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ABSTRACT

Let us call a regular packing of K, with K;'s a set of edge disjoint
subgraphs of K, isomorphic to K =uch that the partial graph G, called
the leave of the packing, generated by the edges not covered is regular.
Similarly, a regular covering of I, with K's is a set of subgraphs of
K, isomorphic to K which cover all the edges of K, at least once and
such that the multigraph H, cailed the excess of the covering, obtained
by deleting K, from the union of the Kj's, is regular. Here we study
maximum regular packings and minimum regular coverings. More
exactly we determine the minimum degrees of the leaves and excesses in
case of regular packings and coverings of K, with Kj's and K's . We
also exhibit minimum regular coverings containing maximum regular
packings.

1. Introduction

A classical problem in design theory concerns the existence of (n,k,)\) BIB designs.
It is well known that the existence of a (n,k,1) BIB design is equivalent to the
existence of a decomposition of the complete graph K, into K;'s. It is also well
known that such a decomposition can exist only if n(n—1)=0 (mod k(k—1)) and
n—12=0 (mod k—1). These conditions have been shown to be sufficient for any k and
n large enough (Wilson [18]) and also for k = 3 (for a survey on Steiner triple systems,
sec Doyen and Rosa [7]), k = 4 and k = 5 (see Hanani [8]). When n does not meet the
necessary conditions one can either iry to find the maximum cardinality of a packing
of K;'s into K, (that is the maximum number of Kj's included in K,), or the
minimum cardinality of a covering of K, with K,’s (that is the minimum number of
edge disjoint K's necessary to ‘cover all the edges of K, at least once). Such values
have been completely determined for k = 3 (see Hanani [8]) and for k =4 (see
Brouwer [5] and Mills {12,13]).

Here we are interested in a slightly different problem that we call regular packing
or covering of K, with K}'s. This problem was initially motivated by a problem of
interconnection networks, called bus networks of diameter 1, modeled by hypergraphs.
In such a network there are n processors connected to buses. Each bus contains the
same pumber & of processors. For every pair of processors there must exist at least one
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bus containing them {diameter 1). These conditions correspond to the classical covering
of K, with K;'s. A further requirement (of regularity) is that each processor belongs
to the same number of buses, which gives rise to the notion of regular covering (for
details see Bermond, Bond and Sacle [3] and{2]).

A regular packing of K, with K,'s is a set of edge disjoint subgraphs of K, iso-
morphic to K, such that the partial graph G, generated by the edges not covered, is
regular of degree dg. In the literature G is also called the leave of the packing (see
[6]}. In other words we want to find a regular graph G such thet K, — G can be
decomposed into F(;'s. Note that s regulsr packing of K, with K's is just a pack-
ing with K's such that each vertex of K, belongs to the same number of I;'s. We
shall say that a regular packing is marimum if d; is as small as possible.

Similarly, 8 regular covering of K, with K's is a set of subgraphs of K, iso-
morphic to K, which cover all the edges of K, at least onece such that the multigraph
H, obtained by deleting K,, from the union of the Ky 's, is regular of degree dy. The
multigraph H is also called the excess of the covering. In other words we want to
find a regular multigraph H of degree dy such that K, + H can be decomposed into
K,'s. We shall say that a regular covering is minimum if dy is as small as possible,

Furihermore we are interested in finding, when it is possible, a minimum regular
covering of K, with K;’s containing s maximum regular packing. That is equivalent
to find whether there exist graphs &, dg-regular, and H, dy-regular, with dg and dy
minimum, associated respectively to the packing and covering such that the {dg+dy)
regular graph G + H can itself be decomposed into K,'s. In other words, for that
purpose, it is sufficient to find a maximum regular packing such that the dg-regular
graph G can be covered by K,'s in such a way that every vertex belongs to
(dg +dy)/{k—1) graphs K}'s (obviously a covering of a subgraph G of K,, with K's is
a set of K;'s containing all the edges of G).

The following proposition is immediate

Proposition 1.1

The degree dg of the regular leave G of a regular packing of K, with K, 's satisfies
the following equalstics:

n—1—dg 80 (mod k—1)

n{n—1-dg) =0 (mod k(k—1)).

The degree dy of the regular excess H of a regular covering of K, with K, ’s satisfies
the following equalitics:

n—1+dy =0 (mod k~1)

n(n~—1-+dy) =0 (mod k(k-1))

From that proposition, one can easily deduce lower bounds on dg; and dy .

Here we show that these bounds are always reached in the cases k = 3 or 4 by
constructing maximum regular packings and minimum regular coverings of K, with
Kg's and K 's for any n (except for n==8 in case of & packing with K's). In most of
the cases the covering constructed contains the packing.
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Let us remark that in some cases the optimum packings or oo§1=.mm given in the
fiterature ([5,13,14]) are necessarily regular (by counting arguments). However as we
want, if possible, to give a covering containing the packing, we give the construction
again.

2. Notation and basic lemmas

e K, will denote the complete graph on n vertices. Usually V(K,), the vertex set of
K,, will be Z,, the group of integers modulo .

o |x,,%9, ...,%,| will denote the complete graph on the vertices Iy,Tg, ...,y In
case r==2 it denotes an cdge.

o [z,%g, - - - T, | (mod n) will denote ({2 2ot e 24 ] 1=0,1,...,n—1}.

e K, — G denotes the partial graph obtained from K, by deleting the edges of G

from K, .
o If G mna H are graph# on the same set of vertices V, G + H denotes the multi-
graph with vertex set V containing the edges of G plus the edges of H {with eventually

multiple edges). o
e K, ., denotes the complete bipartite graph with vertex sets of cardinality r, and rg.

e K, , r denotes the complete multipartite graph . If ry=ry= . =1, =71 ther

we denote K, ., . by Kyxy - .
e Let & be a graph on k vertices. A paroilel class of G's on n = pk vertices is the
vertex disjoint union of p copies of G.

It is well known that the existence of a decomposition of Kjyx, into Kj's i
equivalent to the existence of h—2 orthogonal Latin squares of order r {or also to wha
is called a GD(h,1,r;hr) or T(1,r) design). Classical results are the following.

