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Abstract— This work focuses on a class of distributed storage
systems whose content may evolve over time. Each component
or node of the storage system is mobile and the set of all nodes
forms a delay tolerant (ad hoc) network (DTN). The goal of the
paper is to study efficient ways for distributing evolving files
within DTNs and for managing dynamically their content. We
specify to dynamic files where not only the latest version is useful
but also previous ones; we restrict however to files where a file
has no use if another more recent version is available. There are
N + 1 mobile nodes including a single source which at some
points in time makes available a new version of a single file F . We
consider both the cases when (a) nodes do not cooperate and (b)
nodes cooperate. In case (a) only the source may transmit a copy
of the latest version of F to a node that it meets, while in case
(b) any node may transmit a copy of F to a node that it meets. A
file management policy is a set of rules specifying when a node
may send a copy of F to a node that it meets. The objective
is to find file management policies which maximize some system
utility functions under a constraint on the resource consumption.
Both myopic (static) and state-dependent (dynamic) policies are
considered, where the state of a node is the age of the copy
of F it carries. Scenario (a) is studied under the assumption
that the source updates F at discrete times t = 0, 1, . . ..
During a slot [t, t + 1) the source meets any node with a fixed
probability. We find the optimal static (resp. dynamic) policy
which maximizes a general utility function under a constraint
on the number of transmissions within a slot. In particular, we
show the existence of a threshold dynamic policy. In scenario (b)
F is updated at random points in time, with the consequence
that between two meetings with the source a node does not
know the age evolution of the version of F it holds. Under
Markovian assumptions regarding nodes mobility and update
frequency of F , we study the stability of the system (aging of the
nodes) and derive an (approximate) optimal static policy. We then
revisit scenario (a) when the source does not know parameter N
(node population) and q (node meeting probability) and derive a
stochastic approximation algorithm which we show to converge
to the optimal static policy found in the complete information
setting. Numerical results illustrate the respective performance
of optimal static and dynamic policies as well as the benefit of
node cooperation.

Keywords: Evolving files; Storage systems; Delay-tolerant (ad
hoc) networks; Performance evaluation; Optimization.

I. INTRODUCTION

Much work has been devoted for the study of Delay Tolerant
Networks (DTNs). Most of the work on protocol design has
focused on the use of mobility in order to reach one or
more disconnected destinations. The protocols are based on
distribution of the file to relay nodes so as to increase the

successful delivery probability [2], [3], [4], [9], [10].

In such applications, the DTN becomes a distributed storage
system that contains copies of a file that is being transmitted.
In this paper we focus on a special type of file that we call
”dynamic file” or ”evolving file”. By that we mean a file whose
content may evolve and change from time to time. One (or
various) sources wish to make a file available to mobile nodes,
and to send updates from time to time. Some examples are:

• a source has a file containing update information such
as weather forecast or news headlines. The file changes
incrementally from time to time with new information
updates.

• a source wishes to make backups of some directories and
to store them at another nodes in order to increase the
reliability.

• some software updates or patches may be distributed
regularly.

Several formats of dynamic files have been standardized:

• the RSS (“Real Simple Syndication” [5]) family of Web
feed formats used to publish frequently updated content
such as blog entries, news headlines, and podcasts in a
standardized format. Updates can originate from various
sources.

• another format called the “Atom Syndication Format” has
been adopted as IETF Proposed Standard RFC 4287.

We specify to dynamic files where not only the latest version
is useful but also previous ones; we restrict however to files
where a file has no use if another more recent version is
available. For example, consider an evolving file containing
the weather forecast for seven consecutive days. If a user needs
the weather forecast for the next day then any version of the
file from the six last days is useful. The more recent the file is,
the more accurate the requested information is. Furthermore,
having access to a given file makes all previous files irrelevant
to the user.

The goal of our paper is to study efficient ways for distributing
evolving files within DTNs and for managing dynamically
their content. The obvious way to provide the most up-to-date
information is to use epidemic routing (e.g. see [10]) for each
new version of F . This however consumes a lot of network
resources.
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We start with a general description of the model. More details
will be given in the subsequent sections. There are N + 1
mobile nodes including one source node. From now on a node
designates any mobile node other than the source. At some
time epochs the source creates an updated version of a file F .
When the source meets a node it may decide to transmit to
this node a copy of F . Similarly, when two nodes meet the
node which carries the more recent version of F may transmit
a copy of this version to the other node. When a node receives
a more recent version of F than the one it was carrying (if
any) it deletes at once the oldest version of F.

The setting in which only the source may transmit (a copy
of) F to another node is called the non-cooperative setting,
while in the cooperative setting any mobile node may transmit
to any other node. We assume that transmissions are always
successful.

There is a utility U(k) associated with a node in state k, where
the state of a node is defined as the age of the copy of F , if any,
this node carries. A file management policy, or simply a policy,
is a set of rules specifying whether the source and a node, or
two nodes, should communicate whenever they meet. A policy
is static (resp. dynamic) if the decision to transmit does not
(resp. does) depend on the state of the mobile nodes. The
objective is to find a file management policy that maximizes
the expected system utility given a constraint on the expected
number of communications taking place in a slot.

