On regular packings and coverings J-C. Bermond, J. Bond, D. Sotteau U.A. 410 CNRS, L.R.I. bât 490, Université Paris-Sud, 91405 Orsay Cedex, FRANCE TO ALEX ROSA ON NIS FIFTIETH BIRTHDAY ### BSTRACT Let us call a regular packing of K_n with K_k 's a set of edge disjoint subgraphs of K_n isomorphic to K_k such that the partial graph G, called the leave of the packing, generated by the edges not covered is regular. Similarly, a regular covering of K_n with K_k 's is a set of subgraphs of K_n isomorphic to K_k which cover all the edges of K_n at least once and such that the multigraph H, called the excess of the covering, obtained by deleting K_m from the union of the K_k 's, is regular. Here we study maximum regular packings and minimum regular coverings. More exactly we determine the minimum degrees of the leaves and excesses in case of regular packings and coverings of K_n with K_3 's and K_4 's. We also exhibit minimum regular coverings containing maximum regular packings. # 1. Introduction A classical problem in design theory concerns the existence of (n,k,λ) BIB designs. It is well known that the existence of a (n,k,1) BIB design is equivalent to the existence of a decomposition of the complete graph K_n into K_k 's. It is also well known that such a decomposition can exist only if $n(n-1)\equiv 0 \pmod{k(k-1)}$ and $n-1\equiv 0\pmod{k-1}$. These conditions have been shown to be sufficient for any k and n large enough (Wilson [18]) and also for k=3 (for a survey on Steiner triple systems, see Doyen and Rosa [7]), k=4 and k=5 (see Hanani [8]). When n does not meet the necessary conditions one can either try to find the maximum cardinality of a packing of K_k 's into K_n (that is the maximum number of K_k 's included in K_n), or the minimum cardinality of a covering of K_n with K_k 's (that is the minimum number of edge disjoint K_k 's necessary to cover all the edges of K_n at least once). Such values have been completely determined for k=3 (see Hanani [8]) and for k=4 (see Brouwer [5] and Mills [12,13]). Here we are interested in a slightly different problem that we call regular packing or covering of K_n with K_k 's. This problem was initially motivated by a problem of interconnection networks, called bus networks of diameter 1, modeled by hypergraphs. In such a network there are n processors connected to buses. Each bus contains the same number k of processors. For every pair of processors there must exist at least one Regular Packings and Coverings bus containing them (diameter 1). These conditions correspond to the classical covering of K_n with K_k 's. A further requirement (of regularity) is that each processor belongs details see Bermond, Bond and Sacle [3] and [2]). to the same number of buses, which gives rise to the notion of regular covering (for shall say that a regular packing is maximum if d_G is as small as possible. [6]). In other words we want to find a regular graph G such that $K_n - G$ can be decomposed into K_k 's. Note that a regular packing of K_n with K_k 's is just a pack-A regular packing of K_n with K_k 's is a set of edge disjoint subgraphs of K_n isomorphic to K_k such that the partial graph G, generated by the edges not covered, is regular of degree d_G . In the literature G is also called the *leave* of the packing (see ing with K_k 's such that each vertex of K_n belongs to the same number of K_k 's. We find a regular multigraph H of degree d_H such that $K_n + H$ can be decomposed into K_k 's. We shall say that a regular covering is minimum if d_H is as small as possible. Similarly, a regular covering of K_n with K_k 's is a set of subgraphs of K_n isomorphic to K_k which cover all the edges of K_n at least once such that the multigraph multigraph H is also called the excess of the covering. In other words we want to H, obtained by deleting K_m from the union of the K_k 's, is regular of degree d_H . The to find whether there exist graphs G, d_G -regular, and H, d_H -regular, with d_G and d_H covering of K_n with K_k 's containing a maximum regular packing. That is equivalent a set of K_k 's containing all the edges of G). graph G can be covered by K_k 's in such a way that every vertex belongs to purpose, it is sufficient to find a maximum regular packing such that the d_G -regular regular graph G+H can itself be decomposed into K_k 's. In other words, for that minimum, associated respectively to the packing and covering such that the $(d_G + d_H)$ $(d_G+d_H)/(k-1)$ graphs K_k 's (obviously a covering of a subgraph G of K_n with K_k 's is Furthermore we are interested in finding, when it is possible, a minimum regular The following proposition is immediate ## Proposition 1.1 the following equalities: The degree d_G of the regular leave G of a regular packing of K_n with K_k 's satisfies $$n-1-d_G \equiv 0 \pmod{k-1}$$ $n(n-1-d_G) \equiv 0 \pmod{k(k-1)}$. the following equalities: The degree d_H of the regular excess H of a regular covering of K_n with K_k 's satisfies $$n-1+d_H \equiv 0 \pmod{k-1}$$ $n(n-1+d_H) \equiv 0 \pmod{k(k-1)}$ From that proposition, one can easily deduce lower bounds on d_G and d_H . constructing maximum regular packings and minimum regular coverings of K_n with the cases the covering constructed contains the packing. K_3 's and K_4 's for any n (except for n=8 in case of a packing with K_4 's). In most of Here we show that these bounds are always reached in the cases k=3 or 4 by > Let us remark that in some cases the optimum packings or coverings given in the literature ([5,13,14]) are necessarily regular (by counting arguments). However as we want, if possible, to give a covering containing the packing, we give the construction # 2. Notation and basic lemmas K_n , will be Z_n , the group of integers modulo n. ullet K_n will denote the complete graph on n vertices. Usually $V(K_n)$, the vertex set of \bullet $[x_1,x_2,\ldots,x_r]$ will denote the complete graph on the vertices x_1,x_2,\ldots,x_r . In case r=2 it denotes an edge. ullet K_n-G denotes the partial graph obtained from K_n by deleting the edges of G from K_n . • $[x_1, x_2, ..., x_r]$ $(mod \ n)$ will denote $\{[x_1+i, x_2+i, ..., x_r+i] : i=0, 1, ..., n-1\}$. • If G and H are graphs on the same set of vertices V, G+H denotes the multigraph with vertex set V containing the edges of G plus the edges of H (with eventually • $K_{r_1,r_2,...,r_h}$ denotes the complete multipartite graph . If $r_1=r_2=..