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emails : bermond,rklasing,nmorales,speren@sophia.inria.fr

† France Telecom Research and Development
email: jerome.galtier@francetelecom.com
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Abstract—In this paper, we address the
problem of gathering information in a central
node of a radio network, where interference
constraints are present. We take into account
the fact that, when a node transmits, it
produces interference in an area bigger than
the area in which its message can actually
be received. The network is modeled by a
graph; a node is able to transmit one unit
of information to the set of vertices at dis-
tance at most dT in the graph, but when
doing so it generates interference that does
not allow nodes at distance up to dI (dI ≥

dT ) to listen to other transmissions. Time is
synchronous and divided into time-steps in
each of which a round (set of non-interfering
radio transmissions) is performed. We give a
general lower bound on the number of rounds
required to gather on any graph, and present
an algorithm working on any graph, with an
approximation factor of 4. We also show that
the problem of finding an optimal strategy for
gathering (one that uses a minimum number
of time-steps) does not admit a Fully Polyno-
mial Time Approximation Scheme if dI > dT ,
unless P=NP, and in the case dI = dT the
problem is NP-hard.

I. Introduction

A. Background and motivation

In radio networks a set of radio devices com-
municate by using radio transmissions which,
depending on the technology used, are subject
to different interference constraints (see for in-
stance [1]–[3]). This means that only certain
transmissions can be performed simultaneously,
therefore the devices have to act in a cooper-
ative manner in order to achieve an effective
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flow of information in the network. In this con-
text, we study a problem proposed by France

Telecom, about “how to provide Internet to
villages” (see [4]).

The houses of the village are equipped with
radio devices and they want to access the rest

of the world via Internet. For that purpose they
have to send (and receive) information via a
gateway where there is a central antenna. This
creates a special many-to-one information flow
demand in which the access to the gateway
must be provided. Therefore, we will consider
a specific traffic pattern, similar to a single
commodity flow with a distinguished node rep-
resenting the gateway, called sink and denoted
t.

Unlike in wired networks, when a node u
transmits a message it does not use a resource
as simple as some capacity on a link; instead
it produces a signal that may prevent other
transmissions to occur. The set of possible con-
current transmissions follows from a complex n-
ary interference relation which properly models
the idea that the noise intensity must be small
enough compared to the signal intensity. In
order to get tractable models, a widely used sim-
plification consists of associating to each node
a transmission area in which it can transmit a
message and an interference area in which it
produces a strong noise. Then, the communica-
tion from a node u to a node v is possible if v
is in the transmission area of u, and no third
node transmitting has v in its interference area.
Note that, by doing so, we replace the n-ary
relation with a binary relation : two (possible)
transmissions (that we will denote calls) can
be performed concurrently when they do not
interfere.
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Fig. 1. Interfering/compatible calls.

B. Modeling aspects

One possible way of modeling would be to
represent the houses (radio devices) as nodes
in the plane with Euclidean distance (the areas
of transmission and interference being disks).
Here, we choose to model the network by an
undirected graph G = (V, E), where V is the
set of devices in the network and to use as dis-
tance the distance between nodes in the graph.
Firstly, it simplifies the analysis and enables
us to give tractable gathering algorithms. Sec-
ondly, for some graphs like grids or hexagonal
grids the distance in the graphs is a good ap-
proximation for the Euclidean distance. Finally,
some nodes which are close to each other in the
plane might not be able to communicate due
to different reasons like obstacles, hills, social
relations, security. So, there is an edge if two
houses are neighbors and able to communicate.

We model the transmission area and the in-
terference area as balls in the graph by introduc-
ing two parameters: dT , the transmission radius
and dI , the interference radius and we suppose
that dI ≥ dT . The transmission area (resp. in-
terference area) is then the ball of radius dT

(resp. dI ).
The information transmitted by a node be-

comes available to all the nodes that are in its
transmission area if they are listening, and if
they are not in the interference area of a third
node. We will denote the fact that node s (like
sender) is transmitting a message to node r (like
receiver) by saying there is a call (s, r). We will
say that two calls (s, r) and (s′, r′) with s 6= s′

are compatible if s does not interfere with r′

and s′ does not interfere with r. Indeed, as we
are considering the gathering problem, we can
assume that when a sender transmits, it does so
to a unique receiver.