Section II addresses the non-cooperative setting. Time is
slotted and there is a fixed probability q that any pair of mobile
nodes meets in a slot. At the beginning of each slot the source
creates a new version of F , so that each node carrying a copy
of F knows that its state has increased by one unit. A copy
of F reaching age K + 1 (K < ∞) is immediately deleted.
We find the optimal static policy (Proposition 1) and show
that there is an optimal dynamic policy of a threshold type
(Proposition 2) which we fully characterize (Proposition 3).
The performance of the optimal static and dynamic policies
are compared (Figures 1-4) for two different utility functions
(U(k) = 1 and U(k) = 1/k).

Section III investigates the cooperative setting. We develop
a continuous-time model in which mobile nodes meet at
random times and file F is updated by the source also at
random times. The latter assumption implies that nodes do
not know when a new version of F is created, which in
turn implies that between two consecutive meetings with
the source a node does not know the age evolution of the
version of F it holds. For this reason, we assume that a node
never deletes a file (corresponding to K = ∞ in Section II)
except when it receives a more recent version of F either
from another node or from the source. As a result, the state
of a node may grow to infinity, a situation referred to as
instability. In Proposition 4 we derive conditions for stability in
a Markovian framework. Under more restrictive assumptions,
where node meeting times and update times are modeled by
independent Poisson processes, we derive a “mean-field like”

approximation for the expected number of nodes in state k ≥ 1
in the case where a static policy is enforced. We then use this
result to quantify in Figures 5-6 the benefit of having nodes
to cooperate.

The deployment of optimal policies derived in Sections II-
III requires that the source has a complete information on
the network (node mobility, number of nodes). In Section IV
we release this assumption. We focus on the noncooperative
setting and restrict to static policies, and we assume that
the source does not know the number of nodes N and does
not know the meeting probability q. By using the theory of
stochastic approximations, we construct an algorithm which
converges to the optimal static policy found in Section II.
Section V concludes the paper.

Remark on the notation: by convention
∑j

k=i · = 0 and∏j
k=i · = 1 if i > j. IR+ denotes the set of all nonnegative

real numbers.

II. NON-COOPERATIVE NODES

In this section we consider the scenario where nodes do not
cooperate and may only receive file F from the source. At
times t = 0, 1, . . . the source creates a new version of file
F . In the following, a slot denotes any time-period [t, t + 1),
t ≥ 0, and slot t stands for the time-period [t, t + 1). There
is a probability q > 0 that a node meets the source in a
slot. We define the meeting times between the source and a
node as the successive slots at which they meet. The meeting
times of each node which the source form a sequence of
independent and identically distributed (iid) random variables
(rvs) and all meeting time processes are assumed to be mu-
tually independent. For sake of simplicity we assume that all
transmissions between the source and the nodes initialized in a
slot are completed by the end of this slot. This is equivalent to
assuming that the transmission time of F is small with respect
to the duration of a slot.

When a node receives an updated version of F it deletes at
once the previous version of F it was carrying, if any. We
define the age of a version of F as the number of slots that
have elapsed since this version was generated by the source.
We assume that a version of age K +1 or more is useless and
that a node deletes at once a file that has reached age K + 1.
Therefore, the age of a version of F varies between 1 (the
version was generated in the current slot) and K (the version
was generated K slots ago). We further assume that K < ∞
(see Remark 2.1).

The state of a node is defined as the age of the version of F
it carries, if any. A node is in state 0 if it does not carry any
version of F . A node in state K at the end of a slot switches
to state 0 at the beginning of the next slot.

At equilibrium let Xk be the average number of nodes in state
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k = 0, 1, . . . , K at the end of a slot. Note that

K∑

k=0

Xk = N. (1)

When the source meets a node in state k with probability
ak it transmits to it the newest version of F . This decision
is independent of all past decisions made by the source and
is also independent of the meeting time processes. Introduce
pk := qak, (k = 0, 1, . . . , K) the probability that a node in
state k receives the newest version of F in a slot.

Under the above assumptions the following equilibrium equa-
tions hold

X0 = X0(1− p0) + XK(1− pK) (2)
Xk = Xk−1(1− pk−1), k = 2, . . . , K. (3)

There is one additional equilibrium equation given by X1 =
p0X0 + p1X1 + · · · + pKXK which we will not consider
since it can be derived by summing up all equations (2)-(3).
Equations (1)-(3) define a linear system of K + 1 equations
and K + 1 unknowns.

If p0 = 0, namely if a0 = 0 since we have assumed that
q > 0, the existence of a unique solution to this linear system
of equations will depend on the values of p1, . . . , pK . For
instance, if p0 = 0 and pk < 1 for all k = 1, . . . , K the
solution is unique and given by X0 = N and Xk = 0 for
some k = 1, . . . , K. This result is of course not surprising
since in this case each node will reach state 0 with a positive
probability and will never leave that state afterward. On the
other hand, if p0 = 0 and pk = 1 for all k = 1, . . . , K the
steady-state will depend on the initial state, implying that the
solution to the linear system will not be unique. For instance,
if p0 = 0 and p1 = 1 then the number of nodes in state 1 in
steady-state is equal to the number of nodes in that state at
time t = 0.