=r_h=r$ then ullet K_{r_1,r_2} denotes the complete bipartite graph with vertex sets of cardinality r_1 and r_2 . multiple edges). we denote $K_{r_b r_a ... r_h}$ by $K_{h \times r}$. vertex disjoint union of p copies of G. • Let G be a graph on k vertices. A parallel class of G's on n = pk vertices is the is called a GD(h,1,r;hr) or T(1,r) design). Classical results are the following. equivalent to the existence of h-2 orthogonal Latin squares of order r (or also to wha It is well known that the existence of a decomposition of $K_{h\times r}$ into K_h 's i # Lemma 2.1 (see Hanani [8]) $$K_{h\times r}$$ can be decomposed into K_3 's if and only if $\begin{cases} hr^2(h-1) \equiv 0 \pmod{6} \\ h>3 \end{cases}$ $(h-1)r \equiv 0 \pmod{2}$ $$(h-1)r \equiv 0 \pmod{3}$$ $hr^2(h-1) \equiv 0 \pmod{12}$ $h \geq 4, (h,r) \neq (4,2) \text{ or } (4,8)$ Khxr can be decomposed into Ka's if and only if Lemma 2.2 (see Brouwer, Hanani, Schrijver [4]) Lemma 2.3 (see Bermond, Huang, Rosa, Sotteau [1]) posed into G for $p \neq 2$, 6, $0 \leq q \leq p$ (and if q = 0 for any p). If $K_{r,r,r}$ and $K_{r,r,r,r}$ can be decomposed into graphs G, then $K_{pr,pr,pr,qr}$ can be decom- If $K_{r,r,r,r}$ and $K_{r,r,r,r,r}$ can be decomposed into graphs G, then $K_{pr,pr,pr,pr,pr,qr}$ can be decomposed into G for $p \neq 2, 3, 6, 10$ and $0 \leq q \leq p$. K_k except one isomorphic to K_r . They give the necessary conditions. In [10] Huang, Mendelsohn and Rosa introduce a problem which can be formulated as that of the existence of a decomposition of K_n into graphs all isomorphic to proof of the main theorem. The following results have been proved on this problem, which will be used in the # Lemma 2.4 (Brouwer [5]) $n \neq 10, 19.$ K_n can be decomposed into one K_7 and K_4 's if and only if $n \equiv 7$ or 10 (mod 12), # Lemma 2.5 (Bermond, Bond [3]) $n \neq 7, 19, 22.$ K_n can be decomposed into one K_{10} and K_4 's if and only if n = 7 or $10 \pmod{12}$, on n-r vertices In the section 5 we study a more particular case of this problem, since we want to have the additional property that there exists, in the decomposition, a parallel class of K_k 's # 3. Main results ## Theorem 3.1 If $n \geq 3$ there exist a maximum regular packing and a minimum regular covering of K_n with K_3 's where the graph G and multigraph H are as follows. | ⋖ | iv) | === | 11) | | ္ ် | |-----------------------------------|-----------------------------------|-------------------|-----------------------------------|-------------------|-----------------------------------| | if $n = 5$ | if $n = 4$ | if $n \equiv 3$ | if $n=2$ | if $n = 1$ | if $n = 0$ | | (mod 6), | $(mod \ 8),$ | (mod 6), | (mod 6), | (mod 6), | (mod 6), | | G is 4-regular and H is 2-regular | G is 3-regular and H is 3-regular | G and H are empty | G is 1-regular and H is 5-regular | G and H are empty | G is 1-regular and H is 1-regular | cases except case o) Moreover there exists a minimum covering containing a maximum packing in all bounds. Now we will prove that these bound are reached First, from Proposition 1.1, the given values of the degrees of G and H are lower > Since K_{6t+1} can be decomposed into K_3 's, we get a packing of K_n by deleting a vertex and all the K_3 's containing it. The leave of the packing is a perfect matching. Case o) $(n=6t, t\geq 1)$: is known (see Mills [14] for a survey on the subject) that K_n can be covered with matching. $\left|n/3\left|(n-1)/2\right| ight|K_3$'s. In this case the covering is regular and the excess H is a perfect perfect matchings cannot be decomposed into K_3 's. Obviously in this case it is not possible that the minimum covering contains the maximum packing since G and H are necessarily perfect matchings and the sum of two It is known that, in these cases, the graph K_n can be decomposed into K_3 's. Case i) $(n=6t+1, t\geq 1)$ and case iii) $(n=6t+3, t\geq 0)$: # Case ii) $(n=6t+2, t \ge 1)$: applied to the 3-regular graph formed by the sum of G and any 2-regular graph on the regular covering of G with each vertex in three K_3 's is obtained by Corollary 4.2 The packing is obtained exactly as in o), and the leave G is a perfect matching. A same set of vertices. Case iv) $(n=6t+4, t\geq 0)$: We distinguish two subcases: G + H can also be decomposed into K_3 's. graph. As the multigraph formed by two identical K_4 's can be decomposed into K_3 's, G consists of the 3r+1 vertex disjoint K_4 's. We shall take for the excess H the same If $r\geq 1$, K_{12r+4} is the edge disjoint union of 3r+1 vertex disjoint graphs K_4 's and a graph formed by two identical K_4 's can be decomposed into K_3 's, [0,1,2] (mod3). If r=0 then n=4, $G=K_4$ is itself 3-regular. We can take $H=K_4$ since the multii) t=2r, r > 0 $K_{(3r+1)\times 4}$. By Lemma 2.1 $K_{(3r+1)\times 4}$ can be decomposed into K_3 's. Therefore the leave ii) t=2r+1, $r\ge 0$ If r=0 then n=10. A maximum regular packing consists of the following K_3 's: [0,3,9], [1,4,5], [2,0,6], [3,1,7], [4,2,8], [0,7,8], [1,8,9], [2,9,5], [3,5,6], [4,6,7]. The leave G is the Petersen graph which is 3-regular. From Corollary 4.2 it can be covered with each vertex in three K_3 's. So we have a covering