Lemma 2.1 (see Hanani {8])
(h—1)r =0 (mod 2)

Kpx, can be decomposed into Kj'sifand only if hr¥(h—1) =0 (mod 8)
h>3

Lemma 2.2 (see Brouwer, Hanani, Schrijver 4]}
K px, can be decomposed into Kysif and only if

(h—1)r =0 (mod 3)
hr¥(h—1) =0 (mod 12)
.} > 4, (h,r) #* (4,2) or (4,6)
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F.agaa.s.a?mmwm..aoq.m.szmm.wo.@?wozgcT:
If K,,, and K, ,, can be decomposed into graphs G, then Ky, o0 o, o can be decom-

posed into G forp # 2,6, 0L g <p fandif g = 0 for any p).
K, Eﬂ ?xw..w.ﬁﬂa can be decomposed into graphe G , then Ky, oy o o or can be
decomposed snto & forp #2,3,6,10and 0 < g <p. e

In [10] Husng, Mendelschn snd Rosa introduce a problem which can be formu-
lated as that of the existence of a decomposition of K, into graphs all iscmorphic to
K, except one isomorphic to K,. They give the necessary conditions.

The following results have been proved on this problem, which will be used in the
proof of the main theorem,

Lemma 2.4 {Brouwer [5])

K, con be decomposed inio one Ky and K y's if and only if n =7 or 10 {mod 12)
n % 10, 19. ,

Lerama 2.5 {Bermond, Bond [3}])

K, con be decomposed into one Ky and K8 ¢ : ;
10 s if and only ¢f n =7 or 10 d 1
n % 7,19, 22. ‘ vl mod 12),

In the mwmewon 5 we study 3 more particular case of this problem, since we want to have
the additional property that there exists, in the decomposition, a parallel class of I(;'s
on n ~ r vertices .

3. Main results

Theorem 3.1

If n > 3 there exist a maximum regular packing and a minimum regular covering of
K, with K3's where the graph G and multigraph H are as follows.

o) ifn=0 {(mod8), G isl-regular and H is 1-regular

i) fns=1 {mod8), G andH areemply

i) fn=2 (mod8), G isl-regular and H ia S-regular

iti) ifn=3 (mod6), G andH are empty
iv) in=4 (mod8), G is3-regular and H is 3-regular
v) ifn=5 (mod8), G isd-regular and H is 2-regular

Moreover there exists a minimum covering containing a mazimum packing in all
cases except case o)
Proof

First, from Proposition 1.1, the given values of the degrees of G and H are lower
bounds, Now we will prove that these bound are reached.
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Case o) (n=6t, 1221} :
Since Kge4y can be decomposed into K,'s, we get a packing of K, by deleting a vertex
and all the K5's containing it. The leave of the packing is a perfect matching.

is known (seg Mills [14] for a survey on the subject) that K, can be covered with
/3 %ztd\m._ K3's. In this case the covering is regular and the excess H is a perfect

matching.
Obviously in this ease it is not possible that the minimum covering contains the max-
imum packing since G and H are necessarily perfect matchings and the sum of two
perfect matchings cannot be decomposed into Ky's.
Case i) (n=6¢ +1, ¢ 1) and case iii) (n=6{+3, 12>0):
it is known that, in these cases, the graph K, can be decomposed into Kj's.
Case ii) (n=6142, t 21} :
The packing iz obtained exactly as i o), and the leave G is a perfect matching. A
regular covering of G with each veriex in three Kj's is obtained by Corollary 4.2
applied to the 3-regular graph formed by the sum of G and any 2-regular graph on the
same set of vertices.
Case iv) (n=0t-+4, 1 20) :
We distinguish two subcases:
i} t=2r, r 20
If r=0 then n=4 , G = K is itself 3-regular. We can take H = K, since the multi-
graph formed by two identical K ,’s can be decomposed into K3's , [0,1,2] (mod3).
If #2>1, K944 is the edge disjoint union of 3r+1 vertex disjoint graphs K 's and =
K(gr41)x4- By Lemma 2.1 Nﬁuicx; can be decomposed into Ky's. Therefore the leave
& consists of the 3r+1 vertex disjoint K 's. We shall take for the excess H the same
graph. As the multigraph formed by two identical K's can be decomposed into K3's,
G + H can also be decomposed into Ky's.
i) t=2r+1, r20
If =0 then n=10. A maximum regular pscking consists of the following Ky's:

[0,3,8], [1,4,5], {2,0,8], [3,1,7], [4,2,8],

(0,7,8], {1,8,8], [2,9,5], [3,5,8], [4,6,7].
The leave ¢ is the Petersen graph which is 3-regular. From Corollary 4.2 it can be
covered with each vertex in three Kg's. So we have covering of J ;o containing the
maximum packing where the excess H is a 3-regular multigraph.
If re=1 then n==22. The packing is given by the Kj's:

[0,1,3], [0,4,10] and [0,5,13] (mod 22).
The leave G is 3-regular and consists of the edges [0,7] and [0,11] (mod 22). It is the
union of a hamiltonian cycle and a perfect matching so, by Corollary 4.2, it can be
covered with each vertex in three Ky's. Thus we have a covering of Ky containing
the packing with an excess H which is 3-regular.
If r>2, K9r410 cen be decomposed into r graphs K ’s on vertex sets X, 1<i<r, one
K 10, on vertex set Y and a Kz 12,10 00 vertex set C‘K.,Cun
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From above the K, can be decomposed into Kg's plus the 3-regular Petersen graph.

From case o) each K, on vertex set X; can be decomposed into Ky's plus a perfect
matehing M, for 156 <r.