Figure 1 shows a set of 3 calls, which are
represented by the arrows over the edges of
the graph. If dI = dT = 1, all these calls are
compatible. However, if dI = 2, dT = 1, vertex b

is under the interference of vertex e, and vertex
f is under the interference of vertices a and c.
In this case, a round could either consist of one
single call (e, f), or of the two calls (a, b), (c, d).

Under this model, the problem raised by
France Telecom consists of gathering informa-
tion from each node of the network into the
central node (the sink t). We will suppose that
each node has to transmit an integer (≥ 0)
number of units of information.

Our measure of efficiency is the time (i.e., the
number of rounds) needed to achieve gathering,
hence our objective is to study the minimum

time gathering problem. Figure 2 shows an op-
timal gathering protocol using 18 rounds for a
path with 7 vertices (each having one piece of
information), with dT = 1 and dI = 2.
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Fig. 2. A gathering protocol in the path when dT =
1, dI = 2 and every vertex has one message to send to
the sink.

Note that we may as well study the converse
problem (personalized broadcast) for which we
need to send personalized information from the
central node to each node. But since personal-
ized broadcast and gathering are almost iden-
tical (inverse) problems, we focus on gathering.
However, unlike in many other communication
models, we cannot simply reverse the time or
the communication steps and state that gath-
ering and personalized broadcast are formally
identical or equivalent. For example, in Figure 1
(for dI = 2, dT = 1) the 2 calls (a, b), (c, d) are
compatible, but the reversed calls (b, a), (d, c)
interfere. Despite the lack of perfect equiva-
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lence, all the results (algorithms, complexity,
bounds) that we give are also valid for person-
alized broadcast.

C. Related work

Basic communication problems for the dis-
semination of information (like gathering,
broadcasting, gossiping) have been widely stud-
ied in classical interconnection networks (see the
book [5]). The fact that a node cannot both send
and receive in the same round is known as the
half-duplex 1-port model and the unit message
constraint is studied for example in [6]–[8].

The broadcasting and gossiping problems in
radio networks with dT = dI = 1 are studied
in [9]–[11] and [12]–[14] respectively. Note that
in a broadcast the same information has to be
transmitted to all the other nodes and therefore
flooding techniques can be used.

With respect to the gathering problem, the
uniform case with dT = 1 and any dI is studied
in depth for the case of the path in [15] and the
two-dimensional square grid, for which optimal
solutions are provided in [16], whereas in [17],
the case dT ≥ 2 and any dI ≥ dT is studied for
the same topologies. Another related model can
be found in [18], where the authors study the
case in which steady-state flow demands f(u, v)
between each pair of nodes (u, v) have to be
satisfied.

D. Results & Structure of the paper

The paper is organized as follows. In Section
II, the model and the gathering problem are
formalized through a number of definitions. In
Section III, we provide a general lower bound
and a protocol (valid for any graph and any
quantity of information) which allows us to
prove that our protocol achieves an approxima-
tion ratio of 4, independently of dI and dT .

Hardness results are given in Section IV: we
show that gathering in general radio networks
is NP-hard for any value of dI , dT and that, as
soon as dI > dT , it does not admit an FPTAS
which means that to find an approximation with
a quality (1 + ε) requires time which is not
polynomial in ε−1, unless P=NP.

We note that most of the proofs are omitted
in this paper.

II. The model: definitions and notation

In the whole paper, we are given a graph G =
(V, E) with n vertices and with a distinguished

vertex t ∈ V , called the sink, and two integers
dI , dT ∈ IN , such that dI ≥ dT > 0, where
dI is the interference distance and dT is the
transmission distance.

The distance between two vertices u and v is
the length of the shortest path from u to v and
is denoted dG(u, v). For u ∈ V and h ∈ IN , we
define the h-neighborhood of u as Γh

G(u) = {v ∈
V : dG(u, v) ≤ h}. When the context is clear we
will omit the index G.

In the gathering problem, every node u ∈ V
has w(u) pieces of information (called shortly
messages) which have to reach the sink t; where
w(u) is a positive integer.