of K_{10} containing the If r=1 then n=22. The packing is given by the K_3 's: maximum packing where the excess H is a 3-regular multigraph. [0,1,3], [0,4,10] and [0,5,13] (mod 22). the packing with an excess H which is 3-regular. covered with each vertex in three K_3 's. Thus we have a covering of K_{22} containing union of a hamiltonian cycle and a perfect matching so, by Corollary 4.2, it can be The leave G is 3-regular and consists of the edges [0,7] and [0,11] (mod 22). It is the If $r \ge 2$, K_{12r+10} can be decomposed into r graphs K_{12} 's on vertex sets X_i , $1 \le i \le r$, one K_{10} , on vertex set Y and a $K_{12,\dots,12,10}$ on vertex set $\bigcup X_i \bigcup Y$. From case o) each K_{12} on vertex set X_i can be decomposed into K_3 's plus a perfect From above the K_{10} can be decomposed into K_3 's plus the 3-regular Petersen graph. matching M_i for $1 \le i \le r$. Now $K_{12,\dots,12,10}$ can be obtained from the multipartite graph $K_{(r+1)\times 12}$ by deleting two vertices in the same part. As from Lemma 2.1, $K_{(r+1)\times 12}$ can be decomposed into K_3 's, graph on 10 vertices, the other one is on 12r vertices: $\{\bigcup M_i + M + M'\}$. According 3-regular graph on 12r+10 vertices which consists of two parts: one is the Petersen M' on $\bigcup X_i$. Now we have a regular packing of K_{12r+10} where the leave G is the the graph $K_{12,\dots,12,10}$ can be decomposed into K_3 's plus two perfect matchings M and belongs to three K_3 's. to Corollary 4.2, both parts can be covered by K_3 's in such a way that each vertex Thus we have a covering of K_{12r+10} containing the packing with an excess H which is Case v) $(n=6t+5, t \ge 0)$: If t=0 then n=5. We have $G=K_5$ and $H=C_5$, by covering G with the K_3 's [0,1,2] (mod 5). If t=1 then n=11. The packing is given by the K_3 's [0,1,3] ($mod\ 11$). The leave G is the 4-regular formed by the edges [0,4] and [0,5] ($mod\ 11$). We obtain the covering by adding the K_3 's [0,1,5] ($mod\ 11$). Note that the excess H is a hamiltonian cycle. $1 \le i \le t$, one K_5 on vertex set Y and a multipartite graph $K_{6...65}$. According to Lemma 2.1, there exists a decomposition of $K_{(t+1)\times 6}$ into K_3 's. By deleting one vertex we obtain a decomposition of $K_{6,\dots,6,5}$ into K_3 's and a perfect matching M on the ver-If $t\geq 2$, K_{6t+5} is the edge disjoint union of t vertex disjoint K_6 's, on vertex sets X_i , a 3-regular graph which consists of a perfect matching M_i and a cycle of length six C_6^i . Each \bar{K}_6 on vertex set X_i is the edge disjoint union of two vertex disjoint K_3 's and with K_3 's, where the leave G is the 4-regular graph which consists of two parts: one is the other one as shown in Corollary 4.3. Both parts can be covered with each vertex in three K_3 's, the K_5 as in case n=5 and $\{\bigcup M_i + M + \bigcup C_6^i\}$, on vertex set $\bigcup X_i$, the other one is a K_5 , on vertex set Y. K_5 is itself a 4-regular graph on Y. So we have a maximum regular packing of K_{6t+5} Thus we have a covering of K_{6t+5} containing the packing with an excess H which is 2-regular. \square ### Remark 3.2 The referee suggested to mention the following conjecture which seems very diffi- ### Conjecture For every given degree d, all d-regular graphs meeting the necessary conditions are leaves of a packing of K_n with K_3 's, with finitely many exceptions. general case of any 2-regular graph is a particular case of a result of Colbourn and Rosa [6] also obtained by Hilton and Rodgers [9]. Note that the case of hamiltonian cycles was solved by E. Mendelsohn [11] and the > Nash-Williams [15]. Note that the above conjecture is in fact a special case of the following one of # Conjecture (Nash-Williams) and every vertex has an even degree at least $\frac{3n}{4}$, then G can be decomposed into K_3 's. If G is a graph of order n, $n \geq 15$, such that its number of edges is a multiple of 3, ### Remark 3.3 which can be restated as follows: K. Heinrich drew our attention to the following strong recent result of Rees [17] # Theorem (Rees K_{6t} can be decomposed into lpha perfect matchings and eta parallel classes of K_3 's if and only if $\alpha+2\beta=6t-1$ except for $\alpha=1$ and t=1 or t=2 (corresponding to the nonexistence of Nearly Kirkman triple systems of order 6 or 12). $V(K_n) = X \cup Y$ with |X| = 6t, |Y| = u. By the theorem above the K_{6t} on X can be ing any vertex of Y to a perfect matching of X. Thus we have a regular packing of K_n Then K_n can be decomposed into the K_u on Y, u-1 perfect matchings on X and decomposed into 2u-1 perfect matchings on X and 3t-u parallel classes of K_3 's. lar packings for the non immediate cases n=6t+u (u=4,5) in the following way. Let with K_3 's for which the leave G consists of the K_u on Y plus the u-1 perfect match ings on X and is clearly a regular graph of degree u-1. K_3 's formed by the parallel classes of K_3 's on X and the 3tu triples obtained by join-Using this theorem we can give a shorter proof of the existence of maximum regu- the conjecture mentioned in Remark 3.2, when the graph is the union of d perfec pose K_{6t} into perfect matchings and triangles (Note that such a decomposition solve In fact we used only a corollary of the result of Rees. We needed only to decom If $n \geq 4$, there exist a maximum regular packing and a minimum regular covering of K_n with K_4 's where the leave G and excess H are as follows. Theorem 3.4 | except | xi) | × | ix) | viii) | vii) | vi) | <. | iv. | m. | : | | 0 | with Kasu | |--------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------|------------------------------------|-----------------------------------|-------------------|-----------------------------------|-------------------------------------------------------------| | except