Now Ky 1210 can be obtained from the multipartite graph Kz bY deleting two
vertices in the same part. As from Lemma 2.1, K(, 12 can be decomposed into Ky's,
the graph Kz 1210 can be decomposed into Kj's vwnm two perfect matchings M and
M’ on | X;. Now we have a regular packing of K g0 Where the leave G i3 the
3-regular graph on 12¢-+10 vertices which consists of two parts: one is the Petersen
graph on 10 vertices, ihe other one is on 12r vertices: {|_j M; + M + M'}. According
to Corollary 4.2, both parts can be covered by Kj's in such & way that each vertex
belongs to three Kj's,
Thus we have s covering of K g, 410 containing the packing with an excess H which is
3-regular.
Case v) (n=6t+5, t220) :
If =0 then n=5 We have Gm=Kg and H=Cj, by covering G with the Kj's
{0,1,2] (mod 5).
If t==1 then n==11. The packing is given by the Kj's [0,1,3] (mod 11). The leave G is
the 4-regular formed by the edges [0,4] and [0,5] (mod 11). We obtain the covering
by adding the Kg's [0,1,5] (med 11). Note that the excess H is a hamiltonian cycle.
If 122, Kgpqs is the edge disjoint union of t vertex disjoint Kg's, on vertex sets X,
1<i<t, one K on vertex set ¥ and a multipartite graph K g5 According to
Lemma 2.1, there exists a decomposition of K{e41)xe into K4's. By deleting one vertex
we obtain s decomposition of Kg g5 into Kg's and a perfect matching M on the ver-
tex set | J X;.
Each K¢ on vertex set X; is the edge disjoint union of two vertex disjoint Kj3's and
a 3-regular graph which consists of & perfect matching M; and a cycle of length six Cg.
K is itself a 4-regular graph on Y. So we have a maximum regular packing of Kgys
with Kz's, where the leave G is the 4-regular graph which consists of two parts: one is
«,C M; + M+ C4), on veriex set | ] X, the other one is a K, on vertex set Y.
Both parts can be covered with each vertex in three Kj's , the K as in case n=5 and
the other one as shown in Corollary 4.3.
Thus we have a covering of K g5 containing the packing with an excess H which is
2-regular. O

Remark 3.2

The referee suggested to mention the following conjecture which seems very diffi-
cult.

Conjecture
For every given degree d, all d-regular graphs meeting the necessary conditions are
leaves of a packing of K, with K38, with finitely many exceptions.

Note that the case of hamiltonian cycles was solved by E. Mendelsohn [11] and the
general case of any 2-regular graph is a particular case of a result of Colbourn and
Rosa [6] also obtained by Hilton and Rodgers 19].
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Note that the above conjecture is in fact a special case of the following one of
Nash-Williams {15].

Conjecture (Nash-Williams)

If G is a graph of order n, n > 15, such that its number of edges is a multiple of 3,
3 . )
and every vertex has an even degree at leasl J.H.J then G can be decomposed into K3's.

Remark 3.3

K. Heinrich drew our attention to the following strong recent result of Rees {17}
which can be restated as foliows:

Theorern (Rees}

K¢, can be decomposed into o pex fect matchings and 0 parallel classes of Ky’s if and
only if at2f=6i—1 except for a=1 and t=1 or i=2 {corresponding to the non-
existence of Nearly Kirkman triple systems o [ order 6 or 12).

Using this theorem we can give a shorter proof of the existence of maximum regu-
lar packings for the non immediate cases nm6t+u (u=4,5) in the following way. Let
V(K,) = X|JY with [x |=6t, f¥ [=u. By the theorem above the Kg on X can be
decomposed into 2u-1 perfect matchings on X and 3t—u parallel classes of Kg's.
Then K, can be decomposed into the K, on Y, u—1 perfect matchings on X and
K4's formed by the parallel classes of Kj's on X and the 3tu triples obtained by join-
ing any vertex of ¥ to a perfect matching of X. Thus we have a regular packing of K,
with K4's for which the leave 7 consists of the K, on Y plus the u—1 perfect match:
ings on X and is clearly a regular graph of degree u~—1.

In fact we used only a corollary of the result of Rees. We needed only to decom:
pose Kg; into perfect suatchings and triangles (Note that such a decomposition solve:
the conjecture mentioned in Remark 3.2, when the graph is the union of d perfec
matchings).
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Theorem 3.4

If n 2> 4, there exist 6 moximum regular packing and o minimum regular covering of
K, with K's where the leave G and excess H are as follows.

o} Hn=0 (mod 12), G is 2-regular and H is 1-regular
iy fn=1 (mod 12), & and H are emply

ji) fn=2 {mod 12), G is l-regular and H is S-regular

i) ifne= {mod 12), & is 2-regular and H is 10-regular

vy ifn=d {mod 12}, G and H are emply

ix.:%m ?Z&Q?Q@?Rmiawa:&m&% m&.mmiaﬂ
ﬁ.a:ma ?:QawwvQmmm-wgiﬁ.a:a:mm TR.@S*
vii) ifn =7 (mod12), G isb-regular and H i8 B-regular
vili) ifn=8 (mod 12), G is l-regular and H 13 2-regular
ix) ifn=9 (mod 12), @ is 8-regular and H 18 4-regular
x) ifn=10 (mod12) € is 3-regular and H ia 3-regular
xi) fn=11  (moed 12), G is 10-regulor and H 18 2-regular

except for n=8 where G is 4-reguiar.
Moreover there exists s minimum regular covering which contains a maximum regular
wwox:wm in all cases except o) and xi) and n=18 (where we don't know whether it
exista).

Proof:

First, from Proposition 1.1, the given values of the degrees of G and H are lower
bounds (except for n=8). Now we will prove that these bounds are reached.

case o) (n=12¢, 121} :

We obtain a decomposition of K, into K 's and a parallel class of K3's by deleting
one vertex and the edges containing it from a decomposition of K4y into K's.
Thus we have a maximum regular packing with a leave G which is 2-regular.

A union of K5's cannot be covered with K 4's with each vertex in only one K 4. In order
to be able to find & minimum covering containing the minimum packing we would need
to have a decomposition of Ky, into K's and a parallel class of cycles of length four.
Sueh a decomposition esn not sxist for n=12. Maybe it does for bigger n,and we can
state the following problem.