From now on we will assume that p0 > 0 (i.e. a0 > 0) since
we are only interested in the situation where the stationary
regime does not depend on the initial state.

Define p := (p0, . . . , pK). From (3) we find

Xk = X1

k−1∏

i=1

(1− pi), k = 2, . . . , K

so that, by (2), X0 = (X1/p0)
∏K

i=1(1 − pi). The above
together with (1) yields

X0 =

N

K∏

i=1

(1− pi)

D(p)
, Xk =

Np0

k−1∏

i=1

(1− pi)

D(p)
(4)

for k = 1, . . . , K, where D(p) := p0

∑K
j=1

∏j−1
i=1 (1 − pi) +∏K

i=1(1− pi)).

In the particular case when pk = p for k = 0, 1, . . . ,K then

X0 = N(1−p)K , Xk = Np(1−p)k−1, k = 1, . . . ,K. (5)

Remark 2.1 (K = ∞): Formulas (4) hold if K = ∞ (i.e.
nodes never delete the file they carry) provided that the
denominator in (4) is finite as K → ∞. This is so if
limj→∞ pj > 0 (Hint: apply d’Alembert’s criterion to the
infinite series

∑
j≥1

∏j−1
i=1 (1 − pi)). Also note from (4) that

X0 = 0 if K = ∞.

Remark 2.2 (Intermittently avaivalable nodes): The situation
where nodes are intermittently available can be handled by
replacing by p by rp in (4), with r the probability that a node
is available in a slot.

A. Performance metrics

There are several performance metrics of interest which can be
derived from (4). One of these is the expected number copies
of F given by

X =
K∑

k=1

Xk = N −X0. (6)

Another one is the expected age of the copies given by
(1/X)

∑K
k=1 kXk. Of particular interest is to evaluate the

power consumption. Since the power consumption, denoted as
Q(p) with p = (p0, . . . , pK), is proportional to the expected
number of transmissions during a slot, we will define it as

Q(p) = γX1. (7)

Without loss of generality we assume from now on that γ = 1.

B. Energy efficient file management policies

A file management policy is any decision vector a =
(a0, . . . , aK) ∈ (0, 1]× [0, 1]K , where we recall that ak is the
(conditional) probability that the source transmits F to a node
in state k when it meets such a node. An equivalent definition
of a file management policy is any vector p = (p0, . . . , pK) ∈
(0, q] × [0, q]K since pk = qak for k = 0, 1, . . . , K. Unless
otherwise mentioned we will work the latter definition.

Our objective is to find an optimal file management policy
p which maximizes the system utility given a power con-
sumption constraint. More precisely, let U(k) be the utility
for having a file of age k in the system. We assume that the
mapping U : {0, 1, . . . , K} → IR+ is non-increasing. Without
loss of generality we assume U(0) = 0. The system utility is
defined as

C(p) =
K∑

k=1

XkU(k).

If U(k) = 1 for all k then C(p) = X , given in (6).

The optimization problem is the following:

P: Maximize C(p) over the set (0, q]× [0, q]K given Q(p) ≤
V , where V is a positive constant.

We will solve P in two different settings: the static setting
where management policies are restricted to policies of the
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form p = (p, . . . , p) with p ∈ (0, q], and the dynamic
setting where the optimization is made over all vectors p =
(p0, . . . , pK) ∈ (0, q]× [0, q]K .

1) Static optimal policy: .

In the static setting, problem P becomes (see (5)):

P′: Maximize C(p) := Np
∑K

k=1(1 − p)k−1U(k) over p ∈
(0, q] given that Np ≤ V .

The following result holds:

Proposition 1 (Optimal static policy):

If Nq ≤ V then p? = q is the optimal solution; otherwise
p? = V/N is the optimal solution or, equivalently, p? =
min(q, V/N).

Proof. It is enough to show that the mapping p → C(p) is
non-decreasing. Define U(K + 1) = 0. We have

C(p) =
K∑

k=1

(U(k)− U(k + 1))
k∑

j=1

Xj

= N

K∑

k=1

(U(k)− U(k + 1))(1− (1− p)k)

by using (5). Since the mapping U is non-increasing, U(k)−
U(k + 1) is non-negative for all k. The proof now follows
since the mapping p → 1 − (1 − p)k is non-decreasing for
each k = 1, . . . ,K.

2) Dynamic optimal policy: Let us introduce the new decision
variables xk = 1 − pk for k = 1, . . . ,K and xK = (1 −
pK)/p0. Note that 1 − q ≤ xk ≤ 1 for k = 1, . . . , K and
xK ≥ (1 − q)/q with equality if and only if p0 = pK = q.
Let x = (x1, . . . , xK). Introduce the set

E =
{
x : x ∈ [1− q, 1]K−1 × [(1− q)/q,∞)

}
.