for n=8 where G is 4-regular. | if $n = 11$ | if $n = 10$ | if $n = 0$ | if $n = 8$ | if $n = 7$ | if $n \equiv 6$ | if $n = 5$ | if $n = 4$ | if $n \equiv 3$ | if $n \equiv 2$ | if $n = 1$ | if $n \equiv 0$ | unere ine ieave | | e G is 4-regu | (mod 12), | | (mod 12), | (mod 12), | | | (mod 12), | C and crees | | lar. | G is 10-regular and H is 2-regular | G is 3-regular and H is 3-regular | G is 8-regular and H is 4-regular | G is 1-regular and H is 2-regular | G is 6-regular and H is 6-regular | G is 5-regular and H is 1-regular | G is 4-regular and H is 8-regular | G and H are empty | G is 2-regular and H is 10-regular | G is 1-regular and H is 5-regular | G and H are empty | G is 2-regular and H is 1-regular | with K4's where the teave or and excess is are as forecast. | packing in all cases except o) and xi) and n=18 (where we don't know whether it Moreover there exists a minimum regular covering which contains a maximum regular bounds (except for n=8). Now we will prove that these bounds are reached. First, from Proposition 1.1, the given values of the degrees of G and H are lower one vertex and the edges containing it from a decomposition of K_{12t+1} into K_4 's. **case** o) $(n=12t, t \ge 1)$: We obtain a decomposition of K_{12t} into K_4 's and a parallel class of K_3 's by deleting Thus we have a maximum regular packing with a leave G which is 2-regular. state the following problem. to have a decomposition of K_{12t} into K_4 's and a parallel class of cycles of length four. to be able to find a minimum covering containing the minimum packing we would need Such a decomposition can not exist for n=12. Maybe it does for bigger n, and we can A union of K_3 's cannot be covered with K_4 's with each vertex in only one K_4 . In order **Problem**: Does there exists a decomposition of K_{12t} into K_4 's and a parallel class exists a covering of K_{12t} with $12t^2$ graphs K_4 's. Since each vertex belongs to 4t K_4 's. where the excess H is a perfect matching. Indeed it has been proved in [12] that there the excess H is a perfect matching and the covering is regular. However it is known that there exists a maximum regular packing of K_{12t} with K_4 's **case** i) $(n=12t+1, t\ge 1)$ and **case** iv) $(n=12t+4, t\ge 0)$: It is known that, in these cases, the graph K_n can be decomposed into K_4 's. case ii) $(n=12t+2, t \ge 1)$: K_{12t+2} is the edge disjoint union of a perfect matching M and a multipartite graph $K_{(6t+1)\times 2}$. From Lemma 2.2, $K_{(6t+1)\times 2}$ can be decomposed into K_4 's. Let us take > by taking $\{ [2i, 2i+1, 2i+2, 2i+3], 0 \le i \le 6t \}$. $G=M=\{[2i,2i+1],\,0\leq i\leq 6t\}$. We have a covering of G with each vertex in two K_4 's ular multigraph. So we have a covering of K_{12l+2} containing the packing where the excess H is a 5-reg- case iii) $(n=12t+3, t\geq 1)$: $K_{(4i+1)\times 3}$. By Lemma 2.2, $K_{(4i+1)\times 3}$ can be decomposed into K_4 's. Let us take for Gthe parallel class of K_3 's which is a 2-regular graph. By Corollary 4.4 in section 4, we formed by G and any two other parallel classes of K_3 's. $K_{f 4}$'s with each vertex in four $K_{f 4}$'s. We apply this result with the 6-regular graph know that any 6-regular graph that can be decomposed into K_3 's can be covered by K_{12t+3} is the edge disjoint union of a parallel class of K_3 's and a multipartite graph So we have a covering of K_{12t+3} containing the packing where the excess H is 10-regular multigraph. case v) $(n=12t+5, t\geq 0)$: Indeed, the graph G+H can be decomposed into K_4 's by taking [0,1,2,4] (mod 5). If n=5 then $G=K_5$ and H is the 8-regular multigraph formed by two copies of K_5 . First we prove the result for n=5 and 17. If n=17, the packing is given by the following K_4 's: $[0,1,4,6] \pmod{17}$. The leave G is formed by the edges [0,7] and $[0,8] \pmod{17}$. It is the union of two hamiltonian Now let n=12t+5, with $t\geq 2$. By Lemma 2.4, K_{12t+7} can be decomposed into one K_7 and K_4 's, if $t\neq 1$. We take such a decomposition and delete two vertices of the K_7 . cycles and can be covered with each vertex in four K_4 's by [0,2,5,9] (mod 17). We obtain a decomposition of K_{12l+5} into a K_5 , two parallel classes of K_3 's (on the 12t other vertices) and K_4 's. So the leave G we obtain consists of two parts, one is a K_5 and the other one is a 4-regular graph on 12t vertices, which is the union of two in four K_4 's. We apply this result to the 6-regular graph formed by the part of G on parallel classes of K_3 's. So we have a covering of K_{12t+5} containing the packing where the excess H is a 8-reglar graph that can be decomposed into K_3 's can be covered by K_4 's, with each vertex 12t vertices and any other parallel class of K_3 's on the same set of vertices. The K_5 can be covered as in the case n=5. By Corollary 4.4 in section 4, any 6-regu- case vi) $(n=12t+6, t\geq 0)$: First we prove the result for n=6 and 18. If n=6 then $G=K_6$ is itself 5-regular and H is a perfect matching. The covering is given by the K_4 's: [0,1,2,3], [0,1,4,5], [2,3,4,5]. If n=18, then a regular packing can be obtained by taking [0,1,3,8] (mod 18). An optimal covering (which is regular in that case) is given in [12] by Mills. We note that this covering does not contain any maximum regular packing and we don't know it class of K_6 and a multipartite graph $K_{(2t+1)\times 6}$. By Lemma 2.2, $K_{(2t+1)\times 6}$ can be decomposed into K_4 's. Therefore we obtain a leave G which is a parallel class of K_6 's such a covering does exist. We cover each K_6 of G as in the case n=6 and the excess H is a perfect matching. Now let n=12t+6, with $t\geq 2$. The graph K_{12t+6} is the edge disjoint union of a paralle **case vii)** $(n=12t+7, t \ge 0)$: First we prove the result