Problem : Does there exists a decomposition of K g into Ky's and a parallel class
of Cys fort 227

However it is known thst there exists a maximum regular packing of Ky with K,'s
where the excess H is a perfect matching. Indeed it has been proved in {12] that there
exists a covering of K g with 12¢* graphs K's. Since each vertex belongs to 4t K 's,
the excess H is a perfect matching and the covering is regular.

case i) (n=12t+1, 12>1) and case iv) (n=12t-+4, £20) :

It is known that, in these cases, the graph K, can be decomposed into K 's.

case ii) (n=12t+42, 121} :

K 19142 is the edge disjoint union of a perfect matching M and a multipartite graph
Kot41jxp From Lemma 2.2, Kg41)xz can be decomposed into K ,'s. Let us take
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G =M ={]2i,2i+1], 0<i <6t }. We have a covering of ¢ with each vertex in two K,'s
by taking § [2i,26+1,2¢ 42,20 +3], 0<i<ht }.

So we have a covering of K 1y, containing the packing where the excess H is a 5-reg-
ular multigraph.

case iii) (n=12t+3, 121) :

K g0 is the edge disjoint union of a parallel class of Ky's and a multipartite graph
Kaanxs: By Lemma 2.2, K(y41)xa €2P be decomposed into K 4's. Let us take for G
the parallel class of Kj's which is a 9.regular graph. By Corollary 4.4 in section 4, we
know that any 6-regular graph that can be decomposed into Ky's can be covered by
K s with each vertex in four Ky's . We apply this result with the 6-regular graph
formed by G and any two other parailel classes of #(y's.

So we have a covering of K g3 containing the packing where the excess Hisa
10-regular multigraph.

case v} (n=12t+5, 120) :

First we prove the result for n=5 and 17.

If n=5 then G =K, and H is the & regular multigraph formed by two copies of Kj.
Indeed, the graph G +H can be decomposed into K 's by taking [0,1,2,4] (mod 5).

If n=17, the packing is given by the tollowing K 's: [0,1,4,68] (mod 17). The leave G is
formed by the edges [0,7] and [0,8] (mod 17). It is the union of two hamiltonian
cycles and can be covered with each vertex in four K ,'s by [0,2,5,9] (mod 17).

Now let n=12t+5, with 2>2. By Lemna 2.4, i 9047 8N be decomposed into one K
and Kg's, if 1. We take such a decomposition and delete two vertices of the K.
We obtain & decomposition of K g5 inte a Ky, two parallel classes of Kj3's (on the
12¢ other vertices) and K4's. So the leave & we obtain consists of two parts, oue is a
K5 and the other one is a 4-regular graph on 12¢ vertices, which is the union of two
paralle] classes of Ky's.

The K can be covered as in the case n =35, By Corollary 4.4 in section 4, any 6-regu-
lar graph that can be decomposed into K 5's can be covered by K 43, with each vertex
in four I 's . We apply this result to the G-regular graph formed by the part of G on
12t vertices and any other parallel class of K 4's on the same set of vertices.

So we have a covering of K 545 containing the packing where the excess H is a 8-reg-
ular multigraph.

case vi) (n=12t+6, t2>0) :

First we prove the result for n=6 and 18.

If n=6 then G =Kg is itsell 5-regular and H is a perfect matching. The covering is
given by the /i 's: [0,1,2,3], [0,1,4,5], |2,3,4,5}.

If n=18, then a regular packing can be obtained by taking [0,1,3,8] {(mod 18). An
optimal covering (which is regular in that case) is given in [12] by Mills. We note that
this covering does mot contain any maximum regular packing and we don't know il
such a covering does exist.

Now let n=12¢+6, with t>2. The graph K6 is the edge disjoint union of a paralle
class of Kg and a multipartite graph Kot 41)xs- By Lemma 2.2, K(a41)xs €21 be
decomposed into K 4's. Therefore we obtain a leave G which is a parallel class of Kg's
We cover each Kg of G as in the case n=6 and the excess H is a perfect matching.
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case vii) (n=12t 47, £ 20} :
First we prove the result for the cases na=y, 19,
If zMM ;magﬁmuixq is itself a 6-regular graph. We can take H =Ky since the multi-
graph formed by two copies of the same Ky can be decomr i s :
oL2,4] (mod 7. v ecomposed into K 's as follows:
If n==19, & maximum packing is given b
murn y [0,1,3,8] (mod 18) and the leave is a 6-regu-
lar graph G which is an edge disjoint union of K,'s : [0,4.10] (mod 19). So by Gcwmo.:
WQ 4.4, G can be covered by K 's with each veriex in four K,'s.
c%.%wm :ﬂ;wm +7, with £22. By Lemma 2.5, K (91410 ®an be decomposed into one Ky
u,w v.» 8, if 11, We ,o.a.:S such a decomposition and delete three vertices of the K.
nm chiain a Aansgvcm;_sJ of .WAEZL into a K, three parallel classes of Ky's (on the
other 12¢ 43,:2& and K,'s. So the leave G we obtain consists of the vertex disjoint
mm:_oa of a Ky and a 6-regular graph on 12¢ vertices, which can be decomposed into
3 9.
M,wa m,.Q can be covered as in the case n =7, By Corollary 4.4 in section 4, the part of
¢ ‘.ﬁ:nw is B-regular on 12¢ vertices can be covered by K ,'s, with each vertex in four
49 .
So we have a covering of K ; ini i
12¢47 containing the packing where : i -
iy + p g where the excess H is o 6-reg
case viii} (n=12t+8, t>0) :
First we prove the result for the case n=8.
If n=8§ &.a: there aim»..w no regular packing of Kz with K,'s with a leave 1-regular.
Indeed, if mc,nr a packing exists Ky — & should be decomposed into four Ra.m{:r
m»nr.ﬁgﬁn in two N.ﬁ%m which is easily seen to be impossible. A maximum regular
Mwa_m_w.m of Ky is mvgw.:_ma with & 4-regular leave G by taking two disjoint & ’s.
minimum regular covering of Ky with a 2-regular excess H is gi i
K s (found 11 g is given by the following
™ . m._,w.u;r:*w,m.&%,w,q.m_.a}?a_.ax_.ﬁm_._wb.ﬂ&
! ._N nmwAm:am contains the maximum regular packing since it contains two vertex dis-
joint K J's. .
ZoMe w_m... n==12¢{ 48, cwzw EN_ The graph Ko, is the disjoint union of a perfect
matching and a 55.:@2.9‘8 graph Kg 4 qxs. From Lemma 2.2, if ¢ > L, Kgteaxz
can be decomposed into Ky's. Let G be the matching {[2¢,2i+1] : =0, 1,..., 61 +3} It
can v.m covered .S_g each vertex in ome K, with the following K, 's :
.Q\.:. Au:w;. 442, 4043 14m0,1,..,,3t+1}. Note that the excess H is the vertex dis-
Joint union of cycles of length 4.
case ix) (n=12(-+9, t >0) :
It is 8%: known ﬁwwn Ki9413 ¢an be decomposed into K s, If we choose a K, and
ao_wg its ncmw vertices, we get a decomposition of K y2¢49 into four parallel classes of
MM Nm and K,'s. So the leave G is the 8-regular graph formed by four parallel classes of
3 8.
From Corollary 4.5, we have a covering of G with each vertex in four K 4’8
So we _E‘wm a covering of K 9,¢ containing the packing where the excess i is a 4-reg-
ular multigraph,.
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case x) (n=12{ 410, { >0} :
If =0 then n=10. The packing consists of the following K 's:
[0,2,8,9], [1,3,9,5], [2,4,5,6}, [3,0,6,7], [4,1,7,8]
The leave G is the Petersen graph which is a 3-regular graph.
In order to cover G with each vertex in two K 's, we add the {ollowing K 's:
[0,1,5,7], [1,2,6,8), [2,3,7,8], |3,4,8,5], [4,0,9,6]
If t=1 then n=22 . Let V(Kg) = Zy X Z;;. A maximum regular packing is given by
the following K 's:

