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aAbstra
tIn this paper, we show that the tensor produ
t of 
omplete graphsis hamilton 
y
le de
omposable.1 Introdu
tionLet G and H be two simple graphs. The tensor produ
t (also 
alled di-re
t produ
t ) of the graphs G and H, G 
 H, is the graph with the ver-tex set V (G 
 H) = V (G) � V (H) and with the edge set E(G 
 H) =f(u; x)(v; y); uv 2 E(G) and xy 2 E(H)g. A k-regular multigraph G hasa hamilton 
y
le de
omposition if its edge set 
an be partitioned into k=21



hamilton 
y
les when k is even, or into (k� 1)=2 hamilton 
y
les plus a onefa
tor (or perfe
t mat
hing), when k is odd. In this paper, we study thehamilton 
y
le de
omposition of Kr 
Ks.The problem of �nding hamilton 
y
le de
ompositions of produ
t graphsis not new. Hamilton 
y
le de
ompositions of various produ
t graphs havebeen studied by many people (see the survey papers [1℄ and [5℄ or the book[6℄). One interesting problem is to investigate whether the produ
t graph oftwo hamilton 
y
le de
omposable graphs is also hamilton 
y
le de
ompos-able. Many results for various produ
ts have been obtained in the last fewyears [2,4,7,9,10,11℄. Like other produ
ts, the tensor produ
t graph has someinteresting properties. For example, the tensor produ
t of two hamilton 
y-
le de
omposable graphs may not be 
onne
ted: 
onsider the produ
t of twoeven 
y
les. Jha [8℄ 
onje
tured that if both G and H are hamilton 
y
lede
omposable and G
H is 
onne
ted, then the tensor produ
t graph is alsohamilton 
y
le de
omposable. But this 
onje
ture was disproved in [3℄. Itwould be interesting to know what extra 
ondition(s) should be added to Gand H to ensure a hamilton 
y
le de
omposition of G
H.The following result 
on
erning the tensor produ
t has been known for along time.Theorem 1.1. Let G and H be two even regular simple graphs. If both Gand H are hamilton 
y
le de
omposable and at least one of them has oddorder, then G
H is hamilton 
y
le de
omposable.The above result 
an be obtained from the fa
t that Cr
Cs has a hamilton
y
le de
omposition if at least one of r and s is odd and that the tensorprodu
t is distributive over edge disjoint union of graphs. The next resultfollows immediately from Theorem 1.1.Corollary 1.2. Kr 
Ks has a hamilton 
y
le de
omposition if both r ands are odd and r; s � 3.The main result in this paper is Theorem 1.3.Theorem 1.3. If r; s � 3, then Kr
Ks has a hamilton 
y
le de
omposition.Note that the 
ase when at least one of r and s is less than three is trivial.2



2 Proof of the main resultThe proof of Theorem 1.3 depends on several relatively simple lemmas.We will use �G (resp. �D) to denote the graph (digraph) obtained byrepla
ing ea
h edge (resp. ar
) of G (resp. D) with � edges (resp. ar
s).Let ab denote the edge between the verti
es a and b, and (a; b) denote thear
 from a to b. A k-
y
le is denoted by either (v1; v2; :::; vk; v1) or e1e2:::ekwhere ei = vivi+1; i = 1; 2; :::; k � 1, and ek = vkv1 and a k-path is denotedby [v1; v2; :::; vk℄.Let V (K2q) = f1; 1; 2; :::; 2q � 1g, andH i = (1; 1+ i; 2+ i; 2q�1+ i; 3+ i; 2q�2+ i; 4+ i; :::; q+1+ i;1),where 0 � i � 2q� 2. (The arithmeti
 
al
ulations are modulo 2q� 1 on theresidues 1; 2; :::; 2q � 1.) Clearly, the H i's are hamilton 
y
les of K2q.We will also denote by eij, 1 � j � 2q, the jth edge of H i. We haveeij = 8>>><>>>: 1(1 + i); if j = 1(2 + i� j=2)(1 + i+ j=2); if j is even and j 6= 2q(i+ (j + 1)=2)(2 + i� (j + 1)=2); if j is odd and j 6= 1(q + 1 + i)1; if j = 2qExample: q = 4 and 5H0 :1 1 2 7 3 6 4 5 1 H0 :1 1 2 9 3 8 4 7 5 6 1H1 :1 2 3 1 4 7 5 6 1 H1 :1 2 3 1 4 9 5 8 6 7 1H2 :1 3 4 2 5 1 6 7 1 H2 :1 3 4 2 5 1 6 9 7 8 1H3 :1 4 5 3 6 2 7 1 1 H3 :1 4 5 3 6 2 7 1 8 9 1H4 :1 5 6 4 7 3 1 2 1 H4 :1 5 6 4 7 3 8 2 9 1 1H5 :1 6 7 5 1 4 2 3 1 H5 :1 6 7 5 8 4 9 3 1 2 1H6 :1 7 1 6 2 5 3 4 1 H6 :1 7 8 6 9 5 1 4 2 3 1H7 :1 8 9 7 1 6 2 5 3 4 1H8 :1 9 1 8 2 7 3 6 4 5 1The following results are some simple observations and they will be usedextensively.
