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In this paper, we address the problem of gathering information into a central node of a radio network,
where interference constraints are present. We take into account the fact that, when a node transmits,
it produces interference in an area larger than the area in which its message can actually be received.
The network is modeled by a graph; a node is able to transmit one unit of information to the set of
vertices at distance at most dT in the graph, but when doing so it generates interference that does not
allow nodes at distance up to dI (dI ≥ dT ) to listen to other transmissions. Time is synchronous and
divided into time-steps in each of which a round (set of non-interfering radio transmissions) is performed.
Because this problem is hard to approximate in general graphs, we study good approximations in some
specific topologies, like the path, balanced stars and the 2 dimensional grid. In all these cases we provide
algorithms whose performance differs only by an additive constant from the theoretical minimum.
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1 Introduction

1.1 Background and motivation

In radio networks a set of radio devices communicate by using radio transmissions and is therefore
subject to communication and interference constraints. This means that only certain transmissions
can be performed simultaneously, hence the devices have to act cooperatively in order to achieve
an effective flow of information in the network. In this context, we study a problem proposed by
France Telecom, about “how to provide Internet to villages” [BBS05].

The houses of the village are equipped with radio devices and they want to access the rest of
the world via Internet. For that purpose they have to send (and receive) information through a
gateway where there is a central antenna. This creates a special many-to-one information flow
demand in which the access to the gateway must be provided. Hence, we will consider a specific
traffic pattern, similar to a single commodity flow with a distinguished node representing the
gateway, called sink and denoted t.

Nodes are all equipped with a communication device that can be tuned either to transmit or to
listen (exclusively). We call a slot a time interval during which the communication pattern stays
unchanged (in particular the tuning status of the communication devices stays the same). We will
assume that all the slots have the same duration, hence nodes communicate during synchronous
and regular time slots. We will use the word round (or step) to indicate a given time slot.
Furthermore, we will use as unit of traffic the amount of information that devices can transmit
during a round.

Interference and communication constraints are widely modeled by associating to each node a
transmission area in which it can transmit a message and an interference area in which it produces
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a strong noise. The communication from a node u to a node v is possible if v is in the transmission
area of u, and no third node transmitting has v in its interference area.

We model the transmission area and the interference area as balls in the graph by introducing
two parameters: dT , the transmission radius and dI , the interference radius and we suppose that
dI ≥ dT . The transmission area (resp. interference area) is then the ball of radius dT (resp. dI).

Even though the information transmitted by a node may become available to several nodes in
its transmission area, when gathering, to have two copies of a message in different vertices does
not help, so we can assume that when a sender transmits, it does so to a unique receiver.

Under this model, the problem raised by France Telecom consists of gathering information from
each node of the network into the central node (the sink t).

Our objective is to find the minimum time (in number of rounds) needed to achieve gathering,
which is called the Minimum Time Gathering Problem (MTG). Fig. 1 shows an optimal gathering
protocol using 18 rounds for a path of 7 vertices (each having one piece of information), with
dT = 1, dI = 2 and t = 0.
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Fig. 1: A protocol that gathers into t = 0 one message from each vertex in the path when dT = 1,dI = 2.

1.2 Related work and Results

Basic communication problems for the dissemination of information (like gathering, broadcasting,
gossiping) have been widely studied in classical interconnection networks [HKP+05]. The fact that
a node cannot both send and receive in the same round is known as the half-duplex 1-port model
and the unit message constraint is studied for example in [BGRV98].

The problem of finding the minimum time gathering protocol (MTG) in general graphs is NP-
Hard when dI = dT and does not admit a Fully Polynomial Time Approximation Scheme (FPTAS) if
dI > dT (that is: to find an approximation with quality (1+ε) requires a time that is not polynomial
in ε−1 unless P=NP). These two hardness results remain true even in the unitary case where each
vertex has exactly one message to transmit to the sink [BGK+06]. The same paper gives a lower
bound and a 4-approximation algorithm (independently of dI ,dT ) for the minimum gathering time
of any graph. Nevertheless, these results hold only for general graphs, and the hardness for specific
topologies (like the path, grids and stars) remains open.