{1(0.4),(0,4+1),(0,§ +3),(1,6)[(2,4 +9),(1.4),(1,6 +1),(1,§ +5)],
[(0,6),(0,§ +5),(1,i +6),{1,5 +9)} : 05 <10},

The leave G is the union of two vertex disjoint cycles of length 11 and a perfect
matching joining them. It can be covered by the following K s ¢

{10,408 +4),(1,645),(1,i+7)] : 0 <4 <10 }
where each vertex is in two K 's.
If t > 2, the graph K o440 is the edge disjoint union of one Ky, 3t vertex disjoint
K s and a multipartiie graph K, 410-
As 22, by Theorem 5.1, which will be proved in section 5, there exists a decomposi-
tion of the multipartite graph K 4 450 into K 's since the number of 4-sets is equal
to 3t. From the case n=10 , the graph K, is the edge disjoint union of K4's and a
Petersen graph. So the leave G is the vertex disjoint union of a Petersen graph and a
parallel class of K 's.
In order to obtain a minimum regular covering {with an excess H 3-regular) containing
the packing given above we add two parallel classes of K ,'s on 12t points and the K 's
we used to cover the Petersen graph in K.

case xi) (n=12t+11 £t >0) :

First we prove the result for ¢=0,1,2.

If t==0 then G=K,;; is itsell 10-regular. A minimum covering is given by
[0,1,4,8] (mod 11). Note that the excess H is a hamiltonian cycle.

If t=1 then n=23. A maximum regular packing with G 10-regular is obtained by tak-
ing the following K's : [0,1,7,21] (mod 23) . In order to cover G with each vertex in
four K 's we add the following ones : [0,1,11,10] (mod 23). Note that the excess H is
again a hamiltonian cycle.

If t=2 then n=35 . A maximum regular packing is given by : [0,1,4,14] and
[0,7,8,15] (mod 35). A covering containing it is obtained by adding the following K's :
[0,1,12,17] {mod 35). Note that the excess H is a hamiltonian cycle.

Now let n=121+11, with ¢2>3, the graph K, ,; is the edge disjoint union of ¢ vertex
disjoint K 5’s, one K, and the multipartite graph K59 jpyy. From Lemma 2.2, the
graph K(;41)x2 can be decomposed into K4's for t 2>3. Therefore Kyp19 1211 c8n be
decomposed into one parallel class of Kg's on 12t vertices and K's. Each K, is the
union of three vertex disjoint K,’s and an 8-regular graph. Let us take for leave G the
10-regular graph which consists of two parts, one is formed on 12t vertices by these
8-regular graphs plus the parallel class of Kj's, the other one is the K,;. Thus we
have a maximum regular packing.

The existence of a minimum regular covering has been proved in [13] where it is
proved that there exists a covering with (¢-+1)(12t+11) K's with each vertex in 4¢+4
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graphs K 's. Therefore the excess H is 2-regular and the covering is regular minimum.

Notice that in this last case we don't know whether there exists a minimum regular
covering which contains a minimum regular packing. O

Remark 3.5

The proof of the theorem suggests a lot of decomposition problems. The most gen-
eral one would be a problem analogous to the conjecture of remark 3.2, ie. that all
d-regular graphs meeting the necessary conditlons are leaves (respectively excesses} of
a regular packing (respectively covering) of K, with K/s. First interesting cases are
when the leaves or excesses are hamiltonian cyeles or more generally regular graphs of
degree two, which generalize Mendelsohn’s {11} or Colbourn and Rosa’s [8] result. For

example we state the following conjectures,

Conjectures

K9y minus o hamiltonian cycle
K 9¢43 minus a hamiltonian cycle
K944 plus a hamiltonian cycle
Kot 411 plus a hamiltonian cycle

can be decomposed into K g's

One can also ask for a generalization of Rees’ theorem.

Conjecture

K ¢ can be decomposed into o parallel classes of K,'s and B parallel classes of K’
if and only if 20:430=12t -1 (with a finile number of exceptions).