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Lemma 2.1. (a) S2q�2i=0 feijg = S2q�2i=0 fei2q+1�jg(b) The graphs indu
ed by the edge sets S2q�2i=0 Sqj=1feijg and S2q�2i=0 S2qj=q+1feijgare K2q.(
) The H i, 0 � i � 2q�2, form a hamilton 
y
le de
omposition of 2K2q.(d) The H i, 0 � i � q � 2, form a hamilton 
y
le de
omposition ofK2qnF , where F is the one fa
tor Sq�1j=1f(q � j)(q + j)gSf1; qg.We remark that Kr 
 Ks 
an be obtained from Ks by repla
ing ea
hvertex x of Ks by a set of r verti
es Vx and ea
h edge xy by a set of r�1 onefa
tors between Vx and Vy. More pre
isely, we let Vx = fx0; x1; :::; xr�1g anddenote the one fa
tor of distan
e k (k = 1; 2; :::; r� 1) from Vx to Vy, the setof edges F kx;y = fxiyi+k; i = 0; 1; :::; r � 1g (the addition on the subs
ripts ismodulo r). Note that the order between x and y is important as a one fa
torof distan
e k from Vx to Vy is a one fa
tor of distan
e r � k (� �k(mod r))from Vy to Vx. If we �x an orientation for the edges of Ks and denote theresulting tournament by Ts, then we haveV (Kr 
Ks) = Sx2V (Ts) Vx andE(Kr 
Ks) = S(x;y)2A(Ts) Sr�1k=1 F kx;y, where A(Ts) is the ar
 set of Ts.Assume that in (r � 1)Ts, the r � 1 ar
s between any pair of verti
esare labelled 1; 2; :::; r � 1. Then the ar
 (x; y) of (r � 1)Ts with label k
an be asso
iated to the set of edges F kx;y in Kr 
 Ks and in fa
t this is aone to one 
orrespondan
e relationship. We will 
onstru
t a hamilton 
y
lede
omposition of Kr 
 Ks from an oriented hamilton 
y
le de
ompositionof the labelled (r � 1)Ts by asso
iating a suitable oriented (not dire
ted)hamilton 
y
le of (r � 1)Ts with a hamilton 
y
le of Kr 
 Ks (see Lemma2.3). For that we need the following de�nition.De�nition 2.2. Let H = (v1; v2; :::; vs; v1) be an oriented (not ne
essarydire
ted) hamilton 
y
le of (r � 1)Ts. We 
an also write H = a1a2:::as,where ai is the ar
 of (r � 1)Ts between vi and vi+1. We de�ne the label ofH, `(H) = Psi=1 "i`(ai), where `(ai) is the label of the ar
 ai and "i = 1 ifai = (vi; vi+1), "i = �1 otherwise.Lemma 2.3. Let H = (v1; v2; :::; vs; v1) = a1a2:::as be an oriented hamilton
y
le of (r � 1)Ts. If `(H) and r are relatively prime, then the edge set inKr 
Ks 
orresponding to H forms a hamilton 
y
le of Kr 
Ks.4



Proof. The edge set Si F "i`(ai)vi;vi+1 forms a 2-fa
tor of Kr 
 Ks. Consider thesubgraph of Kr 
 Ks indu
ed by the edge set Si6=1 F "i`(ai)vi;vi+1 , it is a union ofr paths of length s � 1. When the edge set F "1`(a1)v1;v2 is added, the 
onditionthat `(H) and r are relatively prime guarantees that the resulting 2-fa
tor isa hamilton 
y
le of Kr 
Ks.Corollary 2.4. If there exists a de