The case where furthermore each node has a exactly one unit of information to transmit has
also been studied in the case of specific graph topologies for certain values of dI ,dT . In particular,
the case dT = 1 was studied in [BCY06] for the case where the graph is a path, and in [BP05] for
the case where the graph is the 2 dimensional square grid.

In this paper we consider also the case of unitary messages for paths and grids, but for any value
of dT . Even though our protocols do not match the lower bounds, the gap is an additive constant
that depends only on dI ,dT . We also study the case of stars and show that the general lower bound
of [BGK+06] is tight up to a constant that does not depend on the size of the network.

Due to space constraints, most of the proofs are omitted in this extended abstract.

2 The model: definitions and notation

An instance of the MTG problem is defined by a graph G = (V,E) with a distinguished vertex t ∈V ,
called the sink, two integers dI ,dT ∈ IN, such that dI ≥ dT > 0, and a function w : V → IN, w(u) being
the number of information pieces (shortly messages) to transmit from vertex u to the sink t. dI is
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the interference distance, dT is the transmission distance, and n = |V | is the size of the network.
In this paper we address the unitary minimum time gathering (UMTG) where w(u) = 1 (∀u ∈ V )
and write m(u) for the message originated at vertex u.

The distance between two vertices u and v is the length of the shortest path from u to v and
is denoted dG(u,v). For u ∈ V and h ∈ IN, we define the h-neighborhood of u as Γh

G(u) = {v ∈ V :
dG(u,v) ≤ h}. When the context is clear we will omit the index G.

A call is a couple (s,r), s,r ∈ V with 0 < d(s,r) ≤ dT where s is the sender and r the receiver.
The call (s,r) interferes with the call (s′,r′) if d(s,r′) ≤ dI . We say that the two calls (s,r) and
(s′,r′) are compatible if they do not interfere, that is both d(s,r′) > dI and d(s′,r) > dI .

A round is a set of compatible calls. During a round, a sender transmits a new message if there
is one available. A gathering protocol is an ordered sequence of rounds that allows to gather the
information of the nodes into the sink.

We often specify protocols by giving simply the sequence of rounds, without specifying which
message is sent, indeed that is irrelevant as long as each vertex can forward something new.

The goal of the Unitary Minimum Gathering Problem is to find a protocol that gathers all the
messages into the sink and that takes a minimum number of rounds (denoted by gdI ,dT (G, t)).

3 Results

Table 1 shows the main results of the paper. The notation is the following:
LB (resp. UB) is a lower bound (resp. upper bound) on gdI ,dT (G, t).
Pn is the path with n vertices 0,1, . . . ,n−1. Vertex i is connected with i+1 for any i = 0, . . . ,n−2.
SK,l is the balanced star with K branches. SK,l consists of K copies of Pl (the branches) sharing

a common extreme, the sink t.
G2(p,q) is the 2-dimensional grid, with vertex set V = {(i, j) : −p ≤ i ≤ p,−q ≤ j ≤ q}. So

n = (2p + 1)(2q + 1). (x,y),(x′,y′) ∈ V are connected when |x− x′|+ |y− y′| = 1. We assume that
p,q ≥ dI +dT +1 and t = (0,0).

O(1) is a constant that depends on dI ,dT but not on the size of the network n.

Topology (G) LB UB

Pn
dI+dT +1

dT
max[t,n− t]−O(1)1,2 dI+dT +1

dT
max[t,n− t]+O(1)

SK,l , bdI/dTc odd 1
2 (1+ bdI/dTc)n−O(1) 1

2 (1+ bdI/dTc)n+O(1)3

SK,l , bdI/dTc even 1
2 bdI/dTcn+ n

K −O(1)1 1
2 bdI/dTcn+ n

K +O(1)

G2(p,q), bdI/dTc odd 1
2 (1+ bdI/dTc)n−O(1) 1

2 (1+ bdI/dTc)n+O(1)3

G2(p,q), bdI/dTc even 1
2 bdI/dTcn+ n

4 −O(1)1,4 1
2 bdI/dTcn+ n

4 +O(1)4

Tab. 1: Approximation results for gathering in specific topologies. 1Partially improves bounds from
[BGK+06, BCY06]. 2Matches bound from [BCY06] when dT = 1 (optimal for t = 0). 3Matches general
lower bound up to an additive constant. 4Derives from the results for the balanced star with 4 branches.