Any vector x ∈ E is called a policy. Define the mappings

F (x) =
K∑

k=1

U(k)
k−1∏

i=1

xi, G(x) =
K+1∑

k=1

k−1∏

i=1

xi

and let H(x) := F (x)/G(x). Note that F (x) does not depend
on the variable xK . We have D(p) = p0G(x), and so by (4)

C(p) = NH(x) and Q(p) = N/G(x).

In this new notation problem P becomes maxx∈E H(x) sub-
ject to the constraint G(x) ≥ C, with C := N/V .

An admissible policy is any policy such that G(x) ≥ C.

Definition 2.1 (Threshold policy):

A policy x = (x1, . . . , xK) ∈ E is a threshold policy if either
xi = 1 or xi+1 = 1 − q for i = 1, . . . , K − 2 and if either
xK−1 = 1 or xK = (1− q)/q.

Any threshold policy x = (x1, . . . , xK) is such that x1 ≥
. . . ≥ xK−1. More precisely, it is easily seen that a threshold
policy if either of Type I or of Type II with

Type I: for k = 1, . . . ,K

xk(α) := (1, . . . , 1, α, 1− q, . . . , 1− q, (1− q)/q) (8)

where 1− q ≤ α < 1 is the k-th entry;

Type II:

xK(β) := (1, . . . , 1, β) with β ≥ (1− q)/q. (9)

In terms of the file management policy p = (p0, . . . , pK) ∈
(0, q] × [0, q]K , Type I threshold policy xk(α), uniquely
translates into

pk(α) := (q, 0, . . . , 0, 1− α, q . . . , q, q) (10)

where 1−α ∈ (0, q] is the (k+1)-st entry (k = 1, . . . , K) (as
already observed p0 = pK = q in (10) since this is the only
solution of the equation (1− pK)/p0 = (1− q)/q when 0 ≤
p0, pK ≤ q with p0 6= 0). In particular p1(1−q) = (q, . . . , q).

Any file management policy

pK(β) = (p0, 0, . . . , 0, pK) (11)

with (1 − pK)/p0 := β corresponds to the unique Type II
threshold policy xK(β).

Proposition 2 (Optimality of threshold dynamic policy): Un-
der the assumption that the utility function U : {1, . . . ,K} →
IR+ is non-increasing there exists an optimal threshold policy.

Proof. Assume that the optimal policy x is not a threshold
policy. Hence, there exists a k, 1 ≤ k ≤ K − 1, such that
either xk < 1 and xk+1 > 1− q if k 6= K − 1 or xK−1 < 1
and xK > (1− q)/q if k = K − 1.

Assume first that x1 · · ·xk−1 6= 0. Let us show that one can
always find εk > 0 and εk+1 > 0 such that x′k := xk +εk < 1,
x′k+1 = xk+1 − εk+1 > 1 − q if k 6= K − 1 (resp. x′k+1 =
xk+1 − εk+1 > (1− q)/q if k = K − 1) and G(x) = G(x′),
where x′ = (x1, . . . , xk−1, x

′
k, x′k+1, xk+2, . . . , xK).

Set δk := x′kx′k+1 − xkxk+1 = εkxk+1 − εk+1xk − εkεk+1.
The identity G(x′) = G(x) is equivalent to

x1 · · ·xk−1 (εk + δkAk) = 0

that is εk + δkAk = 0, with Ak := 1 + xk+2 + xk+2xk+3 +
· · ·+ xk+2 · · ·xK .

The equation εk + δkAk = 0 rewrites

εk+1 = εk
1 + Akxk+1

Ak(xk + εk)
.

So, we can find εk and εk+1 small enough so that they satisfy
the conditions.

Observe that εk + δkAk = 0 with εk > 0 yields δk < 0 since
Ak > 0.
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Let us finally show that F (x′) > F (x) which will contradict
the optimality of x. We have

F (x′)− F (x)
x1 · · ·xk−1

= εkU(k + 1) + δk[U(k + 2)

+xk+2U(k + 3) + · · ·+ xk+2 · · ·xK−1U(K)]
= (εk + δkAk − δkxk+2 · · ·xK)U(k + 1)

+δk[U(k + 2)− U(k + 1)
+xk+2(U(k + 3)− U(k + 1)) + · · ·
+xk+2 · · ·xK−1(U(K)− U(k + 1))]

= −δkxk+2 · · ·xKU(k + 1) + δk[U(k + 2)
−U(k + 1) + xk+2(U(k + 3)− U(k + 1)) + · · ·
+xk+2 · · ·xK−1(U(K)− U(k + 1))] (12)

where we have used the identity εk +δkAk = 0 to derive (12).
Since U is non-increasing and δk < 0 as noticed earlier, we
deduce that the right-hand side of (12) is strictly positive, and
therefore F (x′) > F (x).

Assume now that x1 · · ·xk−1 = 0. This may only happen
when q = 1 since 1 − q ≤ xk ≤ 1 for k = 1, . . . , K. Let
j ∈ {1, . . . , k − 1} be the smallest integer such that xj = 0.