omposition of (r � 1)Ts into orientedhamilton 
y
les, su
h that the label of ea
h hamilton 
y
le is relatively primeto r, then there exists a hamilton 
y
le de
omposition of Kr 
Ks.Proof of Theorem 1.3:The 
ase where both r and s are odd was already 
overed by Corollary1.2. So we 
an assume that at least one of r and s is even. As the tensorprodu
t is 
ommutative, we will assume that s is even. Let s = 2q.In what follows, we give a pre
ise des
ription of T2q (or Ts) by giving aspe
ial orientation to K2q. First we take the hamilton 
y
le de
omposition of2K2q, H i, i = 0; 1; :::; 2q�2 as des
ribed in the beginning of this se
tion. For0 � i � 2q�2, we orient the hamilton path H inei2q = [1; 1+ i; 2+ i; 2q�1+i; 3+ i; 2q� 2+ i; :::; q+1+ i℄ into a dire
ted path from1 to q+1+ i. Nowwe justify that this orientation is well de�ned. By Lemma 2.1 (
), ea
h edgeex
ept those in the form of 1i has been oriented twi
e. From the de�nitionof H i, ea
h of these edges appears in two di�erent hamilton paths and theend verti
es are in the same order. Let T2q be the resulting tournament; thenwe have A(T2q) = S2q�1i=1 f(1; i); (i; i+ �) for � odd, � � q � 1, (i; i � �) for� even, � � q � 1g.In the remainder of the paper, we will atta
h the above orientation to H ide�ned in the beginning of the se
tion, and use H i to denote the resultingoriented hamilton 
y
les. Hen
e H i's form an oriented hamilton 
y
le de-
omposition of 2T2q. (Noti
e that H i's are not dire
ted hamilton 
y
les.) H i
an also be expressed in terms of the ar
s in the form ai1ai2:::ai2q, where aij iseij with the above orientation. We have the following lemma.
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Lemma 2.5. `(H i) = P2q�1j=1 `(aij)� `(ai2q).Proof. Noti
e that in H i, aij's, 1 � j � 2q�1, are in the same dire
tion, butai2q = (1; q + 1 + i) is not. Therefore "i = 1; 1 � i � 2q � 1 and "2q = �1.We now divide the proof of Theorem 1.3 into two 
ases.Case 1. r is odd.Let r = 2p+1. To exhibit a de
omposition of K2p+1
K2q into p(2q� 1)hamilton 
y
les, we will de
ompose the labelled 2pT2q into p(2q�1) orientedhamilton 
y
les, so that the label of ea
h 
y
le is relatively prime to 2p+ 1.Case 1.1. p is even. We de
ompose 2pT2q into the p(2q � 1) orientedhamilton 
y
les, H ix and H ix+1 for 0 � i � 2q � 2 and x = 0; 2; 4; :::; p � 2.(here H ix and H ix+1 are the same as H i de�ned before). We arrange the labelson the ar
s as follows:in H ix, let `(ai1) = p� x;`(aij) = p+ 2 + x, 2 � j � q;`(aij) = p� 1� x, q + 1 � j � 2q, andin H ix+1, let `(ai1) = p+ 2 + x;`(aij) = p� x, 2 � j � q;`(aij) = p+ 1 + x, q + 1 � j � 2q.Noti
