \(\binom{n}{2}/5\) subgraphs, of which \(\binom{9}{2}/5\) are copies of \(K_4 - e\). When \(n \equiv 2,3,4 \pmod{5}\), the remaining subgraph is a \(K_2\) or a \(K_3\). Table 1 gives decompositions of \(K_5\), \(K_7\), \(K_8\), and \(K_9\) as follows. \(K_5\) is decomposed into \(K_4 - e\) and a star plus an edge. \(K_7\) is decomposed into three \((K_4 - e)\)s, one \(K_3\) and a 3-star. \(K_8\) is decomposed into four copies of \(K_4 - e\) and two 4-cycles. \(K_9\) is decomposed into three copies of \(K_4 - e\) and two copies of \(K_3\); in this case,
unlike the previous three, the drop cost does reach the theoretical minimum. To complete
the discussion, it must be established that no 5-groomings exist with drop cost 8 for
\(n = 5, 18 \) for \(n = 7 \), or 23 for \(n = 8 \); this verification is straightforward but overly tedious. Then
the examples in Table 1 provide the best results, namely drop cost 9 for \(n = 5, 19 \) for \(n = 7 \),
and 24 for \(n = 8 \).

We therefore obtain the Main Theorem, Theorem 1.1.

4 A Hillclimbing Method

It must be admitted that Theorem 3.4 is not difficult to obtain, and that absent an application
it would not be of terribly much interest. However, it does have an application to
grooming. In fact, for all \(k \geq 1 \), it is not difficult to establish that \(K_{6k+4} - K_{4k+2} \) admits a
partition into copies of \(K_4 - e \), and hence the solutions for \(n \in \{ 22, 28 \} \) in Table 1 are not
needed. Nevertheless, in the process of proving the main theorem, we required a number of
small examples, and devised an interesting heuristic method to find them. We report on this
method here.

Consider \(K_n \). Compute \(s = \lceil \binom{n}{2}/5 \rceil \). This is the required number of \(K_4 - e \) subgraphs
in a decomposition of \(K_n \) (with 0, 1, or 3 edges remaining). So place at random a collection
of \(s \) copies of \(K_4 - e \) on \(n \) points. This fails in general to be a decomposition because some
edges appear in more than one \(K_4 - e \). How "bad" is it? Let us determine, for each edge
of the \(K_n \) that appears in a \(K_4 - e \), the excess number of times it appears in a \(K_4 - e \), by
setting the excess to be one less than the number of subgraphs in which it appears. This is
extended to all edges by assigning those in no \(K_4 - e \) an excess of zero. The defect of the
collection is then the sum, over all edges of \(K_n \), of the excess.

Now if the defect is 0, the collection is a decomposition; so the goal is to find simple
transformations which reduce the defect. Actually, we settle for less — we consider transforma
tions which do not increase the defect. We select at random some edge \(b \). If \(b \) appears
in at least one copy of \(K_4 - e \), choose \(F \) to be one of the \((K_4 - e) \)'s in the collection which
contains \(b \). On the four points of \(F \), there is exactly one copy of \(K_4 - e \), \(F' \), which does not
contain \(b \). However, \(F' \) contains one edge, \(a \), not contained in \(F \). If replacing \(F \) by \(F' \) does
not increase the defect (that is, if \(b \) has positive excess, or \(a \) appears in no \(K_4 - e \), prior to the
transformation) then replacement of \(F \) by \(F' \) in the collection is an effective transformation.

In general, this alone cannot produce edge-disjoint \((K_4 - e) \)'s because it never changes
the points underlying the graphs; indeed if two \((K_4 - e) \)'s share three or more vertices, they
cannot be made disjoint. So we define another transformation as follows. Let \(F \) be one of
the graphs, and let \(v \) be a vertex of degree two having neighbours \(x \) and \(y \). Select at random
a vertex \(w \) not appearing in \(F \), and let \(F' \) be the graph obtained from \(F \) by replacing \(v \) by \(w \).
This transformation is effective if the excess of \(\{v, x\} \) plus the excess of \(\{v, y\} \) is no smaller
than the number of appearances of \(\{w, x\} \) plus the number of appearances of \(\{w, y\} \), prior
to the transformation. This second transformation allows the set of vertices in one subgraph
to change by replacement of a single vertex.

It is not clear \emph{a priori} that these two transformations suffice to produce \((K_4 - e) \)-designs.
However, we proceeded by selecting at random an edge, choosing a \(K_4 - e \) containing this
edge, and carrying out one of the two transformations if and only if it is effective. Our
computational experience with this method is very encouraging. Starting with random sets of the appropriate number of $K_4 - \varepsilon$ graphs on 25 vertices, we found $(K_4 - \varepsilon)$ designs in as few as 900 transformations, and rarely encountered the need for more than 25000. Nevertheless, the method is heuristic, and can cycle indefinitely. For this reason, we placed a limit on the number of transformations of 100000, and restarted with a new random collection if this iteration limit was exceeded.

The edge-disjoint $(K_4 - \varepsilon)$s in Table 1 are some of those produced by this hillclimbing method. We made a very simple adjustment to the method, by permitting the specification of certain edges not to appear in any $K_4 - \varepsilon$. This is handled by defining excess for such edges to be the number of appearances (hence excess zero corresponds to no appearance). By specifying edges of a K_h not to appear, the method then constructs incomplete $(K_4 - \varepsilon)$-designs; examples with $h = 4$ appear in Table 2.

Hillclimbing techniques have been remarkably effective in a number of problems [11]. The one presented here differs from the one for Steiner triple systems [18]. In that case, triples are changed to permit the addition of a new triple; here we start with the correct number of $K_4 - \varepsilon$ graphs, and employ hill-climbing to make them more and more edge-disjoint.

Acknowledgments

Research of the first author was supported by the European project CRESCCO. Research of the second and third authors is supported by the Army Research Office under ARO grant DAAD19-01-1-0406. The fourth author thanks CNRS-INRIA-UNSA for the support and hospitality of the MASCOTTE project where some of the research was done during his visit. All authors thank the two referees for their helpful comments.

References