If the optimal policy is such that xj = 0 then the value of
xj+1, . . . , xK are irrelevant since xj = 0 implies that Xj+1 =
· · · = XK = 0 so that both the cost and the constraint will not
depend on the values of xj+1, . . . , xK . Assume for instance
that xj+1 = · · · = xK = 0 so that policy x is of the form
x = (x1, . . . , xj−1, 0, . . . , 0). It this is not a threshold policy
then one can find k′ ∈ {1, . . . , j − 2} such that xk′ < 1
and xk′+1 > 1 − q = 0. We can then duplicate the same
argument used to establish (12) with k replaced by k′. Since
x1 · · ·xk′−1 6= 0 from the definition of j we conclude that
F (x′) > F (x). This completes the proof.

It is actually possible to find the best dynamic file management
policy in explicit form, as now shown.

Proposition 3 (Best dynamic file management policy):

Assume that the utility function U : {1, . . . ,K} → IR+ is
non-increasing. The following results hold:

(a) if Nq < V the optimal file management policy is p1(1−
q) = (q, . . . , q);

(b) if Nq
qk+1 < V ≤ Nq

q(k−1)+1 for some k = 1, . . . , K,
the optimal file management policy is pk(q(C − k)) =
(q, 0 . . . , 0, 1− q(C − k), q, . . . , q) (see (10));

(c) if V ≤ Nq
q(K−1)+1 any file management policy pK(C −

K) = (p0, 0, . . . , 0, pK) such that (1−pK)/p0 = C−K
is optimal.

Proof. Since we have shown in Proposition 2 that there exists
an optimal threshold policy, we only need to focus on threshold
policies as defined in (8)-(9). Easy algebra show that

G(xk(α)) = k +
α

q
, k = 1, . . . , K (13)

G(xK(β)) = K + β, (14)

so that G(x1(α1)) ≤ · · · ≤ G(xK−1(αK−1)) ≤ G(xK(β))
for all α1, . . . , αK−1 ∈ [1−q, 1), β ≥ (1−q)/q. From this we
deduce that there are three different cases to consider (recall
that C = N/V ):

(a) C < G(x1(1− q)) = 1/q or equivalently V > Nq;
(b) G(xk(1 − q)) ≤ C < G(xk+1(1 − q)) or equivalently

Nq
qk+1 < V ≤ Nq

q(k−1)+1 ;
(c) C ≥ G(xK((1− q)/q)) or equivalently V ≤ Nq

q(K−1)+1 .

Case (a): In this case any threshold policy satisfies the
constraint, so that the optimal policy is the policy which
maximizes the cost H(x).

It is shown in Lemma 1 in the appendix that for each k =
1, . . . ,K, the mapping xk → H(x) is non-increasing for any
x = (x1, . . . , xK) ∈ E. Therefore, policy x1(1 − q) = (1 −
q, . . . , 1− q, (1− q)/q) is optimal, or equivalently (see (10))
the file management policy p1(1− q) = (q, . . . , q) is optimal.

Case (b): Assume that G(xk(1− q)) ≤ C < G(xk+1(1− q))
for some 1 ≤ k ≤ K − 1.

By Lemma 1 in the appendix we see that the best threshold
policy is the one which saturates the constraint, namely policy
xk(α) such that G(xk(α)) = C, that is α = q(C − k). By
(13) this policy is unique and is given by xk(q(C − k)).
Equivalently (see (10)), the optimal file management policy
is pk(q(C − k)).

Case (c): In this case there is no Type I policy which
satisfies the constraint G(x) ≥ C. Among all Type II
policies satisfying this constraint the one with the smallest
K-th entry is the policy such that G(xK(β)) = C, that
is (see (11)) policy xK((C − K)) = (1, . . . , 1, C − K).
We conclude again from Lemma 1 that this is the optimal
policy. Equivalently (see (11)), any file management policy
pK(C − K) = (p0, 0, . . . , 0, pK) such that (1 − pK)/p0 =
C −K is optimal. This concludes the proof.

C. Numerical results

Let p∗s (resp. p∗d) be the static (resp. dynamic) file management
policy which solves the optimization problem P – as found
in Proposition 1 (resp. Proposition 3). Figures (1)-(4) display
mappings q → ∑K

k=1 U(k)Xk under policies p∗s and p∗d (cor-
responding curves are referred to as “static” and “dynamic”,
respectively), for two different utility functions (U(k) = 1,
U(k) = 1/k) and for two different values of the constraint
V (V = 10, 20). In all figures N = 100 and K = 5. These
results show that the use of the optimal dynamic policy may
yield substantial gains (e.g. for U(k) = 1 gain of ≈ 22% for
all q ≥ 0.2 – see Fig. 2; gain of ≈ 45% for q close to 1 –
see Fig. 1. Gain is halved for U(k) = 1/k.). The gain is an
increasing function of the meeting probability q.
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III. COOPERATIVE NODES

In this section we assume that nodes cooperate in the sense that
when two nodes meet the one with the most recent version of
F may send a copy to the other one. A node may only delete
the version of F it carries when it receives a more recent
version from the source or from another node.