e that fp � 1 � x; p � x; p + 1 + x; p + 2 + xg, x = 0; 2; :::; p � 2,form a partition of f1; 2; :::; 2pg. By Lemma 2.1(
), S2q�2i=0 H ix [ H ix+1 is theunion of four 
opies of T2q. By Lemma 2.1(b) the subgraphs indu
ed byS2q�2i=0 Sqj=1faijg and S2q�2i=0 S2qj=q+1faijg are T2q. For example, the label p � xis assigned to ai1 in H ix and to aij for 2 � j � q in H ix+1. So we 
an 
on
ludethat one 
opy of T2q is labeled p� x. Similarly, one 
opy of ea
h is labelledp� 1� x, p+ 1 + x and p+ 2 + x.Finally it remains to prove that the label of ea
h oriented hamilton 
y
leis relatively prime to 2p+ 1. By Lemma 2.5,`(H ix) = (p� x) + (q � 1)(p+ 2 + x) + (q � 1)(p� 1� x)� (p� 1� x)= q(2p+ 1)� 2p � 1(mod 2p+ 1), and`(H ix+1) = (p+ 2+ x) + (q � 1)(p� x) + (q � 1)(p+ 1 + x)� (p+ 1 + x)= q(2p+ 1)� 2p � 1(mod 2p+ 1).6



In all the 
ases the labels of the hamilton 
y
les are relatively prime to2p + 1. By Corollary 2.4, the above de
omposition of 2pT2q will produ
e ahamilton 
y
le de
omposition of K2p+1 
K2q.Case 1.2. p is odd. As in Case 1.1 we use the (2q� 1)(p� 1) hamilton
y
les H ix and H ix+1 for 0 � i � 2q � 2 and x = 0; 2; :::; p � 3. Now the4-subsets fp � 1 � x; p � x; p + 1 + x; p + 2 + xg, x = 0; 2; :::; p � 3, form apartition of f2; 3; :::; 2p � 1g. Hen
e we de
ompose the ar
s with labels inf2; 3; :::; 2p�1g into (2q�1)(p�1) hamilton 
y
les whose labels are relativelyprime to 2p+ 1.It remains to de
ompose the ar
s of 2T2q with labels 1 and 2p into the2q � 1 hamilton 
y
les, H ip�1 for 0 � i � 2q � 2:in H ip�1, `(aij) = 1 for 1 � j � q, and`(aij) = 2p for q + 1 � j � 2q.`(H ip�1) = q + (q � 1)2p � 2p = (2p + 1)(q � 2) � 2 � �2(mod 2p + 1).`(H ip�1) and 2p+ 1 are relatively prime as 2p+ 1 is odd.So far we have shown that Kr 
Ks has a hamilton 
y
le de
ompositionif one of r and s is odd.Case 2. r is even.Let r = 2p. We will show that K2p 
 K2q 
an be de
omposed into (p �1)(2q � 1) + q � 1 hamilton 
y
les and a one fa
tor. Again we will exhibita de
omposition of (2p � 1)T2q into oriented hamilton 
y
les with labelsrelatively prime to r = 2p.Case 2.1. p is even. Note that the set of labels f1; 2; :::; 2p� 1g 
an bepartitioned into (p� 2)=2 4-subsets,fp� 2�x; p� 1�x; p+1+x; p+2+xg, x = 1; 3; :::; p� 3 and a 3-subsetfp� 1; p; p+ 1g.We �rst assign the labels to the ar
s of the following (p � 2)(2q � 1)hamilton 
y
les:for 0 � i � 2q � 2 and x = 1; 3; :::; p� 3,in H ix, let `(ai1) = p� 1� x;`(aij) = p+ 2 + x; 2 � j � q;`(aij) = p� 2� x; q + 1 � j � 2q, andin H ix+1, let `(ai1) = p+ 2 + x; 7



`(aij) = p� 1� x; 2 � j � q;`(aij) = p+ 1 + x, q + 1 � j � 2q.`(H ix) = p� 1� x+ (q � 1)(p+ 2 + x) + (q � 1)(p� 2� x)� (p� 2� x)= 2p(q � 1) + 1 � 1(mod 2p)`(H ix+1) = p+2+ x+(q� 1)(p� 1� x)+ (q� 1)(p+1+ x)� (p+1+ x)= 2p(q � 1) + 1 � 1(mod 2p).Hen