If we don't want parallel classes of K 's we obtain the problem introduced by
Huang, Mendeisohn and Rosa [10}. A related problem is considered in section 5.

Note that the problem of decomposing K, into « perfect matchings and f parallel
classes of K ;'3 for n=0 (mod 4) is easy to solve (essentially because a parallel class of
(s is the union of 3 perfect matchings).

4. Some lemmas

We state here some lemmas used in the proofs of the main theorem. The resuits
are not necessarily best possible, and they are given in the form used in section 3.
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Lemma 4.1 :

i) Let G be an r{r—1)-regular graph on n verlices that can be decomposed into K, 's.
Then G can be covered with K, 's, in auch a way that each vertex belongs to r-+1
graphs K, 's.

ii) Let G be an r{r—1)+1-regular graph on n vertices thal can be decomposed into
K,'s and a perfect matching. Then G can be covered with K, ,,’s, in such a way that
each verter belongs to r41 graphs K ,,’s.

vas

iti) Let G be an r(r—1}+2-regular graph on n vertices that can be decomposed into
K,’s and a 2-regular graph. Then G can fe covered with K, ’s, in such a way that
each verter belongs te »-+1 graphs K, 's.

Proof

First we remark that in case iii) the 2-regular graph is the vertex disjoint union of
cycles, and one can give an orientation to the eycles so that every vertex is the origin
of only one arc. Any vertex of G is contained in r graphs K,'s of the decomposition ,
so the total number of X,'s is n. Let us add one vertex of G to each of the K.’s in
order to transform it into a K, ,, with each vertex of G added exactly once. Obviously
after that transformation we have n graphs K, ,’s, with each vertex of G belonging to
r41 of them. In order to do that and to have all the edges of G covered we need a
bijection f between V{(7} and the set of the n K.'s, such that for any vertex z of G:

- in case i): = does not belong to f(z).

- in case ii): if [z,y] is an edge of the matching, then y€f(x).

- in case iii): if [z,y] is the arc having = as origin in the 2-regular oriented partial

graph of G, then y€/{z).
In order to show that such a bijection exists we define & bipartite graph, having as
stable sets of vertices the K,'s and the vertices of G. We put an edge between a vertex
of G and a K, if the vertex can be added to the K,. The result is a regular bipartite
graph (of degree n—r, r and r respectively in cases i), ii) and iii)). A well-known
corollary of the Konig-Hall theorem states that a regular bipartite graph admits a per-
feet matching. The matching defines the bijection we need. O

We state now some corollaries of this lemma, which are used in section 3, in these
terms.

Corollary 4.2 :

Let G be a 3-regular graph containing a perfect matching. Then G can be covered by
K4's, in such o way that each vertex belongs to three Kj's.

Corollary 4.3 :

Let G be a 4-regular graph containing two disjoint perfect matchings. Then G can be
covered by K 3’s, in such a way that each vertex belongs to three Ky 8.
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Corollary 4.4 :

Let G be a B-regular graph that can be decomposed into K4's. Then & can be covered
by K i's, in such a way that each vertex belongs to four K s

Coroliary 4.5 :

Let G be an B-regular graph thal can be decomposed into Ky's and a 2-regular graph.
Then G can be covered by K 's, in such a way that each verter belongs to four K 's.

§. A multipartite graph decomposition problem
We propose to study the following problem:

Problem

For what values of h and r can the multipartite graph K 4 4, on 4h-+r vertices be
decomposed into K s ¢ .

If the multipartite graph K44 4, on 4h+r vertices can be decompused into K's then
pecessarily

h =0 (mod 3)
r == 1 {mod 3)
hzr/2+41

We obtain the first two necessary conditions by divisibility arguments and the third
one by counting the edges covered by the K 's containing an element of the r-set.

We can remark that Lemma 2.2 proves that the above necessary conditions are suffi-
cient for the case r == 4 (this case can also be seen as a corollary of the well known
theorem of Hanani {8, which says that K, can be decomposed into parallel classes of
K s if and only if n =4 (mod 12)).

Here we will prove that the above necessary conditions are sufficient for the case
r == 10,

We conjecture that the necessary conditions are sufficient in general, except eventually
for a few values (for example it can be shown that K444, cannot be decomposed into
Kﬁwmv.
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Theorem 5.1

K4 410 can be decomposed into K's if and only if h, the number of 4-vertex parts,
salisfies

h =0 (mod 3)
h>8

or equivalently

K, can be decomposed into one Ko, a parallel class of K 's on the other n—10 ver-
tices and K ’s if and only if n =10 (mod 12}, n # 22. or also,

K, can be decomposed inlo a parallel class of Ky's, 10 parallel classes of K3's and
Kysifand only if n =0 {mod 12), n 3 12.

In what follows we will use the three alternative forms.
One can easily see, on the third formulation of the theorem, that it is a refinement of
Lemma 2.5,

To prove the theorem we will need some composition lemmas, for which we will use
the following remark:

Remark 5.2
K444 can be decomposed into parallel classes of K's, for £42,3,6,10.

—uncaa
It is well known that K,,,, can be decomposed into Ky's if and only if ¢+2,3,6,10
(see [8]). Given such a decomposition we can delete the five vertices of a stable set of

K144 Each deleted vertex gives rise to a paraliel class of K s in Ky, O
We have the following composition lemmas.

Lemma 5.3

Let t>u, if Ky and Ky, can be decomposed into one parallel class of K,’s, 10
parallel classes of K3's and K ¢'s then so do K g and Kygiy124-

Proof

The graph K 45,124 i3 the edge disjoint union of four K 's, one Ky, and the mul-
tipartite graph Ko 100 120,120 126+ The Kjgp's and the Ky, can be decomposed into 10
parallel classes of R.@ one parallel class of K4 and K ,'s by hypothesis. By Lemma 2.2,
K 4x12 and Ky o can be decomposed into K y's. Therefore, according to Lemma 2.3,
K 106 12t 12 12¢ 120 can be decomposed into K's for u <t. Therefore K 4g4436 can be
decomposed into 10 parallel classes of Kj's , one parallel class of K,'s , and K 's. O
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Lemma 5.4

If K yp.q can be decomposed into 10 parallel classes of K3's and K 's then Kyg 6
can be decomposed into a parallel class of K 's, 10 parallel ¢lasses of K3's and K ;'a.