A call is a couple (s, r), s, r ∈ V with 0 <
d(s, r) ≤ dT where s is the sender and r the
receiver. The call (s, r) interferes with the call
(s′, r′) if d(s, r′) ≤ dI . We say that the two
calls (s, r) and (s′, r′) are compatible if they
do not interfere, that is both d(s, r′) > dI and
d(s′, r) > dI .

A round is a set of compatible calls. During
a round, a sender transmits a new message if
there is one available.

A gathering protocol is an ordered sequence
of rounds that allows to gather the information
of the nodes in the sink.

We will only consider protocols that manip-
ulate the original messages. We can show that
there always exists an optimal protocol having
this property.

Finally, we will often specify protocols by
giving simply the sequence of rounds, without
specifying which message is sent, indeed that
is irrelevant as long as each vertex can forward
something new.

Our objective is to find gathering protocols
minimizing the number of rounds needed to
gather all the messages into the sink. The
minimum number of rounds will be called the
gathering number and denoted shortly g(G, t)
(although it formally depends on dT and dI

and the function w and should be denoted
gw

dI ,dT
(G, t)).

Note that in any gathering protocol there
is a bottleneck near the sink as there is a
critical section, where during one round only
one message near the sink can move towards
the sink. First, let us rule out a trivial case.

Trivial case : When V itself is a critical section,
that is when any two calls in V interfere. Hence,
in that case there is at most one call per round
and to transmit a message of u to the sink t we

need at least
⌈

d(u,t)
dT

⌉

rounds and so in that case
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g(G, t) =
∑

u∈V w(u)
⌈

d(u,t)
dT

⌉

.

In what follows, we will suppose that we are
not in the trivial case. We define a critical

section of the sink t as an h-neighborhood of t ,
Γh(t), such that any two vertices in Γh(t) cannot
receive in the same round; said otherwise, there
cannot exist two compatible calls (s, r) and
(s′, r′) with both r and r′ in Γh(t). We define
the critical radius rC = rC(G, t) as the greatest
integer h such that Γh(t) is a critical section.

Example: Consider a path Pn with n vertices
0, 1, . . . , n − 1. If n ≤ dI + 2, we are in the
trivial case where V is a critical section. So we
suppose that n ≥ dI + 3. The computation of
rC will depend on the position of the sink. If
the sink is at one end, say vertex 0, we have
rC = dI + 1 ; indeed the h-neighborhood of the
sink 0 consists of the vertices 0, 1, . . . , h and so
if h ≤ dI + 1 it is a critical section (as the sink
is not a sender); but for h > dI + 1 both 0
and dI + 2 can receive, the two calls (1, 0) and
(dI +1, dI +2) for example being compatible. If
n > dI + dT + 1 and if the sink is

⌈

dI+dT

2

⌉

, the
two calls (0, dT ) and (dI + dT + 1, dI + 1) are
compatible and therefore a simple computation
shows that rC(Pn,

⌈

dI+dT

2

⌉

) ≤ dI−dT

2 . The next
lemma shows that there is equality.

Lemma 1:
⌊

dI − dT

2

⌋

≤ rC(G, t) ≤ dI + 1.

Proof: For the first inequality, let
(s, r), (s′, r′) be two calls such that r, r′ ∈

Γ

j

dI−dT

2

k

(t). Then d(s, r′) ≤ d(s, r) + d(r, r′) ≤
dT + 2

⌊

dI−dT

2

⌋

≤ dT + dI − dT = dI . Therefore
these calls interfere. For the second inequality,
suppose that rC(G, t) ≥ dI + 2, then the two
calls (s, t) with d(s, t) = 1 and (s′, r′) with s′r′

an edge of G and d(s′, t) = d(r′, t) = dI + 1 are
compatible. Note that the bounds are attained
as shown by the example of the path.

III. Constant approximation algorithm

for arbitrary graphs

A. Lower bounds

Recall that we suppose we are not in the triv-
ial case. For a vertex u, let us denote p(u, t) the
minimum number of calls, with their receiver
inside the critical section that are necessary to
bring a message originated at u to the sink.

Lemma 2: If u ∈ ΓrC (t), p(u, t) =
⌈

d(u,t)
dT

⌉

and if u /∈ ΓrC (t): p(u, t) =
⌈

1+rC(G,t)
dT

⌉

.