Further results for gathering into an extreme vertex of the path (t = 0)

When n ≤ dI + 3, only one call per round can be done without interference and because trans-

mitting m(i) to the sink requires at least
⌈

i
dT

⌉

rounds, we have gdI,dT (Pn,0) = ∑n−1
i=1

⌈

i
dT

⌉

. Let

W = gdI,dT (PdI+2,0) = ∑dI+2
i=1

⌈

i
dT

⌉

.

When n > dI +3, we have two lower bounds LB1 =W +
⌈

dI+2
dT

⌉

(n−1− (dI +2)) (follows from the

general lower bound in [BGK+06]) and LB2 =
⌈

dI+dT +1
dT

(n−1)−
(dI+dT +1)(dI+dT )

2dT

⌉

.

To prove LB2 we observe that inside [0,dI +dT +1] we have, during a round, either one call of
length at most dT or two calls whose sum of lengths is at most dT (see Fig. 2).
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Fig. 2: The progress towards t inside ΓdI+dT +1(t) is at most dT per round, because x + y + dI + 1 ≤
dI +dT +1 ⇒ x + y ≤ dT . In this example, dI = 5,dT = 4, and x + y = 4.

For a node i the sum of the lengths of the calls where m(i) is transmitted within the interval
[0,dI +dT +1] is either i if i ≤ dI +dT , or dI +dT +1 if i ≥ dI +dT +1. It follows that dT gdI,dT (Pn,0)≥

∑dI+dT
i=1 i+(dI +dT +1)(n−1−dI−dT ), and therefore gdI,dT (Pn,0)≥ dI+dT +1

dT
(n−1)− (dI+dT +1)(dI+dT )

2dT
.

As upper bound, we have designed a protocol that spends UB = dI+dT +1
dT

(n−1)− f (dI,dT ) rounds,

where f (dI ,dT ) ≥ 0 and does not depend on n.
To determine the exact value of gdI,dT (Pn,0) seems a difficult problem. However, we have been

able to calculate gdI,dT (Pn,0) for some values of dI and dT .
If dI = adT −1 for some a ∈ IN, then gdI ,dT (Pn,0) = LB1 = W +(a+1)(n−1− (dI +2)) = UB.

If dT = 1, then gdI ,dT (Pn,0) = LB1 = LB2 = UB = (dI +2)(n−1)− (dI+2)(dI+1)
2 (which matches the

result in [BCY06]).
If dT = 2,dI = 2k +1, we are covered by the previous case. We have LB2 < gdI ,dT (Pn,0) = LB1 =

(k +2)(n− k−2) = UB.
If dT = 2,dI = 2k, then (a) n ≤ 3k + 4 ⇒ gdI,dT (Pn,0) = (k + 1)(n− k− 1) (LB1 matches UB); or

(b) n ≥ 3k+4 ⇒ gdI,dT (Pn,0) =
⌈ 2k+3

2 (n− k−2)
⌉

(using a specialized protocol which matches LB2).

4 Conclusions

This paper studied the Unitary Minimum Time Gathering Problem in some cases where the structure
of the graph allows to find good solutions. For the path, balanced stars, and the 2D-grid, we are
able to design protocols with a number which differs from the optimum by an additive constant.
Moreover, this constant does not depend on the size of the network, but only on the values of
the interference and transmission radius, dI and dT . However, this constant increases with these
parameters.

Finally, we do not know what is the hardness of finding the minimum time gathering in these
topologies and we conjecture it might be polynomial at least for paths.
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ence. In Septièmes Rencontres Francophones sur les Aspects Algorithmiques des Télé-
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