The identity of the source is 0 and nodes are labeled
1, 2, . . . , N . We observe the system at discrete times {tn}n≥0,
where tn is the time of the nth event. An event is either the
meeting of the source with a node, the meeting of two nodes or
the creation of a new version of F by the source. Let {ξi,j

n }n

and {ζn}n be {0, 1}-valued rvs where ξi,j
n = 1, j 6= 0, if node

i meets node j at time tn, ξi,0
n = 1 if node i meets the source

at time tn, and ζn = 1 if the source creates a new version of
F at time tn. We assume that ζn +

∑
i,j ξi,j

n = 1 for all n
(only one event at time tn).

Let Y i
n be the age of the version of F that node i carries

just before time tn. We assume that Y i
0 ≥ 1 for all i.

We introduce the additional {0, 1}-valued rvs {ai,j
n (k, l)} and

{ai
n(k)}, where ai,j

n (k, l) = 1 if node i in state k receives a
copy of F from node j in state l < k if they meet at tn, and
ai

n(k) = 1 if the source transmits the latest version of F to
node i in state k if they meet at tn.

Denote θi,j(k, l) = P (ai,j
n (k, l) = 1) and θi(k) = P (ai

n(k) =
1).

The following recursions hold (i = 1, . . . , N ):

Y i
n+1 = Y i

n + (1− Y i
n)ξi,0

n ai
n(Y i

n) (15)

+
N∑

j=1
j 6=i

(Y j
n − Y i

n)1Y j
n−Y i

n<0 ξi,j
n ai,j

n (Y i
n, Y j

n ) + ζn.

Define the vectors Yn = (Y 1
n , . . . , Y N

n ) ∈ E := {1, 2, . . .}N ,
Zn := ({ξi,j

n }), ζn).

Assumptions A1:

(1) {Zn}n is an iid sequence of rvs. Define qi := P (ξi,0
n =

1), qi,j := P (ξi,j
n = 1), and r := P (ζn = 1);

(2) r > 0, qi > 0, qi,j > 0 for all i 6= j;
(3) the probability that two nodes communicate when they

meet only depends on their identity and state, namely
P (ai,j

n (Y i
n, Y j

n ) = 1|{Ym, Zm}m≤n) = θi,j(Y i
n, Y j

n ) for
all i 6= j;

(4) the probability that the source communicate with another
node when they meet only depends on the node identity
and state, that is, P (ai

n(Y i
n) = 1 | {Ym, Zm}m≤n) =

θi(Y i
n) for all i.

A. Stability

Proposition 4 (Stability of {Yn}n):

Assume that A1 holds. Then, {Yn}n is an homogeneous,
irreducible and aperiodic Markov chain on E . It is positive
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recurrent if there exist an integer M0 and θ > 0 such that
θi(k) ≥ θ for all k ≥ M0, i = 1, . . . , N .

Proof. Only the positive recurrence property does not trivially
follow from A1. We will show it by applying Foster’s criterion
(see e.g. [7]) to {Yn}n. Consider the Lyapounov function f :
E → IR+ defined by f(y) =

∑N
i=1 yi with y = (y1, . . . , yN ).

We need to show that there exists a finite set F ⊂ E such that
∆(y) := E[f(Yn+1)−f(Yn) |Yn = y] is finite on F and that
there exists ε > 0 with ∆(y) ≤ −ε for y ∈ E − F .

Take yi ≥ max(2, M0), i = 1, . . . , N . We have

∆(y) =
N∑

i=1

(1− yi)qiθi(yi)

+
N∑

i=1

N∑
j=1
j 6=i

(yj − yi)1yj<yi
qi,jθi,j(yi, yj) + Nr

≤ θ

N∑

i=1

(1− yi)qi + Nr. (16)

Fix ε > 0. One can always find an integer M1 ≥ max(2, M0)
such that the r.h.s. of (16) is less than −ε as long as yi ≥ M1

for any i = 1, . . . , N . Hence, Foster’s criterion applies with
F := {y ∈ E : yi ≤ M1 − 1} since ∆(y) is finite on F and
is less than a negative constant on E − F .

We will show in a companion paper that the stability of {Yn}n

can be investigated in a much more general framework than
the Markovian framework.

B. Quantitative performance

We make additional assumptions in order to compute Xk,
the expected number of files of age k ≥ in steady-state. We
assume that the source and node i = 1, . . . , N (resp. any pair
of nodes i and j, i 6= j) meet according to a Poisson process
with rate λ > 0 and that the source creates a new version of
F at each occurrence of a Poisson process with rate µ > 0.
These N(N + 1)/2 + 1 Poisson processes are assumed to be
mutually independent. We further assume that θi(k) := ak > 0
and θi,j(k, l) := bk,l for any i, j, k, l. In other words, when
two nodes (i.e. source or nodes) meet the probability that a
transmission occurs only depends on the node state and not
on their identity. By Proposition 4 we observe that the system
is stable (in this setting qi = qi,j = λ/ν and r = µ/ν with
ν := λN(N + 1)/2 + µ).