Proof

Kygeas i5 the disjoint union of four Kyy4g and the multipartite graph
K y3i40.12149. 1204912t 49 BY hypothesis the Ky g can be decomposed into 10 parallel
classes of Ky's and K 's. As 12t + @ # 2.3,6,10, by applying Remark 5.2, there exists
a decomposition of K9y, 12040 120+0 12045 iRt0 parallel classes of K(Js. O

Lemms 5.5

If K 9,5 can be decomposed into 7 parallel classes of K3's and K,'s then I yg
can be decomposed into a parallel class of K i’s, 10 parallel classes of Kj3's and K ,'s.
Proof

Let X = X|_J X, JXa_JX, with |X;|=12¢+4. By Remark 5.2 the multipartite
graph K 1514412044 12t +4,12044 OB vertex set X can be decomposed into a parallel class of
(¢s and K s as 12(-+4 % 2,3,6,10. Choose a particular Ky, {2,,%4,25,%,} with 7,€X].
Then the edges of the K 4,1, constructed on X — {z;, zy T3, ¥4} can be partitioned
into the four K 5,3 on vertex set X; — z;, each decomposable into 7 parallel classes of
mﬂw.w and Nﬂy&vm ?uw m-VsWOmwﬁwmmm~ the Nﬂabvw of MA.n»~+§_wn+a.~wn+s;§+& not nOﬁwﬂw:mzm X for
any ¢ and the Kj's obtained from the K,’s containing one of the vertices z; when
deleting it. The Ky's of this decomposition can be partitioned into 10 parallel classes
of K4's on 48t-+12 vertices in the following way:
6 parallel classes, each of them being the union of parallel classes on each X; — =y,
4 paralle] classes obtained for ¢ = 1, 2, 3, 4 by taking, for each ¢, the parallel class
still unused on X; — z; and by adding the parallel class of Kj's on |_J(X; — ;)
iy
obtained from the K,'s containing z; after deletion of ;. [ !

Proof of Theorem 5.1.

First the given conditions are necessary as we saw before. To prove that they are suf-
ficient, by using Lemma 5.3, we only have to prove that K, can be decomposed into a
parallel class of K,'s, 10 parallel classes of Ky's and K,'s, for n=12t with
¢t = 2,3,4,56,7,9,11,13,17,21 in order to finish the proof. From Lemma 5.4 and Lemma
9.5 we get the result with ¢ = 7,11, From Lemma 5.5 and Lemma 2.4 we get the
result with t = 5,9,13,17,21.

In what follows we will give the direct constructions for the remaining cases
(t =2,3,4,6). O
The case t = 2:

For n == 24, the decomposition of Ky, into a parallel class of K,'s and 10 parallel
classes of Ky's is as follows. Let V(Ky,) = ZgXZy; the vertices are labeled (i,7) with
i =0, 1,.,5and j =0, 1, 2, 3. The decomposition is given below:
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Classes of Ky's:
[(0,0)(1,9)(2:5))
:G.&YAT&.L.:.AFMVM
[(0,3).(1.5+2),(4,3)]
?Q..:% i L.x_ywyﬁmvru.v_
[(0,7)(2,5+1),(3,5+1)]
[(03):(2.5+2),(4,7+1)]
[(0,9),(2,5+3),(5.5+1)]
[(0,),(3,7+2),(4.5+2))
[(0,7)(3,5+3),(5,7+2)]
[(0.5),(4,5+3),(5,5+3)]
Class of K 's:

[(£.0),(5,1),(5,2),(: 3)}

(3,3)(4,5+1)(5.7)]
(2,)(4,9),(5,3+1)]
(2,5),(3,5+2)(5,9)]
Aw.kau.wafmv.?ﬂ;f&x
(1,7(4.34+1),(5,5+3)]
(1,1):(3,5+1)(5,3+2)]
(1,5)(3,3+2)(4.3)]
(1,)(2.5+1)(5,5)]
(1 7)2,742),(4,7+3)]
[(1,7),(2,5+3),(3.7)]

for j = 0,1,2,3
for § = 0,1,2,3
for j = 0,1,2,3
for j = 0,1,2,3
HC—. .N == C.quhw
for j == 0,1,2,3
for j = 0,1,2,3
for 7 =0,1,2,3
for 7 = 0,1,2,3
for j = 0,1,2,3

for 1 = 0,...,5
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The case t = 3t

For n = 36 the decomposition of Kag into 10 parallel classes of Kj's and 5 v.E.p_.i
classes of K 's is as follows. Let V(¥ 3g) = Z,XZg; the vertices are labeled (i r: with
{=0,1,2 3 and j =0, 1,.., 8 The decomposition uses the known &.mocavcm_SOF of
Ko inio 4 parailel classes of Kj's ([18]). We form 8 parallel classes in the following

way: for eac
with two paral
parallel classes

Classes of Kj's:
(0,7)(1,F+7)(2,5+3)
(0,5),(1,548),(2,5+86)
0,91 ,J+H4),(3,5+2)
(0,5),(1,5+8),(3,5+7)
AOLYA.MLI*KNV.AML&.QV
(1,9),(2,3+4),(3,5+6)
(1,5),(2,5+6),(3,5+4)
a class from (7,5)

a class from (£,7)
Classes of K 's:
[(0,3),(1,9)2,)4(3.9))

ht=01,2 3 we take 2 parallel classes : :
lel classes of the Ky constructed on the vertices {¢,J
are formed with the two unused classes on each Kg.

for j = 0,...,8
for j = 0,...,8
for 7 = 0,...,.8
for j = 0,...,.8

8

for j = 0,...,.8
for 7 = 0,...,8
for j = 0,...,8
for 1 == 0,1,2,3
for 1 == 0,1,2,3

for j = 0,...,.8

:C.uvkﬂQ«?uvk&ﬁ;.‘?wv.hw.&‘f@z for j = O,...