for the cases n = 7, 19. graph formed by two copies of the same K_7 can be decomposed into K_4 's as follows: If n=7 then $G=K_7$ is itself a 6-regular graph. We can take $H=K_7$ since the multi- $[0,1,2,4] \pmod{7}$. If n=10, a maximum packing is given by $[0,1,3,8] \pmod{10}$ and the leave is a 6-regular graph G which is an edge disjoint union of K_3 's: $[0,4,10] \pmod{10}$. So by Corollary 4.4, G can be covered by K_4 's with each vertex in four K_4 's. We obtain a decomposition of K_{12t+7} into a K_7 , three parallel classes of K_3 's (on the other 12t vertices) and K_4 's. So the leave G we obtain consists of the vertex disjoint union of a K_7 and a 6-regular graph on 12t vertices, which can be decomposed into and K_4 's, if $t \neq 1$. We take such a decomposition and delete three vertices of the K_{10} . Now let n=12t+7, with $t\geq 2$. By Lemma 2.5, K_{12t+10} can be decomposed into one K_{10} The K_7 can be covered as in the case n=7. By Corollary 4.4 in section 4, the part of G which is 6-regular on 12t vertices can be covered by K_4 's, with each vertex in four ular multigraph. So we have a covering of K_{12t+7} containing the packing where the excess H is a 6-reg- **case viii)** $(n=12t+8, t \ge 0)$: First we prove the result for the case n=8. If n=8 then there exists no regular packing of K_8 with K_4 's with a leave G 1-regular. Indeed, if such a packing exists K_8-G should be decomposed into four K_4 's with each vertex in two K_4 's which is easily seen to be impossible. A maximum regular packing of K_8 is obtained with a 4-regular leave G by taking two disjoint K_4 's. K_4 's (found in [13]): A minimum regular covering of K_8 with a 2-regular excess H is given by the following [1,2,3,4],[1,2,5,6],[1,2,7,8],[3,4,5,6],[3,4,7,8],[5,6,7,8] This covering contains the maximum regular packing since it contains two vertex dis- Now let n=12t+8, with $t \ge 1$. The graph K_{12t+8} is the disjoint union of a perfect matching and a multipartite graph $K_{(6t+4)\times 2}$. From Lemma 2.2, if $t \ge 1$, $K_{(6t+4)\times 2}$ can be decomposed into K_4 's. Let G be the matching $\{[2i, 2i+1]: i=0, 1, ..., 6t+3\}$. It joint union of cycles of length 4. $\{4i, 4i+1, 4i+2, 4i+3\}: i=0,1,...,3t+1\}$. Note that the excess H is the vertex disbe covered with each vertex in one K_4 with the following K_4 's : case ix) $(n=12t+9, t\geq 0)$: K_3 's and K_4 's. So the leave G is the 8-regular graph formed by four parallel classes of delete its four vertices, we get a decomposition of K_{12l+9} into four parallel classes of It is well known that K_{12t+13} can be decomposed into K_4 's. If we choose a K_4 and From Corollary 4.5, we have a covering of G with each vertex in four K_4 's. ular multigraph So we have a covering of K_{12t+9} containing the packing where the excess H is a 4-reg- case x) $(n=12t+10, t\geq 0)$: If t=0 then n=10. The packing consists of the following K_4 's: [0,2,8,9], [1,3,9,5], [2,4,5,6], [3,0,6,7], [4,1,7,8] In order to cover G with each vertex in two K_4 's, we add the following K_4 's: The leave G is the Petersen graph which is a 3-regular graph. [0,1,5,7], [1,2,6,8], [2,3,7,9], [3,4,8,5], [4,0,9,6] If t=1 then n=22. Let $V(K_{22})=Z_2\times Z_{11}$. A maximum regular packing is given by the following K_4 's: $\{[(0,i),(0,i+1),(0,i+3),(1,i)],[(0,i+9),(1,i),(1,i+1),(1,i+5)],\\[(0,i),(0,i+5),(1,i+6),(1,i+9)]:0 \le i \le 10\}.$ matching joining them. It can be covered by the following K_4 's: The leave G is the union of two vertex disjoint cycles of length 11 and a perfect $\{[(0,i),(0,i+4),(1,i+5),(1,i+7)]:0\leq i\leq 10\}$ where each vertex is in two K_4 's. If $t \ge 2$, the graph K_{12t+10} is the edge disjoint union of one K_{10} , 3t vertex disjoint K_4 's and a multipartite graph $K_{4,4,...4,10}$. As $t \ge 2$, by Theorem 5.1, which will be proved in section 5, there exists a decomposito 3t. From the case n=10 , the graph K_{10} is the edge disjoint union of K_4 's and a tion of the multipartite graph $K_{4,4,...,4,10}$ into K_4 's since the number of 4-sets is equal parallel class of K_4 's. Petersen graph. So the leave G is the vertex disjoint union of a Petersen graph and a In order to obtain a minimum regular covering (with an excess H 3-regular) containing the packing given above we add two parallel classes of K_4 's on 12t points and the K_4 's we used to cover the Petersen graph in K_{10} . case xi) $(n=12t+11 \ t \ge 0)$: First we prove the result for t=0,1,2. [0,1,4,6] (mod 11). Note that the excess H is a hamiltonian cycle. If t=0 then $G=K_{11}$ is itself 10-regular. A minimum covering is given by again a hamiltonian cycle. four K_4 's we add the following ones: [0,1,11,19] (mod 23). Note that the excess H is ing the following K_4 's: [0,1,7,21] (mod 23). In order to cover G with each vertex in If t=1 then n=23. A maximum regular packing with G 10-regular is obtained by tak- If t=2 then n=35. A maximum regular packing is given by : [0,1,4,14] and [0,7,9,15] (mod 35). A covering containing it is obtained by adding the following K_4 's: [0,1,12,17] (mod 35). Note that the excess H is a hamiltonian cycle. disjoint K_{12} 's, one K_{11} and the multipartite graph $K_{12,12,...,12,11}$. From Lemma 2.2, the graph $K_{(t+1)\times 12}$ can be decomposed into K_4 's for $t\geq 3$. Therefore $K_{12,12,...,12,11}$ can be decomposed into one parallel class of K_3 's on 12t vertices and K_4 's. Each K_{12} is the 10-regular graph which consists of two parts, one is formed on 12t vertices by these 8-regular graphs plus the parallel class of K_3 's, the other one is the K_{11} . Thus we union of three vertex disjoint K_4 's and an 8-regular graph. Let us take for leave G the have a maximum regular packing. Now let n=12t+11, with $t\geq 3$, the graph K_{12t+11} is the edge disjoint union of t