e the labels of the above hamilton 
y
les are relatively prime to2p � 1. So far we have de
omposed all the ar
s of (2p � 1)T2q with labelsin f1; 2; :::; 2p� 1gnfp� 1; p; p + 1g. It remains to partition the ar
s of thethree 
opies of T2q with labels p� 1; p; p+ 1 into (2q� 1) + (q� 1) hamilton
y
les and a one fa
tor. We �rst assign the labels to the ar
s of the 2q � 1hamilton 
y
les, H ip�1; 0 � i � 2q � 2:in H ip�1, for 1 � j � q and j 6= j0,`(aij) = p+ 1, andfor j = j0,`(aij0) = p, wherej0 = 1, for 0 � i � q � 2 andi = q; q + 2; :::; 2q � 2 if q is even, andi = q; q + 2; :::; 2q � 3 if q is odd;j0 = 2, for i = q � 1; q + 1; :::; 2q � 3 if q is even andi = q � 1; q + 1; :::; 2q � 2 if q is odd;for q + 1 � j � 2q,`(aij) = p� 1.Note that the label of ea
h of these hamilton 
y
les is`(H ip�1) = p+ (q � 1)(p+ 1) + (q � 1)(p� 1)� (p� 1) � 1(mod 2p).Example: From the de
ompositions exhibited in the beginning of the se
-tion, it is easy to 
he
k that the ar
s with label p are the following;when 2q = 8, a01 = (1; 1); a11 = (1; 2); a21 = (1; 3); a41 = (1; 5);a61 = (1; 7); a32 = (4; 5); a52 = (6; 7)when 2q = 10, a01 = (1; 1); a11 = (1; 2); a21 = (1; 3); a31 = (1; 4);a51 = (1; 6); a71 = (1; 8); a42 = (5; 6); a62 = (7; 8);a82 = (9; 1)Note that the ar
s not used by the hamilton 
y
les above form a 
opyof T2q and these ar
s have the label p ex
ept for the ar
s aij0 whi
h have8



the label p + 1. Therefore, the last step is to obtain q � 1 hamilton 
y
lesby de
omposing the ar
s of this T2q. Using Lemma 2.1 (d) we take thede
omposition of T2q into the q � 1 hamilton 
y
les H ip, for 0 � i � q � 2.The labels of ea
h hamilton 
y
le are �xed and 
an be des
ribed pre
isely:for 0 � i � q � 2, in H ip,when i is even,`(aij) = p if 1 � j � 2q and j 6= 1; 2q � 1 and 2q,`(ai1) = `(ai2q�1) = `(ai2q) = p+ 1;(`(H ip) = p+ 1 + (2q � 3)p+ p+ 1� (p+ 1) � 1(mod 2p))when i is odd,`(ai1) = p+ 1 and `(aij) = p, 2 � j � 2q.(`(H ip) = p+ 1 + (2q � 2)p� p � 1(mod 2p))Hen
e the de
omposition satis�es the 
onditions.Example:For 2q = 8, the ar
s with labels p+ 1 area01 = (1; 1); a07 = (4; 5); a08 = (1; 5) in H0p ,a21 = (1; 3); a27 = (6; 7); a28 = (1; 7) in H2p , and a11 = (1; 2) in H1p .For 2q = 10, the ar
s with labels p + 1 area01 = (1; 1); a09 = (5; 6); a010 = (1; 6) in H0p ,a21 = (1; 3); a29 = (7; 8); a210 = (1; 8) in H2p ,a11 = (1; 2) in H1p , and a31 = (1; 4) in H3p .Noti
e that when q is odd, the last ar
 labelled p + 1, namely (9; 1) (ingeneral (2q � 1; 1)), appears in the remaining one fa
tor.The remaining edges form a one fa
tor of T2q. It is 
lear that this onefa
tor 