Let Xk(t) be number of nodes in state k at time t. Set
Xk(t) := E[Xk(t)]. We have the Kolmogorov equations

dX1(t)
dt

= −µX1(t) + λ
∑

k≥2

akXk(t)

+λ
∑

l≥2

b1,lE[X1(t)Xl(t)] (17)

dXk(t)
dt

= µXk−1(t) + λ
∑

l≥k+1

bk,lE[Xk(t)Xl(t)]

−λ

k−1∑

l=1

bk,lE[Xk(t)Xl(t)]

−(λak + µ)Xk(t), k ≥ 2. (18)

Let Xk := limt→∞Xk(t) (a.s.) and Xk = E[Xk]. From (17)-
(18) we find

µX1 = λ
∑

k≥2

akXk + λ
∑

l≥2

b1,lE[X1Xl] (19)

µXk−1 + λ
∑

l≥k+1

bk,lE[XkXl] (20)

= λ

k−1∑

l=1

bk,lE[XkXl] + (λak + µ)Xk, k ≥ 2.

We will consider two cases.

Case (a): bk,l = 0 for all k, l. This corresponds to the non-
cooperative setting studied in Section II. We find (Hint: use∑

k≥1 Xk = N )

Xk =
N

∏k
j=2

µ
µ+λaj∑

j≥1

∏j
i=2

µ
µ+λai

, k ≥ 1 (21)

If we perform the change of variable µ/(µ+λai) = 1− pi−1

in (21) we retrieve the corresponding results (4) found in the
discrete-time setting with K = ∞ (see Remark 2.1), thereby
showing that this model is the continuous-time analog of the
discrete-time model.

Case (b): ak = a > 0 and bk,l = b > 0 for all k, l.
Because of the terms E[XkXl] equations (19)-(20) cannot
be solved. To solve them we will assume that cov(Xk, Xl)
is negligible for k 6= l so that E[XkXl] ≈ XkX l. We
conjecture that this approximation (referred to as the “mean-
field approximation” – see e.g. [1]) is accurate for large
N (the mean-field approach in [6, Theorem 3.1] does not
apply here and cannot therefore be used to validate these
approximations). With this approximation and the use of the
identity

∑
k≥1 Xk = N , equations (19)-(20) become (with

ρ := λ/µ)

bX
2

1 −X1(bN − a− 1/ρ)− aN = 0 (22)

bX
2

1 −X1

(
bN − a− 1/ρ− 2b

k−1∑

l=1

X l

)
+ Xk−1/ρ = 0

(23)
for k ≥ 2. The unique nonnegative root of (22) is

X1 =
(

D1 +
√

D2
1 + 4abN

)
/2b (24)

while for k ≥ 2 we get from (23)

Xk =
(

Dk +
√

D2
k + 4bXk−1/ρ

)
/2b (25)

with Dk := bN − a − 1/ρ − 2b
∑k−1

l=1 X l. (24)-(25) define a
recursive scheme allowing the computation of Xk for any k.
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C. Numerical results

We want to quantify the impact of node cooperation on the
system performance in the case where the source has limited
power resources. We want to optimize the system utility∑K

k=1 U(k)Xk under a constraint on the expected number
of transmissions by the source between the creation of two
consecutive version of F . To this end, we will assume that the
source transmits to any node that it meets with the probability
a = a?, where a? := min(1, (1+ρ)V/Nρ) is the static policy
that solves problem P (Proposition 1). Let qρ be the probability
that the source meets a given node between two creations of a
new version of F . We have qρ = λ/(λ+µ) = ρ/(1+ρ) thanks
to the Poisson assumptions. In all experiments reported below
we set N = 100, V = 20 and K = 5. Figures 5-6 display the
mapping qρ →

∑K
k=1 U(k)Xk (with U(k) = 1 in Fig. (5) and

U(k) = 1/k in Fig. 6) for three values of the probability b. The
value b = 0 corresponds to the non-cooperative setting (case
(i); curve referred to as “noncooperative”) and the values b =
0.05, b = 0.1 correspond to the cooperative setting (case (ii);
curves referred to as “b=0.05” and “b=0.1”). One (obvious)
conclusion is that the cooperative setting outperforms the
noncooperative setting. Another conclusion is that the impact
of b is more pronounced when U(k) = 1/k.
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Fig. 5. qρ →
∑5

k=1 Xk (a = a?, b ∈ {0, 0.05, 0.1}, N = 100, V = 10,
K = 5)
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Fig. 6. qρ → ∑5
k=1 Xk/k (a = a?, b ∈ {0, 0.05, 0.1}, N = 100,

V = 10, K = 5)

IV. IMPERFECT STATE INFORMATION

In this section we consider the static setting of Section II
where nodes do not cooperate. We assume that the source
does not know parameters N and q, so that it cannot compute
a? := min(1, V/Nq) , the (conditional) transmission proba-
bility that solves problem P (cf. Proposition 1). Instead, we
will assume that every M ≥ 1 slots the source updates the
transmission probability a, where M is an arbitrary integer.
More precisely, let θm be the transmission probability used in
slots mM, . . . , (m + 1)M − 1. Define the projection operator

ΠH(u) =





1 if u > 1
u if 0 ≤ u ≤ 1
0 if u < 0.