vertex proved that there exists a covering with (t+1)(12t+11) K_4 's with each vertex in 4t+4The existence of a minimum regular covering has been proved in [13] where it is covering which contains a minimum regular packing. \Box Notice that in this last case we don't know whether there exists a minimum regular graphs K_4 's. Therefore the excess H is 2-regular and the covering is regular minimum. ### Remark 3.5 d-regular graphs meeting the necessary conditions are leaves (respectively excesses) of a regular packing (respectively covering) of K_n with K_4 's. First interesting cases are The proof of the theorem suggests a lot of decomposition problems. The most general one would be a problem analogous to the conjecture of remark 3.2, i.e. that all when the leaves or excesses are hamiltonian cycles or more generally regular graphs of example we state the following conjectures degree two, which generalize Mendelsohn's [11] or Colbourn and Rosa's [6] result. For ### Conjectures K_{12t+11} plus a hamiltonian cycle K_{12t+8} plus a hamiltonian cycle K₁₂₁₊₃ minus a hamiltonian cycle K_{12t} minus a hamiltonian cycle can be decomposed into K4's One can also ask for a generalization of Rees' theorem ### Conjecture if and only if $2\alpha+3\beta=12t-1$ (with a finite number of exceptions) K_{12t} can be decomposed into α parallel classes of K_3 's and β parallel classes of K_4 's Huang, Mendelsohn and Rosa [10]. A related problem is considered in section 5. If we don't want parallel classes of K_4 's we obtain the problem introduced by classes of K_4 's for $n \equiv 0 \pmod{4}$ is easy to solve (essentially because a parallel class of K_4 's is the union of 3 perfect matchings) Note that the problem of decomposing K_n into α perfect matchings and β parallel We state here some lemmas used in the proofs of the main theorem. The results are not necessarily best possible, and they are given in the form used in section 3. ## Lemma 4.1: - i) Let G be an r(r-1)-regular graph on n vertices that can be decomposed into K_r 's. Then G can be covered with K_{r+1} 's, in such a way that each vertex belongs to r+1graphs K_{r+1} 's. - each vertex belongs to r+1 graphs K_{r+1} 's. ii) Let G be an r(r-1)+1-regular graph on n vertices that can be decomposed into K_r 's and a perfect matching. Then G can be covered with K_{r+1} 's, in such a way that - iii) Let G be an r(r-1)+2-regular graph on n vertices that can be decomposed into K_r 's and a 2-regular graph. Then G can be covered with K_{r+1} 's, in such a way that each vertex belongs to r+1 graphs Kr+1's. after that transformation we have n graphs K_{r+1} 's, with each vertex of G belonging to order to transform it into a K_{r+1}, with each vertex of G added exactly once. Obviously so the total number of K_r 's is n. Let us add one vertex of G to each of the K_r 's in of only one arc. Any vertex of G is contained in r graphs K_r 's of the decomposition, cycles, and one can give an orientation to the cycles so that every vertex is the origin r+1 of them. In order to do that and to have all the edges of G covered we need First we remark that in case iii) the 2-regular graph is the vertex disjoint union of bijection f between V(G) and the set of the $n K_r$'s, such that for any vertex x of G: - in case i): x does not belong to f(x). - in case ii): if [x,y] is an edge of the matching, then $y \in f(x)$. - graph of G, then $y \in \mathcal{G}(x)$. - in case iii): if [x,y] is the arc having x as origin in the 2-regular oriented partial of G and a K_r if the vertex can be added to the K_r . The result is a regular bipartite stable sets of vertices the K_r 's and the vertices of G. We put an edge between a vertex corollary of the König-Hall theorem states that a regular bipartite graph admits a pergraph (of degree n-r, r and r respectively in cases i), ii) and iii)). A well-known fect matching. The matching defines the bijection we need. \square In order to show that such a bijection exists we define a bipartite graph, having as terms. We state now some corollaries of this lemma, which are used in section 3, in these Corollary 4.2: Let G be a 3-regular graph containing a perfect matching. Then G can be covered by K_3 's, in such a way that each vertex belongs to three K_3 's. ## Corollary 4.3: covered by K_3 's, in such a way that each vertex belongs to three K_3 's. Let G be a 4-regular graph containing two disjoint perfect matchings. Then G can be # Regular Packings and Coverings ## Corollary 4.4: by K_4 's, in such a way that each vertex belongs to four K_4 's. Let G be a 6-regular graph that can be decomposed into K_3 's. Then G can be covered ## Corollary 4.5: Let G be an 8-regular graph that can be decomposed into K_3 's and a 2-regular graph. Then G can be covered by K_4 's, in such a way that each vertex belongs to four K_4 's. # 5. A multipartite graph decomposition problem We propose to study the following problem: ### Problem For what values of h and r can the multipartite graph $K_{4,4,\dots,4,r}$ on 4h+r vertices be decomposed into K_4 's ℓ If the multipartite graph $K_{4,4,...,4,r}$ on 4h+r vertices can be decomposed into K_4 's then necessarily $$h \equiv 0 \pmod{3}$$ $$r \equiv 1 \pmod{3}$$ $$h \geq r/2 + 1$$ one by counting the edges covered by the K_4 's containing an element of the r-set We obtain the first two necessary conditions by divisibility arguments and the third theorem of Hanani [8], which says that K_n can be decomposed into parallel classes of K_4 's if and only if $n \equiv 4 \pmod{12}$. cient for the case r = 4 (this case can also be seen as a corollary of the well known We can remark that Lemma 2.2 proves that the above necessary conditions are suffi- r = 10. Here we will prove that the above necessary conditions are sufficient for the K_4 's). We conjecture that the necessary conditions are sufficient in general, except eventually for a few values (for example it can be shown that $K_{4,4,4,1}$ cannot be decomposed into ## Theorem 5.1 K4.4....4.10 can be decomposed into K4's if and only if h, the number of 4-vertex parts, $$\begin{cases} h \equiv 0 \ (mod \ 3) \\ h \geq 6 \end{cases}$$ or equivalently tices and K_4 's if and only if $n \equiv 10 \pmod{12}$, $n \neq 22$. or also, Kn can be decomposed into one K10, a parallel class of K4's on the other n-10 ver- K_n can be decomposed into a parallel class of K_4 's, 10 parallel classes of K_3 's and K_4 's if and only if $n\equiv 0\pmod{12},\ n\neq 12.