an be used to 
onstru
t a one fa
tor in K2p 
K2q.Case 2.2. p is odd. We 
an assume that q is odd (q � 3) (the 
asewhen q is even has been dealt with as in Case 2.1).We partition the set of labels f1; 2; :::2p � 1g into (p � 3)=2 4-subsetsfp� 2�x; p� 1�x; p+1+x; p+2+xg for x = 2; 4; :::; p� 3 and a 5-subsetfp� 2; p� 1; p; p+1; p+2g. We deal with the ar
s of (2p� 1)T2q with labelsother than fp� 2; p� 1; p; p+ 1; p+ 2g in the same way as in Case 2.1.9



The remaining edges are �ve 
opies of T2q whose ar
s are labelled fp �2; p � 1; p; p + 1; p + 2g and they are partitioned into 2(2q � 1) + (q � 1)oriented hamilton 
y
les as follows:For 0 � i � 2q � 2, in H ip�1,`(aij) = p� 2, for 1 � j � q and j 6= 3;`(ai3) = p+ 1;`(aij) = p+ 2, for q + 1 � j � 2q.So `(H ip�1) = p+1+(q�1)(p�2)+(q�1)(p+2)�(p+2) � �1(mod 2p).For the other 2q � 1 hamilton 
y
les, we do the following.For 0 � i � 2q � 2, in H ip,for 1 � j � q and j 6= 3; j0,`(aij) = p+ 1,`(ai3) = p� 2, and`(aij0) = p, wherej0 = 1, for 0 � i � q � 2 and i = q; q + 2; :::; 2q � 3, andj0 = 2, for i = q � 1; q + 1; :::; 2q � 2;for q + 1 � j � 2q and j 6= 2q � 2,`(aij) = p� 1, and`(ai2q�2) = p.`(H ip) = p+p�2+(q�2)(p+1)+(q�2)(p�1)+p�(p�1) � �1(mod 2p).Example: When 2q = 10, from the listed de
omposition we 
an 
he
k thatthe ar
s with label p are the following;a01 = (1; 1); a11 = (1; 2); a21 = (1; 3); a31 = (1; 4);a51 = (1; 6); a71 = (1; 8); a42 = (5; 6); a62 = (7; 8); a82 = (9; 1)The ar
s not used by the hamilton 
y
les form a 
opy of T2q and theyhave label p ex
ept the ar
s aij0 (`(aij0) = p+1) and ai2q�2 (`(ai2q�2) = p� 1).Like in the Case 2.1, using Lemma 2.1 (d), we partition these ar
s into q� 1hamilton 
y
les H ip+1; 0 � i � q� 2 and a one fa
tor. The labels on the ar
sare �xed as follows:For 0 � i � q � 2, in H ip+1,when i is even,`(ai1) = `(ai2q) = `(ai2q�1) = p+ 1,`(ai3) = `(ai2q�2) = p� 1, and otherwise10



`(aij) = p,when i is odd,`(ai1) = p+ 1,`(ai3) = `(ai2q�2) = p� 1, and otherwise`(aij) = p.Example: For 2q = 10, the ar
s with labels p+ 1 area01 = (1; 1); a09 = (5; 6); a010 = (1; 6) in H0p+1,a21 = (1; 3); a29 = (7; 8); a210 = (1; 8) in H2p+1,a11 = (1; 2) in H1p+1, and a31 = (1; 4) in H3p+1.As in the previous 
ase, the last ar
 labelled p + 1, namely, (9; 1) (ingeneral (2q � 1; 1)) appears in the remaining one fa
tor.When i is even,`(H ip+1) = (p+ 1) + p+ (p� 1) + (2q � 6)p+ (p� 1) + (p+ 1)� (p+ 1)� �1(mod 2p).When i is odd,`(H ip+1) = (p+1)+p+(p�1)+(2q�6)p+(p�1)+p�p � �1(mod 2p).So in all 
ases `(H ip+1) and 2p are relatively prime and we have the re-quired hamilton 
y
le de
omposition of (r � 1)T2q.
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