Consider the stochastic recursion

θm+1 = ΠH

(
θm + εm(MV − Ym)

)
(26)

where Ym is the total number of transmissions in slots
mM, . . . , (m + 1)M − 1, and {εm}m are nonnegative real
numbers satisfying

∑

m≥0

ε2m < ∞,
∑

m≥0

εm = ∞, (27)

Observe that the source knows Ym for every m. Recursion
(26) is motivated by the fact that a? is the unique zero of
h(a) := V − X1 if h(1) > 0 and a? = 1 otherwise, so
that the source target is to find the zero, if any, of h(a) (or,
equivalently, the zero of Mh(a)) in [0,1].

Proposition 5 (Stochastic approximation algorithm):

As m →∞, θm in (26) converges with probability one to a?,
the optimal static policy of Section II-B.1.

Proof. The proof directly follows from the remark after The-
orem 2.1 in [8, p. 127]. Let us briefly checked that conditions
(A2.1)-(A2.5) of Theorem 2.1 hold. Since 0 ≤ Ym ≤ MN
for all m, condition (A2.1) holds (this condition requires that
supm E|Ym|2 < ∞). By an inductive argument applied to (26)
we see that E[Ym|θ0, Yi, i < m] = E[Ym|θm, θi, Yi, i < m].
We then note that E[Ym|θm, θi, Yi, i < m] = E[Ym|θm] :=
g(θm) since the decision by the source to transmit a copy
of F to a node only depends on the enforced transmission
probability. This implies that condition (A2.2) holds (condition
(A2.2) in [8, p. 126] states that E[Ym|θ0, Yi, i < m] has the
form of g(θm) + βm where βn is a r.v.). We have

g(x) = M(V −Nqx)

so that conditions (A2.3) (g is continuous) and (A2.5)
(
∑

m≥0 εm|βm| < ∞ w.p.1) are satisfied. Last, condition
(A2.4) (

∑
m≥0 ε2n < ∞) holds from (27).

Consider the ODE dx(t)/dt = g(x(t)). Its solution is x(t) =
(x(0)− V/Nq)e−MNqt + V/Nq. It has a unique equilibrium
point, given by x0 = V/Nq, which is asymptotically stable in
the sense of Lyapounov [8, p. 104] (i.e. for each δ > 0, there
exists η > 0 such that if |x(0)− x0| < η then |x(t)− x0| < ε
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for all t ≥ 0). By [8, Remark p. 127] we conclude that {θm}m

converges with probability one to min(1, V/Nq).

Figure 7 below provides a numerical illustration of the conver-
gence of algorithm (26) to the optimal policy a? for M = 1,
N = 100, V = 10 and q = 0.2. In this case a? = 0.5.
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Fig. 7. m → θm: M = 1, a? = 0.5 (N = 100, V = 10, q = 0.2)

V. CONCLUSION

We have developed simple stochastic models for evaluating
the performance of file management policies in DTNs storing
dynamic files. Both static and dynamic policies have been
investigated. We have shown that using dynamic policies
instead of static policies yields substantial gain in the perfor-
mance; this result holds both in the non-cooperative setting,
where only the source is allowed to communicate with the
other nodes, and in the cooperative setting where all pairwise
communications are possible. Future works include the study
of multi-source and multi-file scenarii.
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APPENDIX

Lemma 1 (Monotonicity of H(x)):

For each k = 1, . . . ,K, the mapping xk → H(x) is non-
increasing for any x = (x1, . . . , xK) ∈ E.

Proof. First, notice that the mapping xK → H(x) is clearly
non-increasing since xK only appears in G(x), the denomi-
nator of H(x), and since G(x) is non-decreasing in xK .

Assume now that k = 1, . . . ,K. Let

B(j) := 1 + x1 + x1x2 + · · ·+ x1 · · ·xj

Bk(j) := 1 + xk+1 + xk+1xk+2 + · · ·+ xk+1 · · ·xj

with B(0) = 1, Bk(k) = 1. Set U(K + 1) = 0. We have

F (x) =
K∑

j=1

[U(j)− U(j + 1)]B(j − 1), G(x) = B(K)

so that

∂

∂xk
F (x) =

k−1∏

j=1

xj

K∑

j=k+1

[U(j)− U(j + 1)]Bk(j − 1)

∂

∂xk
G(x) = Bk(K)

k−1∏

j=1

xj .

Therefore

∂

∂xk
H(x) =

(
∏k−1

j=1 xj)2

G(x)2

(
k∑

j=1

[U(j + 1)− U(j)]

×B(j − 1)Bk(K) +
K∑

j=k+1

[U(j + 1)− U(j)]

×[B(j − 1)Bk(K)−Bk(j − 1)B(K)]

)
.

The first summation is non-positive since U is non-increasing
and since B(j − 1)Bk(K) ≥ 0 for all x ∈ E. Using
again the decreasingness of U a sufficient condition for
the second summation to be non-positive is that coefficients
B(j − 1)Bk(K) − Bk(j − 1)B(K) are all non-negative. To
see that this is indeed true, note that B(j) = B(k − 1) +
x1 . . . , xkBk(j) so that B(j− 1)Bk(K)−Bk(j− 1)B(K) =
B(k − 1)[Bk(K) − Bk(j − 1)] which is non-negative for all
x ∈ E. This concludes the proof.
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