$ In what follows we will use the three alternative forms One can easily see, on the third formulation of the theorem, that it is a refinement of Lemma 2.5. the following remark: To prove the theorem we will need some composition lemmas, for which we will use ### Remark 5.2 $K_{t,t,t,t}$ can be decomposed into parallel classes of K_4 's, for $t\neq 2,3,6,10$ ### Proof It is well known that $K_{t,t,t,t,t}$ can be decomposed into K_5 's if and only if $t\neq 2,3,6,10$ $K_{t,t,t,t}$. Each deleted vertex gives rise to a parallel class of K_4 's in $K_{t,t,t,t}$. (see [8]). Given such a decomposition we can delete the five vertices of a stable set of We have the following composition lemmas Lemma 5.3 Let $t \ge u$, if K_{12t} and K_{12u} can be decomposed into one parallel class of K_4 's, 10 parallel classes of K_3 's and K_4 's then so do K_{48t} and $K_{48t+12u}$. ### Proof The graph $K_{48l+12u}$ is the edge disjoint union of four K_{12l} 's, one K_{12u} and the multipartite graph $K_{12l+12l+12l+12u}$. The K_{12l} 's and the K_{12u} can be decomposed into 10 parallel classes of K_3 , one parallel class of K_4 and K_4 's by hypothesis. By Lemma 2.2, decomposed into 10 parallel classes of K_3 's , one parallel class of K_4 's , and K_4 's. \square $K_{12t,12t,12t,12t,12u}$ can be decomposed into K_4 's for $u \leq t$. Therefore K_{48t+36} can be $K_{4\times 12}$ and $K_{5\times 12}$ can be decomposed into K_4 's. Therefore, according to Lemma 2.3, ### Lemma 5.4 If K_{12t+9} can be decomposed into 10 parallel classes of K_3 's and K_4 's then K_{48t+36} can be decomposed into a parallel class of K_4 's, 10 parallel classes of K_3 's and K_4 's. ### Proof K_{48t+36} is the disjoint union of four K_{12t+9} and the multipartite graph $K_{12t+9,12t+9,12t+9,12t+9}$. By hypothesis the K_{12t+9} can be decomposed into 10 parallel classes of K_3 's and K_4 's. As $12t+9 \neq 2,3,6,10$, by applying Remark 5.2, there exists a decomposition of $K_{12t+9,12t+9,12t+9,12t+9}$ into parallel classes of K_4 's. \square ### Lemma 5.5 If K_{12t+3} can be decomposed into 7 parallel classes of K_3 's and K_4 's then K_{48t+12} can be decomposed into a parallel class of K_4 's, 10 parallel classes of K_3 's and K_4 's. **Proof** Let $X = X_1 \bigcup X_2 \bigcup X_3 \bigcup X_4$ with $|X_i| = 12t+4$. By Remark 5.2 the multipartite graph $K_{12t+4,12t+4,12t+4,12t+4}$ on vertex set X can be decomposed into a parallel class of K_4 's and K_4 's as $12t+4 \neq 2,3,6,10$. Choose a particular K_4 , $\{x_1,x_2,x_3,x_4\}$ with $x_i \in X_i$. Then the edges of the K_{48t+12} constructed on $X - \{x_1, x_2, x_3, x_4\}$ can be partitioned into the four K_{12t+3} on vertex set $X_i - x_i$, each dependent into 7 parallel classes of K_3 's and K_4 's by hypothesis, the K_4 's of $K_{12t+4,12t+4,12t+4}$ not containing x_i for any i and the K_3 's obtained from the K_4 's containing one of the vertices x_i when deleting it. The K_3 's of this decomposition can be partitioned into 10 parallel classes of K_3 's on 48t+12 vertices in the following way: 6 parallel classes, each of them being the union of parallel classes on each $X_i - x_i$, 4 parallel classes obtained for i = 1, 2, 3, 4 by taking, for each i, the parallel class still unused on $X_i - x_i$ and by adding the parallel class of K_3 's on $\bigcup_{j \neq i} (X_j - x_j)$ obtained from the K_4 's containing x_i after deletion of x_i . \square # Proof of Theorem 5.1. First the given conditions are necessary as we saw before. To prove that they are sufficient, by using Lemma 5.3, we only have to prove that K_n can be decomposed into a parallel class of K_4 's, 10 parallel classes of K_3 's and K_4 's, for n=12t with t=2,3,4,5,6,7,9,11,13,17,21 in order to finish the proof. From Lemma 5.4 and Lemma 2.5 we get the result with t=7,11. From Lemma 5.5 and Lemma 2.4 we get the result with t=5,9,13,17,21. In what follows we will give the direct constructions for the remaining cases (t=2,3,4,6). \square ## The case t = 2: For n=24, the decomposition of K_{24} into a parallel class of K_4 's and 10 parallel classes of K_3 's is as follows. Let $V(K_{24})=Z_6\times Z_4$; the vertices are labeled (i,j) with i=0,1,...,5 and j=0,1,2,3. The decomposition is given below: | Class of K_4 's: $[(i,0),(i,1),(i,2),(i,3)]$ | Classes of K_3 's: $[(0,j),(1,j),(2,j)]$ $[(0,j),(1,j+1),(3,j)]$ $[(0,j),(1,j+2),(4,j)]$ $[(0,j),(1,j+3),(5,j)]$ $[(0,j),(2,j+1),(3,j+1)]$ $[(0,j),(2,j+2),(4,j+1)]$ $[(0,j),(2,j+2),(4,j+1)]$ $[(0,j),(2,j+3),(5,j+1)]$ $[(0,j),(2,j+3),(5,j+1)]$ $[(0,j),(3,j+2),(4,j+2)]$ $[(0,j),(3,j+3),(5,j+2)]$ $[(0,j),(3,j+3),(5,j+3)]$ | |------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | [(3,j),(4,j+1),(5,j)] $ [(2,j),(4,j),(5,j+1)] $ $ [(2,j),(3,j+2),(5,j)] $ $ [(2,j),(3,j+3),(4,j+2)] $ $ [(1,j),(4,j+1),(5,j+3)] $ $ [(1,j),(3,j+1),(5,j+2)] $ $ [(1,j),(3,j+2),(4,j)] $ $ [(1,j),(2,j+1),(5,j)] $ $ [(1,j),(2,j+1),(5,j)] $ $ [(1,j),(2,j+2),(4,j+3)] $ $ [(1,j),(2,j+2),(4,j+3)]$ | | for $i = 0,,5$ | for $j = 0,1,2,3$