[(0,5),(1,7+2),(2,5+1),(3

[(0,7),(1,7+3),(2,5+5),(3,548)]  for 5 = O,...
[(0,5),(1,745)(2.5+8),(3,5+4)]  for = Orery

B
J+6)]  for j = 0,...8
,8
8

and a class from (3,7)
and a class from (3,5)
and a class from (2,7)
and a class from (2,7)
and a class from (1,7)
and a class from (1,7)
and a class from (0,7)
and a class from (0,7)

on the 27 vertices (¢,j) , 3 # ¢
). The last two

The case t = 4:
For n = 48 the decomposition of K 44 into 10 parallel classes of Ky's, 2 parallel class of
(,'s and K 4's is as follows. Let V(Kg) = Z4g-
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Classes of X'
[1,6418,i+32] for ¢ = &,...,15

Class of K 's:

B 4+12,0424,6438)  for i =0, 11

1,4 41,645] for 28 @ (med 3)

t,8+1,6+5] for ¢ 22 1 {mod 3)

£-h1,0 48] fori =2 (mod 3) K, 's:

[ wH2,5+13] for i =20 {mod 3) f£,¢ +3,1420,{ +30] for ¢ = Q,...,47
£442,{+13] for i =1 {snod 3) T.*..,T?m..:?uﬁfwﬁ for ¢ = 0,...,47
¢ 8+ 2,8 +13] for ¢ == 2 {mod 3)

1,8 4+7,4+26] for { =2 0 {mod 3)

$ 8476 +26] for ¢ =1 (mod 3)

§,8 47,0428 for i 2= 2 {(mod 3)

The case { = §;

For v = 72 the decomposition of K7, into 10 parallel elasses of Ky's, a parallel class of
Ky's and K s is as follows. Let VIR 19} = Zy,.

Classes of Ky's: Class of K 's:

1,0424,i4+48]  for i w 0,..23 [i,i+18,1436,i +54] for i =0,..17
8 +1,4 45 for ¢ = 0 [mod 3)

f,6+1,8 5] for { =1 {mod 3)

(RS S WERY for i =2 (mod 3) K s

£ 4+2,1+10) for i =0 (mod 3) [,8 43,6 +12,i+41] for i =0,.,71
842,110 for ¢ =1 {mod 3) [ +11,54+26,i +51]  for i = 0,...,71
t,6 42,1 4+10] for i =2 (mod 3) [{,i+143430,i +49] for § = 0,...,71
1,047 ,5420] for i =0 {mod 3) Mm..u.+?~.+wm.m+m2 for i =0,..,71
3,8 +7,4 420} for i =1 {mod 3)

¥, +7,0420] for { =2 {mod 3)

Acknowledgement

This research was partially supported by P.R.C. Math. Info.

References

1.

J-C. Bermond, C. Huang, A. Rosa, and D. Sotteay, Decomposition of complete
graphs into isomorphie subgraphs with five vertices, Ara Combinat. 10 pp. 211-
254 (1980).

J-C. Bermond, J. Bond, and J-F. Sacle, Large hypergraphs of diameter one, in
Graph Theory and Combinatorics, Proc. Coll, Cambridge, 1883, pp. 19-28 (1984).

J-C. Bermond and J. Bond, Combinatorial designs and hypergraphs of diameter
one, in Proc. First China-USA Con /. on Graph Theory, Jinan,June 1686, (1987).

A.E. Brouwer, H. Hanani, and A. Schrijver, Group divisible designs with block size
four, Discrete Math. 20 pp. 1-10 (1977).

A.E. Brouwer, Optimal packings of K 's into a K,,, Journal of Comb. Th., ser. A
26 pp. 278-2907 (1079).

10.

11.

12.

13.

14.

15.

16.

17.

18.

Regular Packings and Coverings 99

C.J. Colbourn and A. Rosa, Quadratic Leaves of Maximal Partial ui%_m Systems,
Graphs and Combinatories 2, pp. 317-337 (1988).

J. Doyen and A. Rosa, An updated bibliography and survey of Steiner systems,
pp. 317-349 in Topics on Steiner systems, C.C. Lindner and A. Rosa ed., Annals
of Discrete Math., 7, (1980).

H. Hanani, Balanced incomplete block designs and related designs, Discrete Math.
11 pp. 255-369 (1975).

A.LW. Hilton and C.A. Rodger, Triangulating nearly complete graphs of odd
order, ¢n preparation, (19886).

C. Huang, E. Mendelsohn, and A. Rosa, On partially resolvable t-partitions, pp.
169-183 in Theory and Practice of Combinatorics, A. Rosa, G. Sabidussi and J.
Turgeon ed., Annals of Discrete Math., 12, (1982).

E. Mendelsohn, On (Near}HMamiltonian Triple Systems and related one-
factorizations of complete graphs, Technion Report MT-655, (1985).

W.H. Mills, On the covering of pairs by quadruples. I, Journal of Comb. Th., ser.
A 13 pp. 55-78 (1972).

W.H. Mills, On the covering of pairs by quadruples. II, Journal of Comb. Th., ser.
A 15 pp. 138-186 (1973).

W.H. Mills, Covering designs I: Coverings by a small number of subsets, Ars Com-
binat. 8 pp. 199-315 (1979).

C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of
graphs into triangles, Technical report, University of Waterloo, (1069).

D. K. Ray-Chaudhuri and R. M. Wilsen, Solution of Kirkman's schoolgir! problem,
pp. 187-204 in Proc. of Symp. in Pure Math,, vol 19 Combinatorics, Amer. Math.
Soc. Providence (1971).

R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and
three, Preprint, Queen’s University, Cingston, {1986).

R.M. Wilson, An existence theory for pairwise balanced designs, III: Proof of the
existence conjectures, Journal of Comb. Th., ser. A 18 pp. 71-79 (1975).