Proof: For a given message the distance to
the sink of the vertex containing this message
can decrease during a call by at most dT . Thus,

if u is in the critical section, we need
⌈

d(u,t)
dT

⌉

calls (rounds) in order that one message of u
reaches the sink. If u is outside the critical
section, the first call with a receiver inside the
critical section has its sender at distance at least
rC(G, t) + 1 from the sink, and we need at least
⌈

1+rC(G,t)
dT

⌉

calls (rounds) to take a message

from u to the sink.
Corollary 1:

g(G, t) ≥
∑

u∈V (G)

w(u)p(u, t)

Proof: For any vertex u, the minimum
number of calls having their receiver in the crit-
ical section and needed to transmit a message
of u is p(u, t)w(u). Hence

∑

u∈V (G) w(u)p(u, t)
such calls have to be performed. By definition
of the critical section, all these calls have to be
done in different rounds.

Corollary 2: Let δ = max[d(u, t), w(u) > 0.
For any 1 + rC + dT ≤ a ≤ δ,

g(G, t) ≥

⌈

a − (dT + rC)

dT

⌉

+
∑

u∈V (G),d(u,t)≥a

w(u)p(u, t)

Proof: It follows from the observation that
no message from a vertex at a distance greater

than a can reach ΓrC+dT (t) before
⌈

a−(dT +rC)
dT

⌉

rounds and that ΓrC (t) ⊂ Γa(t).

B. A general protocol

We can derive a protocol that matches the
above lower bound up to a factor of 4.

Theorem 1: There exists a 4-approximation
for the gathering problem.

Sketch of proof: The idea is to pipeline the
messages towards the sink according to their
distance. We partition the vertices into sets Bi

where B0 contains the messages at distance in
[1, K0dT ] and Bi contains the messages at dis-
tance in [K0dT +1+(i−1)KdT , K0dT + iKdT ].
(K0 depends on the distribution of the messages
near the sink, but in many cases is of order
⌈

1+rC

dT

⌉

. K =
⌈

dI+dT +1
dT

⌉

.)

Every K rounds, one message from Bi (if
any) is transmitted to interval Bi−1 and in gen-
eral one message reaches the sink. The detailed
protocol and the analysis (involved when some
vertices have no messages) is given in the full
version. The total number of rounds is roughly
K

∑

u w(u), while the lower bound is about
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K ′
∑

u w(u) rounds, where K ′ =
⌈

1+rC

dT

⌉

. The

ratio 4 follows from the fact that K/K ′ ≤ 4.
The exact value of the approximation ratio

depends on dI and dT , with 4 being an upper
bound, independent of dI and dT . This ratio
goes to 2 when dT /dI → 0. Furthermore, 4 is
the best value that we can obtain with the above
protocol.

IV. Hardness results

If dI = dT , we show that 3SAT can be re-
duced to gathering, and henceforth the problem
is NP-Hard in this case. When dI > dT , we
show that there exists no FPTAS (an FPTAS is
a method that ensures a (1 + ε)-approximation
in time polynomial in ε−1 and the size of the
problem; see [19], [20] for a definition) for gath-
ering in general graphs. The result follows from
a reduction of Minimum Vertex Coloring

and Minimum Independent Set to Minimum

Gathering Time. Our reductions are such
that the gap introduced on gathering time is
small (it is not a constant factor of the optimal)
but not exponentially small.

Theorem 2: (i) When dI > dT there exists no
FPTAS for Minimum Gathering Time unless
P=NP. (ii) For dI = dT the problem is NP-
hard.

V. Conclusions

In this paper, we investigated whether the
radio bandwidth can be shared optimally to
carry traffic over a wireless network. We proved
that the problem is NP-Hard if dI = dT and it
does not admit an FPTAS when dI > dT . We
proposed a constant approximation algorithm.
Some complexity issues remain open: Does there
exist a PTAS or a (1 + ε)-approximation algo-
rithm for general graphs? For particular topolo-
gies, like trees or paths, we can find an approx-
imation close to 1 (for example in the case of
paths it is possible to give approximations up to
an additive constant depending on dI , dT [17]),
but it is unclear if the problem is polynomial
or not. A more practical question would be to
study more dynamic cases (e.g. using online
algorithms) or to derive algorithms that would
not assume a global control but rely on local
decisions (distributed algorithms).
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