for 0,1,2,3$ | ### The case t = 1 For n=36 the decomposition of K_{36} into 10 parallel classes of K_3 's and 5 parallel classes of K_4 's is as follows. Let $V(K_{36})=Z_4\times Z_9$; the vertices are labeled (i,j) with i=0,1,2,3 and j=0,1,...,8. The decomposition uses the known decomposition of K_9 into 4 parallel classes of K_3 's ([16]). We form 8 parallel classes in the following way: for each t=0,1,2,3 we take 2 parallel classes on the 27 vertices (i,j), $i\neq t$ with two parallel classes of the K_9 constructed on the vertices (t,j). The last two parallel classes are formed with the two unused classes on each K_9 . | Classes of K_4 's: $[(0,j),(1,j),(2,j),(3,j)]$ $[(0,j),(1,j+1),(2,j+2),(3,j+3)]$ $[(0,j),(1,j+2),(2,j+1),(3,j+6)]$ $[(0,j),(1,j+3),(2,j+5),(3,j+8)]$ $[(0,j),(1,j+5),(2,j+8),(3,j+4)]$ | Classes of K_3 's: $[(0,j),(1,j+7),(2,j+3)]$ $[(0,j),(1,j+8),(2,j+6)]$ $[(0,j),(1,j+4),(3,j+2)]$ $[(0,j),(1,j+6),(3,j+7)]$ $[(0,j),(2,j+4),(3,j+1)]$ $[(0,j),(2,j+4),(3,j+6)]$ $[(1,j),(2,j+4),(3,j+6)]$ $[(1,j),(2,j+4),(3,j+6)]$ $[(1,j),(2,j+6),(3,j+4)]$ a class from (i,j) a class from (i,j) | |--|--| | for j = 0,,8
for j = 0,,8
for j = 0,,8
for j = 0,,8
for j = 0,,8 | for $j = 0,,8$
for 0,,8$ | | | and a class from $(3,j)$ and a class from $(2,j)$ and a class from $(2,j)$ and a class from $(2,j)$ and a class from $(1,j)$ and a class from $(1,j)$ and a class from $(1,j)$ and a class from $(0,j)$ and a class from $(0,j)$ and a class from $(0,j)$ | # The case t = 4: For n=48 the decomposition of K_{48} into 10 parallel classes of K_3 's, a parallel class of K_4 's and K_4 's is as follows. Let $V(K_{48})=Z_{48}$. | [i, i+7, i+26] | [i,i+7,i+26] | [i, i+7, i+26] | [i,i+2,i+13] | [i,i+2,i+13] | [i, i+2, i+13] | 1,1+1,1+5 | 1,1+1,1+5 | [2,1+1,1+5] | [i, i+16, i+32] | Classes of K_3 's: | |----------------------|----------------------|---------------------------|---|---------------------------|---------------------------|---------------------------|---------------------------|--|--------------------|----------------------| | for $i = 2 \pmod{3}$ | for $i = 1 \pmod{3}$ | for $i \equiv 0 \pmod{3}$ | for $i \equiv 2 \pmod{3}$ | for $i \equiv 1 \pmod{3}$ | for $i \equiv 0 \pmod{3}$ | for $i \equiv 2 \pmod{3}$ | for $i \equiv 1 \pmod{3}$ | for $i \equiv 0 \pmod{3}$ | for i == 0,,15 | | | | | | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1:1+6:1+14:1+39 | [i,i+3,i+20,i+30] | $K_{\mathbf{A}}$'s: | | | [i,i+12,i+24,i+36] | Class of K.'s: | | | | | 101 6 - 0,,47 | for i = 0,,1 | for 1 = 0 47 | | | **** · · · · · · · · · · · · · · · · · | for : = 0 11 | | ## The case t = 6: K_4 's and K_4 's is as follows. Let $V(K_{72}) = Z_{72}$. For v = 72 the decomposition of K_{72} into 10 parallel classes of K_3 's, a parallel class of | [i,i+1,i+5]
[i,i+1,i+5]
[i,i+2,i+10]
[i,i+2,i+10]
[i,i+2,i+10]
[i,i+2,i+10]
[i,i+7,i+20]
[i,i+7,i+20] | Classes of K_3 's: $[i,i+24,i+48]$ $[i,i+1,i+5]$ | |---|--| | for $i \equiv 1 \pmod{3}$
for $i \equiv 2 \pmod{3}$
for $i \equiv 0 \pmod{3}$
for $i \equiv 1 \pmod{3}$
for $i \equiv 1 \pmod{3}$
for $i \equiv 2 \pmod{3}$
for $i \equiv 0 \pmod{3}$
for $i \equiv 1 \pmod{3}$
for $i \equiv 2 \pmod{3}$ | for $i = 0,,23$
for $i = 0 \pmod{3}$ | | K_4 's:
[i,i+3,i+12,i+41]
[i,i+11,i+26,i+51]
[i,i+14,i+30,i+49]
[i,i+6,i+33,i+50] | Class of K_4 's: $[i,i+18,i+36,i+54]$ | | for $i = 0,,71$
for $i = 0,,71$
for $i = 0,,71$
for $i = 0,,71$
for $i = 0,,71$ | for $i = 0,,17$ | # Acknowledgement This research was partially supported by P.R.C. Math. Info. ### References - graphs into isomorphic subgraphs with five vertices, Ars Combinat. 10 pp. 211-J-C. Bermond, C. Huang, A. Rosa, and D. Sotteau, Decomposition of complete - Graph Theory and Combinatorics, Proc. Coll. Cambridge, 1989, pp. 19-28 (1984). J-C. Bermond, J. Bond, and J-F. Sacle, Large hypergraphs of diameter one, in - one, in Proc. First China-USA Conf. on Graph Theory, Jinan, June 1986, (1987). J-C. Bermond and J. Bond, Combinatorial designs and hypergraphs of diameter - four, Discrete Math. 20 pp. 1-10 (1977). A.E. Brouwer, H. Hanani, and A. Schrijver, Group divisible designs with block size - ÇT A.E. Brouwer, Optimal packings of K_4 's into a K_n , Journal of Comb. Th., ser. A 26 pp. 278-297 (1979). C.J. Colbourn and A. Rosa, Quadratic Leaves of Maximal Partial Triple Systems, Graphs and Combinatorics 2, pp. 317-337 (1986). pp. 317-349 in Topics on Steiner systems, C.C. Lindner and A. Rosa ed., Annals of Discrete Math., 7, (1980). J. Doyen and A. Rosa, An updated bibliography and survey of Steiner systems, H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 10. A.J.W. Hilton and C.A. Rodger, Triangulating nearly complete graphs of odd order, in preparation, (1986). C. Huang, E. Mendelsohn, and A. Rosa, On partially resolvable t-partitions, pp. 169-183 in Theory and Practice of Combinatorics, A. Rosa, G. Sabidussi and J. Turgeon ed., Annals of Discrete Math., 12, (1982). 12. -E. Mendelsohn, On (Near)-Hamiltonian Triple Systems and factorizations of complete graphs, Technion Report MT-655, (1985) related one- 3 W.H. Mills, On the covering of pairs by quadruples. II, Journal of Comb. Th., ser. A 13 pp. 55-78 (1972). W.H. Mills, On the covering of pairs by quadruples. I, Journal of Comb. Th., ser. 14. W.H. Mills, Covering designs I: Coverings by a small number of subsets, Ars Com-A 15 pp. 138-166 (1973). binat. 8 pp. 199-315 (1979). 5. C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of graphs into triangles, Technical report, University of Waterloo, (1969) 16. D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's schoolgirl problem, Soc. Providence (1971). pp. 187-204 in Proc. of Symp. in Pure Math., vol 18 Combinatorics, Amer. Math. 17. R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, Preprint, Queen's University, Kingston, (1986) 8. R.M. Wilson, An existence theory for pairwise balanced designs, III: Proof of the existence conjectures, Journal of Comb. Th., ser. A 18 pp. 71-79 (1975).